1
|
Jahandar-Lashaki S, Farajnia S, Faraji-Barhagh A, Hosseini Z, Bakhtiyari N, Rahbarnia L. Phage Display as a Medium for Target Therapy Based Drug Discovery, Review and Update. Mol Biotechnol 2025; 67:2161-2184. [PMID: 38822912 DOI: 10.1007/s12033-024-01195-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 05/07/2024] [Indexed: 06/03/2024]
Abstract
Phage libraries are now amongst the most prominent approaches for the identification of high-affinity antibodies/peptides from billions of displayed phages in a specific library through the biopanning process. Due to its ability to discover potential therapeutic candidates that bind specifically to targets, phage display has gained considerable attention in targeted therapy. Using this approach, peptides with high-affinity and specificity can be identified for potential therapeutic or diagnostic use. Furthermore, phage libraries can be used to rapidly screen and identify novel antibodies to develop immunotherapeutics. The Food and Drug Administration (FDA) has approved several phage display-derived peptides and antibodies for the treatment of different diseases. In the current review, we provided a comprehensive insight into the role of phage display-derived peptides and antibodies in the treatment of different diseases including cancers, infectious diseases and neurological disorders. We also explored the applications of phage display in targeted drug delivery, gene therapy, and CAR T-cell.
Collapse
Affiliation(s)
- Samaneh Jahandar-Lashaki
- Medical Biotechnology Department, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Safar Farajnia
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Aref Faraji-Barhagh
- Medical Biotechnology Department, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Hosseini
- Department of Microbiology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Nasim Bakhtiyari
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Rahbarnia
- Infectious and Tropical Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
2
|
Lander A, Kong Y, Jin Y, Wu C, Luk LYP. Deciphering the Synthetic and Refolding Strategy of a Cysteine-Rich Domain in the Tumor Necrosis Factor Receptor (TNF-R) for Racemic Crystallography Analysis and d-Peptide Ligand Discovery. ACS BIO & MED CHEM AU 2024; 4:68-76. [PMID: 38404743 PMCID: PMC10885103 DOI: 10.1021/acsbiomedchemau.3c00060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 02/27/2024]
Abstract
Many cell-surface receptors are promising targets for chemical synthesis because of their critical roles in disease development. This synthetic approach enables investigations by racemic protein crystallography and ligand discovery by mirror-image methodologies. However, due to their complex nature, the chemical synthesis of a receptor can be a significant challenge. Here, we describe the chemical synthesis and folding of a central, cysteine-rich domain of the cell-surface receptor tumor necrosis factor 1 which is integral to binding of the cytokine TNF-α, namely, TNFR-1 CRD2. Racemic protein crystallography at 1.4 Å confirmed that the native binding conformation was preserved, and TNFR-1 CRD2 maintained its capacity to bind to TNF-α (KD ≈ 7 nM). Encouraged by this discovery, we carried out mirror-image phage display using the enantiomeric receptor mimic and identified a d-peptide ligand for TNFR-1 CRD2 (KD = 1 μM). This work demonstrated that cysteine-rich domains, including the central domains, can be chemically synthesized and used as mimics for investigations.
Collapse
Affiliation(s)
- Alexander
J. Lander
- School
of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K.
| | - Yifu Kong
- Department
of Chemistry, College of Chemistry and Chemical Engineering, The MOE
Key Laboratory of Spectrochemical Analysis and Instrumentation, State
Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Fujian Province 361005, China
| | - Yi Jin
- Manchester
Institute of Biotechnology, University of
Manchester, Manchester M1 7DN, U.K.
| | - Chuanliu Wu
- Department
of Chemistry, College of Chemistry and Chemical Engineering, The MOE
Key Laboratory of Spectrochemical Analysis and Instrumentation, State
Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Fujian Province 361005, China
| | - Louis Y. P. Luk
- School
of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K.
| |
Collapse
|
3
|
Chen Q, Xu Y, Feng X, Xiang Y, Ni J, Ding G, Ren Q, Zhou MS. Geldanaycin-encapsulated magnetic nanoparticle for isolation of myosin in proteomics. Talanta 2024; 268:125294. [PMID: 37826936 DOI: 10.1016/j.talanta.2023.125294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/18/2023] [Accepted: 10/06/2023] [Indexed: 10/14/2023]
Abstract
The grafting of a drug molecule, i.e., geldanamycin (GA) onto polyethyleneimine (PEI)-coated magnetic nanoparticle produces a novel composite, GA@Fe3O4-NH2. The composite is confirmed by characterizations with FT-IR, Raman, SEM, EDS, VSM and TEM. Due to the high binding-affinity of GA with myosin heavy chain (MYH), GA@Fe3O4-NH2 exhibits excellent adsorption performance towards myosin. Consequently, a solid-phase extraction procedure is established for highly efficient and selective separation of myosin from pig heart extract. At pH 6.0, an adsorption efficiency of 97.1 % is achieved for treating 100 μg mL-1 myosin (0.1 mL) with 0.1 mg GA@Fe3O4-NH2 as adsorbent. The adsorption behavior of myosin onto GA@Fe3O4-NH2 fits Langmuir model, corresponding to a theoretical adsorption capacity of 518.1 mg g-1. The adsorbed myosin can be readily recycled by the SDS solution (1 %, m/m) with an elution efficiency of 91.8 %. According to circular dichroism spectroscopy, the conformational changes of myosin during adsorption and elution are reversible. For practical application, myosin is successfully isolated from the pig left ventricular protein extract with GA@Fe3O4-NH2, and SDS-PAGE and LC-MS/MS showed that myosin had high purity and a total of 716 proteins could be identified. Significantly, Geldamycin-encapsulated magnetic nanoparticle for the separation of myosin well exploits the potential of the nanomaterials modified by drug molecules in the separation and purification of target proteins.
Collapse
Affiliation(s)
- Qing Chen
- School of Pharmacy, Shenyang Medical College, Shenyang, 110034, China
| | - Yan Xu
- School of Pharmacy, Shenyang Medical College, Shenyang, 110034, China
| | - Xueting Feng
- School of Pharmacy, Shenyang Medical College, Shenyang, 110034, China
| | - Yuhan Xiang
- School of Pharmacy, Shenyang Medical College, Shenyang, 110034, China
| | - Jiayue Ni
- School of Pharmacy, Shenyang Medical College, Shenyang, 110034, China
| | - Guoyu Ding
- School of Pharmacy, Shenyang Medical College, Shenyang, 110034, China.
| | - Qunxiang Ren
- School of Pharmacy, Shenyang Medical College, Shenyang, 110034, China.
| | - Ming-Sheng Zhou
- Shenyang Key Laboratory of Vascular Biology, Science and Experiment Center, Shenyang Medical College, Shenyang, 110034, China
| |
Collapse
|
4
|
Higashi K, Oda S, Fujii M, Nishida F, Matsumoto H, Morise J, Oka S, Nonaka M. Construction of a T7 phage random peptide library by combining seamless cloning with in vitro translation. J Biochem 2023; 175:85-93. [PMID: 37795834 DOI: 10.1093/jb/mvad077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/07/2023] [Accepted: 10/03/2023] [Indexed: 10/06/2023] Open
Abstract
T7 phage libraries displaying random peptides are powerful tools for screening peptide sequences that bind to various target molecules. The T7 phage system has the advantage of less biased peptide distribution compared to the M13 phage system. However, the construction of T7 phage DNA is challenging due to its long 36 kb linear DNA. Furthermore, the diversity of the libraries depends strongly on the efficiency of commercially available packaging extracts. To address these issues, we examined the combination of seamless cloning with cell-free translation systems. Seamless cloning technologies have been widely used to construct short circular plasmid DNA, and several recent studies showed that cell-free translation can achieve more diverse phage packaging. In this study, we combined these techniques to construct four libraries (CX7C, CX9C, CX11C and CX13C) with different random regions lengths. The libraries thus obtained all showed diversity > 109 plaque forming units (pfu). Evaluating our libraries with an anti-FLAG monoclonal antibody yielded the correct epitope sequence. The results indicate that our libraries are useful for screening peptide epitopes against antibodies. These findings suggest that our system can efficiently construct T7 phage libraries with greater diversity than previous systems.
Collapse
Affiliation(s)
- Katsuaki Higashi
- Department of Biological Chemistry, Human Health Sciences, Graduate School of Medicine, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Sakiho Oda
- Department of Biological Chemistry, Human Health Sciences, Graduate School of Medicine, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Mai Fujii
- Department of Biological Chemistry, Human Health Sciences, Graduate School of Medicine, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Fumiya Nishida
- Department of Biological Chemistry, Human Health Sciences, Graduate School of Medicine, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Hayato Matsumoto
- Department of Biological Chemistry, Human Health Sciences, Graduate School of Medicine, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Jyoji Morise
- Department of Biological Chemistry, Human Health Sciences, Graduate School of Medicine, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Shogo Oka
- Department of Biological Chemistry, Human Health Sciences, Graduate School of Medicine, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Motohiro Nonaka
- Department of Biological Chemistry, Human Health Sciences, Graduate School of Medicine, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| |
Collapse
|
5
|
Lander AJ, Jin Y, Luk LYP. D-Peptide and D-Protein Technology: Recent Advances, Challenges, and Opportunities. Chembiochem 2023; 24:e202200537. [PMID: 36278392 PMCID: PMC10805118 DOI: 10.1002/cbic.202200537] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/23/2022] [Indexed: 11/08/2022]
Abstract
Total chemical protein synthesis provides access to entire D-protein enantiomers enabling unique applications in molecular biology, structural biology, and bioactive compound discovery. Key enzymes involved in the central dogma of molecular biology have been prepared in their D-enantiomeric forms facilitating the development of mirror-image life. Crystallization of a racemic mixture of L- and D-protein enantiomers provides access to high-resolution X-ray structures of polypeptides. Additionally, D-enantiomers of protein drug targets can be used in mirror-image phage display allowing discovery of non-proteolytic D-peptide ligands as lead candidates. This review discusses the unique applications of D-proteins including the synthetic challenges and opportunities.
Collapse
Affiliation(s)
- Alexander J. Lander
- School of ChemistryCardiff UniversityMain Building, Park PlaceCardiffCF10 3ATUK
| | - Yi Jin
- Manchester Institute of BiotechnologyThe University of ManchesterManchesterM1 7DNUK
| | - Louis Y. P. Luk
- School of ChemistryCardiff UniversityMain Building, Park PlaceCardiffCF10 3ATUK
| |
Collapse
|