1
|
Issa S, Klein Y, Berda E, Saad S, Sharaby Y, Benhar M, Pick E. Redox-driven regulation of UCHL3/Yuh1 influences mitochondrial health via the NEDD8/Rub1 pathway. Redox Biol 2025; 83:103655. [PMID: 40347692 DOI: 10.1016/j.redox.2025.103655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2025] [Accepted: 04/29/2025] [Indexed: 05/14/2025] Open
Abstract
The ubiquitin-like protein NEDD8/Rub1 is initially translated as a precursor and undergoes maturation before becoming functional, a process mediated by the ubiquitin hydrolase UCHL3/Yuh1. Across studied organisms, the mature form of NEDD8/Rub1 modifies cullins, the central subunits of CRLs. NEDD8/Rub1 modification typically enhances CRL-mediated ubiquitination of key cellular regulators, leading to their proteasomal degradation. However, in S. cerevisiae, cullin modification by NEDD8/Rub1 occurs but does not regulate substrate turnover, prompting the question of whether NEDD8/Rub1 has a conserved role beyond CRL activation. Previous studies in S. cerevisiae have shown that increased production of reactive oxygen species (ROS) during the diauxic shift, a transition from glycolysis to mitochondrial respiration, inhibits cullin NEDDylation, though the specific enzymes affected remain unidentified. Here, we investigated how changes in the redox state affect Yuh1 catalytic function. Our findings reveal a thiol-based redox switch that modulates Yuh1 catalytic function in response to accumulated ROS. Our results suggest that the fine-tuning between the mature and precursor forms of NEDD8/Rub1 through temporal inactivation of Yuh1 is essential for maintaining mitochondrial integrity and enhancing resilience to oxidative stress. These results unveil a novel role for CRL-free NEDD8/Rub1 in redox signaling.
Collapse
Affiliation(s)
- Soha Issa
- Department of Evolutionary and Environmental Biology, University of Haifa, Haifa, 3190500, Israel
| | - Yuval Klein
- Department of Human Biology, University of Haifa, Haifa, 31905, Israel
| | - Eden Berda
- Department of Biology and Environment, University of Haifa at Oranim, Tivon, 3600600, Israel
| | - Shahaf Saad
- Department of Biology and Environment, University of Haifa at Oranim, Tivon, 3600600, Israel
| | - Yehonatan Sharaby
- Department of Biology and Environment, University of Haifa at Oranim, Tivon, 3600600, Israel
| | - Moran Benhar
- Department of Biochemistry, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, 3109601, Israel
| | - Elah Pick
- Department of Evolutionary and Environmental Biology, University of Haifa, Haifa, 3190500, Israel; Department of Human Biology, University of Haifa, Haifa, 31905, Israel; Department of Biology and Environment, University of Haifa at Oranim, Tivon, 3600600, Israel.
| |
Collapse
|
2
|
Zhu Q, Yang J, Shi L, Zhang J, Zhang P, Li J, Song X. Exploring the role of ubiquitination modifications in migraine headaches. Front Immunol 2025; 16:1534389. [PMID: 39958329 PMCID: PMC11825825 DOI: 10.3389/fimmu.2025.1534389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 01/09/2025] [Indexed: 02/18/2025] Open
Abstract
Migraine is a complex neurovascular disorder whose pathogenesis involves activation of the trigeminal vascular system, central and peripheral sensitization, and neuroinflammation. Calcitonin gene-related peptide (CGRP) plays a dominant role and activation of MAPK and NF-κB signaling pathways regulates neuropeptide release, glial cell activation, and amplification of nociceptive signals. Aberrant activation of these pathways drives migraine onset and chronicity. The ubiquitin-proteasome system (UPS) is involved in neurological and inflammatory disorders. ubiquitination in the UPS is achieved through a cascade of enzymes, including Ub-activating enzyme (E1), Ub-coupling enzyme (E2), and Ub-ligase (E3). The aim of this review is to systematically explore the role of ubiquitination in the regulation of MAPK and NF-κB signaling pathways, with a focus on the mechanisms of ubiquitinating enzymes in neuroinflammation and pain signal amplification, and to explore their potential as diagnostics, biomarkers, predictors of response to therapy, and monitoring of chronicity in migraine disease.
Collapse
Affiliation(s)
- Qian Zhu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Jin Yang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Lei Shi
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Jieying Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Peng Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Junlong Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Xiaoli Song
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| |
Collapse
|
3
|
Du WX, Goodman CA, Gregorevic P. Deubiquitinases in skeletal muscle-the underappreciated side of the ubiquitination coin. Am J Physiol Cell Physiol 2024; 327:C1651-C1665. [PMID: 39344415 DOI: 10.1152/ajpcell.00553.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/16/2024] [Accepted: 09/16/2024] [Indexed: 10/01/2024]
Abstract
Ubiquitination is a posttranslational modification that plays important roles in regulating protein stability, function, localization, and protein-protein interactions. Proteins are ubiquitinated via a process involving specific E1 activating enzymes, E2 conjugating enzymes, and E3 ligases. Simultaneously, protein ubiquitination is opposed by deubiquitinating enzymes (DUBs). DUB-mediated deubiquitination can change protein function or fate and recycle ubiquitin to maintain the free ubiquitin pool. Approximately 100 DUBs have been identified in the mammalian genome, and characterized into seven classes [ubiquitin-specific protease (USP), ovarian tumor proteases (OTU), ubiquitin C-terminal hydrolase (UCH), Machado-Josephin disease (MJD), JAB1/MPN/Mov34 metalloprotease (JAMM), Ub-containing novel DUB family (MINDY), and zinc finger containing ubiquitin peptidase (ZUP) classes]. Of these 100 DUBs, there has only been relatively limited investigation of 20 specifically in skeletal muscle cells, in vitro or in vivo, using overexpression, knockdown, and knockout models. To date, evidence indicates roles for individual DUBs in regulating aspects of myogenesis, protein turnover, muscle mass, and muscle metabolism. However, the exact mechanism by which these DUBs act (i.e., the specific targets of these DUBs and the type of ubiquitin chains they target) is still largely unknown, underscoring how little we know about DUBs in skeletal muscle. This review endeavors to comprehensively summarize the current state of knowledge of the function of DUBs in skeletal muscle and highlight the opportunities for gaining a greater understanding through further research into this important area of skeletal muscle and ubiquitin biology.
Collapse
Affiliation(s)
- Wayne X Du
- Centre for Muscle Research (CMR), Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Craig A Goodman
- Centre for Muscle Research (CMR), Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Paul Gregorevic
- Centre for Muscle Research (CMR), Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Neurology, The University of Washington School of Medicine, Seattle, Washington, United States
| |
Collapse
|
4
|
Czajkowska A, Czajkowski M, Szczerbinski L, Jurczuk K, Reska D, Kwedlo W, Kretowski M, Zabielski P, Kretowski A. Exploring protein relative relations in skeletal muscle proteomic analysis for insights into insulin resistance and type 2 diabetes. Sci Rep 2024; 14:17631. [PMID: 39085321 PMCID: PMC11292014 DOI: 10.1038/s41598-024-68568-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 07/25/2024] [Indexed: 08/02/2024] Open
Abstract
The escalating prevalence of insulin resistance (IR) and type 2 diabetes mellitus (T2D) underscores the urgent need for improved early detection techniques and effective treatment strategies. In this context, our study presents a proteomic analysis of post-exercise skeletal muscle biopsies from individuals across a spectrum of glucose metabolism states: normal, prediabetes, and T2D. This enabled the identification of significant protein relationships indicative of each specific glycemic condition. Our investigation primarily leveraged the machine learning approach, employing the white-box algorithm relative evolutionary hierarchical analysis (REHA), to explore the impact of regulated, mixed mode exercise on skeletal muscle proteome in subjects with diverse glycemic status. This method aimed to advance the diagnosis of IR and T2D and elucidate the molecular pathways involved in its development and the response to exercise. Additionally, we used proteomics-specific statistical analysis to provide a comparative perspective, highlighting the nuanced differences identified by REHA. Validation of the REHA model with a comparable external dataset further demonstrated its efficacy in distinguishing between diverse proteomic profiles. Key metrics such as accuracy and the area under the ROC curve confirmed REHA's capability to uncover novel molecular pathways and significant protein interactions, offering fresh insights into the effects of exercise on IR and T2D pathophysiology of skeletal muscle. The visualizations not only underscored significant proteins and their interactions but also showcased decision trees that effectively differentiate between various glycemic states, thereby enhancing our understanding of the biomolecular landscape of T2D.
Collapse
Affiliation(s)
- Anna Czajkowska
- Clinical Research Centre, Medical University of Bialystok, Białystok, Poland.
- Department of Medical Biology, Medical University of Bialystok, A. Mickiewicza 2C, 15-369, Białystok, Poland.
| | - Marcin Czajkowski
- Faculty of Computer Science, Bialystok University of Technology, Białystok, Poland
| | - Lukasz Szczerbinski
- Clinical Research Centre, Medical University of Bialystok, Białystok, Poland
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, Białystok, Poland
- Programs in Metabolism and Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Krzysztof Jurczuk
- Faculty of Computer Science, Bialystok University of Technology, Białystok, Poland
| | - Daniel Reska
- Faculty of Computer Science, Bialystok University of Technology, Białystok, Poland
| | - Wojciech Kwedlo
- Faculty of Computer Science, Bialystok University of Technology, Białystok, Poland
| | - Marek Kretowski
- Faculty of Computer Science, Bialystok University of Technology, Białystok, Poland
| | - Piotr Zabielski
- Department of Medical Biology, Medical University of Bialystok, A. Mickiewicza 2C, 15-369, Białystok, Poland
| | - Adam Kretowski
- Clinical Research Centre, Medical University of Bialystok, Białystok, Poland
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, Białystok, Poland
| |
Collapse
|
5
|
Antony R, Aby K, Montgomery M, Li Y. Skeletal Muscle UCHL1 Negatively Regulates Muscle Development and Recovery after Muscle Injury. Int J Mol Sci 2024; 25:7330. [PMID: 39000437 PMCID: PMC11242864 DOI: 10.3390/ijms25137330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024] Open
Abstract
Ubiquitin C-terminal hydrolase L1 (UCHL1) is a deubiquitinating enzyme originally found in the brain. Our previous work revealed that UCHL1 was also expressed in skeletal muscle and affected myoblast differentiation and metabolism. In this study, we further tested the role of UCHL1 in myogenesis and muscle regeneration following muscle ischemia-reperfusion (IR) injury. In the C2C12 myoblast, UCHL1 knockdown upregulated MyoD and myogenin and promoted myotube formation. The skeletal muscle-specific knockout (smKO) of UCHL1 increased muscle fiber sizes in young mice (1 to 2 months old) but not in adult mice (3 months old). In IR-injured hindlimb muscle, UCHL1 was upregulated. UCHL1 smKO ameliorated tissue damage and injury-induced inflammation. UCHL1 smKO also upregulated myogenic factors and promoted functional recovery in IR injury muscle. Moreover, UCHL1 smKO increased Akt and Pink1/Parkin activities. The overall results suggest that skeletal muscle UCHL1 is a negative factor in skeletal muscle development and recovery following IR injury and therefore is a potential therapeutic target to improve muscle regeneration and functional recovery following injuries.
Collapse
Affiliation(s)
| | | | | | - Yifan Li
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA; (R.A.); (K.A.); (M.M.)
| |
Collapse
|
6
|
Olie CS, O'Brien DP, Jones HB, Liang Z, Damianou A, Sur-Erdem I, Pinto-Fernández A, Raz V, Kessler BM. Deubiquitinases in muscle physiology and disorders. Biochem Soc Trans 2024; 52:1085-1098. [PMID: 38716888 PMCID: PMC11346448 DOI: 10.1042/bst20230562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 06/27/2024]
Abstract
In vivo, muscle and neuronal cells are post-mitotic, and their function is predominantly regulated by proteostasis, a multilayer molecular process that maintains a delicate balance of protein homeostasis. The ubiquitin-proteasome system (UPS) is a key regulator of proteostasis. A dysfunctional UPS is a hallmark of muscle ageing and is often impacted in neuromuscular disorders (NMDs). Malfunction of the UPS often results in aberrant protein accumulation which can lead to protein aggregation and/or mis-localization affecting its function. Deubiquitinating enzymes (DUBs) are key players in the UPS, controlling protein turnover and maintaining the free ubiquitin pool. Several mutations in DUB encoding genes are linked to human NMDs, such as ATXN3, OTUD7A, UCHL1 and USP14, whilst other NMDs are associated with dysregulation of DUB expression. USP5, USP9X and USP14 are implicated in synaptic transmission and remodeling at the neuromuscular junction. Mice lacking USP19 show increased maintenance of lean muscle mass. In this review, we highlight the involvement of DUBs in muscle physiology and NMDs, particularly in processes affecting muscle regeneration, degeneration and inflammation following muscle injury. DUBs have recently garnered much respect as promising drug targets, and their roles in muscle maturation, regeneration and degeneration may provide the framework for novel therapeutics to treat muscular disorders including NMDs, sarcopenia and cachexia.
Collapse
Affiliation(s)
- Cyriel S. Olie
- Department of Human Genetics, Leiden University Medical Centre, 2333ZC Leiden, The Netherlands
| | - Darragh P. O'Brien
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, U.K
| | - Hannah B.L. Jones
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, U.K
| | - Zhu Liang
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, U.K
- Chinese Academy for Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, U.K
| | - Andreas Damianou
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, U.K
- Chinese Academy for Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, U.K
| | - Ilknur Sur-Erdem
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, U.K
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Women's Centre, John Radcliffe Hospital, Oxford OX3 9DU, U.K
| | - Adán Pinto-Fernández
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, U.K
- Chinese Academy for Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, U.K
| | - Vered Raz
- Department of Human Genetics, Leiden University Medical Centre, 2333ZC Leiden, The Netherlands
| | - Benedikt M. Kessler
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, U.K
- Chinese Academy for Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, U.K
| |
Collapse
|
7
|
Dellar ER, Vendrell I, Talbot K, Kessler BM, Fischer R, Turner MR, Thompson AG. Data-independent acquisition proteomics of cerebrospinal fluid implicates endoplasmic reticulum and inflammatory mechanisms in amyotrophic lateral sclerosis. J Neurochem 2024; 168:115-127. [PMID: 38087504 PMCID: PMC10952667 DOI: 10.1111/jnc.16030] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/29/2023] [Accepted: 12/02/2023] [Indexed: 01/26/2024]
Abstract
While unbiased proteomics of human cerebrospinal fluid (CSF) has been used successfully to identify biomarkers of amyotrophic lateral sclerosis (ALS), high-abundance proteins mask the presence of lower abundance proteins that may have diagnostic and prognostic value. However, developments in mass spectrometry (MS) proteomic data acquisition methods offer improved protein depth. In this study, MS with library-free data-independent acquisition (DIA) was used to compare the CSF proteome of people with ALS (n = 40), healthy (n = 15) and disease (n = 8) controls. Quantified protein groups were subsequently correlated with clinical variables. Univariate analysis identified 7 proteins, all significantly upregulated in ALS versus healthy controls, and 9 with altered abundance in ALS versus disease controls (FDR < 0.1). Elevated chitotriosidase-1 (CHIT1) was common to both comparisons and was proportional to ALS disability progression rate (Pearson r = 0.41, FDR-adjusted p = 0.035) but not overall survival. Ubiquitin carboxyl-terminal hydrolase isozyme L1 (UCHL1; upregulated in ALS versus healthy controls) was proportional to disability progression rate (Pearson r = 0.53, FDR-adjusted p = 0.003) and survival (Kaplan Meier log-rank p = 0.013) but not independently in multivariate proportional hazards models. Weighted correlation network analysis was used to identify functionally relevant modules of proteins. One module, enriched for inflammatory functions, was associated with age at symptom onset (Pearson r = 0.58, FDR-adjusted p = 0.005) and survival (Hazard Ratio = 1.78, FDR = 0.065), and a second module, enriched for endoplasmic reticulum proteins, was negatively correlated with disability progression rate (r = -0.42, FDR-adjusted p = 0.109). DIA acquisition methodology therefore strengthened the biomarker candidacy of CHIT1 and UCHL1 in ALS, while additionally highlighted inflammatory and endoplasmic reticulum proteins as novel sources of prognostic biomarkers.
Collapse
Affiliation(s)
| | - Iolanda Vendrell
- Centre for Medicines Discovery, Nuffield Department of Medicine, Target Discovery InstituteUniversity of OxfordOxfordUK
- Nuffield Department of Medicine, Chinese Academy of Medical Sciences Oxford InstituteUniversity of OxfordOxfordUK
| | - Kevin Talbot
- Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
- Kavli Institute for Nanoscience DiscoveryUniversity of OxfordOxfordUK
| | - Benedikt M. Kessler
- Centre for Medicines Discovery, Nuffield Department of Medicine, Target Discovery InstituteUniversity of OxfordOxfordUK
- Nuffield Department of Medicine, Chinese Academy of Medical Sciences Oxford InstituteUniversity of OxfordOxfordUK
| | - Roman Fischer
- Centre for Medicines Discovery, Nuffield Department of Medicine, Target Discovery InstituteUniversity of OxfordOxfordUK
- Nuffield Department of Medicine, Chinese Academy of Medical Sciences Oxford InstituteUniversity of OxfordOxfordUK
| | - Martin R. Turner
- Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
| | | |
Collapse
|
8
|
Zhu W, Zhu W, Wang S, Liu S, Zhang H. UCHL1 deficiency upon HCMV infection induces vascular endothelial inflammatory injury mediated by mitochondrial iron overload. Free Radic Biol Med 2024; 211:96-113. [PMID: 38081437 DOI: 10.1016/j.freeradbiomed.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/20/2023]
Abstract
Human cytomeglovirus (HCMV) infection predisposes blood vessels to atherosclerosis (AS) and post-transplantation restenosis, but the underlying molecular basis remains elusive. Here, we found that HCMV infection activates AIM2 inflammasome and pyroptosis in vascular endothelial cells by inducing mitochondrial iron overload. Mechanistically, under normal conditions, ubiquitin carboxyl terminal hydrolase-L1 (UCHL1) was identified as a DUB enzyme that interacts with, deubiquitylates, and stabilizes ferredoxin reductase (FDXR), an important mitochondrial protein that regulates mitochondral iron homeostasis. However, HCMV infection induces the aberrantly elevated m6A modification and R-loops, the three-stranded DNA-DNA:RNA hybrid structures. The expression of UCHL1 was remarkably reduced by m6A modification-mediated mRNA decay and R-loop-dependent transcriptional termination after HCMV infection. Deficiency of UCHL1 causes ubiquitination and degradation of FDXR. Loss of FDXR induces the mitochondrial iron overload, which consequently leads to AIM2 inflammasome activation and endothelial injury. Moreover, both downregulation expression of UCHL1 and related inflammatory injury in vascular endothelium was observed in MCMV-infected mice. Notably, STM2457, a METTL3 specific inhibitor, restores the expression of UCHL1 upon HCMV infection, thereby inhibiting the inflammatory injury of vascular endothelial cells. Our findings delineate a novel mechnism involved in HCMV-induced inflammatory injury to vascular endothelium and implicate the role of METTL3 inhibitor as a potential therapeutic approach.
Collapse
Affiliation(s)
- Wenbo Zhu
- The First Affiliated Hospital, Clinical Medical Research Center, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Wentong Zhu
- Unchained Labs (Shanghai) Trading Co., Ltd, Shanghai 201203, China
| | - Shao Wang
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agriculture Science, Fuzhou 350013, China
| | - Shuangquan Liu
- The First Affiliated Hospital, Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Hongbo Zhang
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, United States.
| |
Collapse
|
9
|
Yan Q, Shi S, Ge Y, Wan S, Li M, Li M. UCHL1 alleviates apoptosis in chondrocytes via upregulation of HIF‑1α‑mediated mitophagy. Int J Mol Med 2023; 52:99. [PMID: 37681473 PMCID: PMC10555477 DOI: 10.3892/ijmm.2023.5302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 08/16/2023] [Indexed: 09/09/2023] Open
Abstract
Stem cell‑based tissue engineering has shown significant potential for rapid restoration of injured cartilage tissues. Stem cells frequently undergo apoptosis because of the prevalence of oxidative stress and inflammation in the microenvironment at the sites of injury. Our previous study demonstrated that stabilization of hypoxia‑inducible factor 1α (HIF‑1α) is key to resisting apoptosis in chondrocytes. Recently, it was reported that Ubiquitin C‑terminal hydrolase L1 (UCHL1) can stabilize HIF‑1α by abrogating the ubiquitination process. However, the effect of UCHL1 on apoptosis in chondrocytes remains unclear. Herein, adipose‑derived stem cells were differentiated into chondrocytes. Next, the CRISPR activation (CRISPRa) system, LDN‑57444 (LDM; a specific inhibitor for UCHL1), KC7F2 (a specific inhibitor for HIF‑1α), and 3‑methyladenine (a specific inhibitor for mitophagy) were used to activate or block UCHL1, HIF‑1α, and mitophagy. Mitophagy, apoptosis, and mitochondrial function in chondrocytes were detected using immunofluorescence, TUNEL staining, and flow cytometry. Moreover, the oxygen consumption rate of chondrocytes was measured using the Seahorse XF 96 Extracellular Flux Analyzer. UCHL1 expression was increased in hypoxia, which in turn regulated mitophagy and apoptosis in the chondrocytes. Further studies revealed that UCHL1 mediated hypoxia‑regulated mitophagy in the chondrocytes. The CRISPRa module was utilized to activate UCHL1 effectively for 7 days; endogenous activation of UCHL1 accelerated mitophagy, inhibited apoptosis, and maintained mitochondrial function in the chondrocytes, which was mediated by HIF‑1α. Taken together, UCHL1 could block apoptosis in chondrocytes via upregulation of HIF‑1α-mediated mitophagy and maintain mitochondrial function. These results indicate the potential of UCHL1 activation using the CRISPRa system for the regeneration of cartilage tissue.
Collapse
Affiliation(s)
- Qiqian Yan
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong 510280
- Guangdong Academy of Stomatology, Guangzhou, Guangdong 510180, P.R. China
| | - Shanwei Shi
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong 510280
- Guangdong Academy of Stomatology, Guangzhou, Guangdong 510180, P.R. China
| | - Yang Ge
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong 510280
- Guangdong Academy of Stomatology, Guangzhou, Guangdong 510180, P.R. China
| | - Shuangquan Wan
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong 510280
- Guangdong Academy of Stomatology, Guangzhou, Guangdong 510180, P.R. China
| | - Mingfei Li
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong 510280
- Guangdong Academy of Stomatology, Guangzhou, Guangdong 510180, P.R. China
| | - Maoquan Li
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong 510280
- Guangdong Academy of Stomatology, Guangzhou, Guangdong 510180, P.R. China
| |
Collapse
|
10
|
Peng Z, Cai J, Guo X, Xu S. Brown adipocyte activation mediates lipid metabolism through exosomal tRNA-derived fragments. Biochem Biophys Res Commun 2023; 672:128-136. [PMID: 37352601 DOI: 10.1016/j.bbrc.2023.06.038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/08/2023] [Accepted: 06/11/2023] [Indexed: 06/25/2023]
Abstract
Human obesity is related with intrinsic impairments of adipocyte lipolysis and ectopic lipid accumulation. Small regulatory RNAs, such as tRNA-derived fragments (tRFs) and tRNA halves (tiRNAs), are enriched in exosomes and play a crucial role in lipid metabolism. To determine certain tRFs for lipolysis, brown adipocytes were treated with forskolin. Using tRFs sequencing, 207 different expressed exosomal tRFs were determined. In forskolin samples, 145 downregulated and 62 upregulated tRFs were identified. Further, qRT-PCR validated that three notably upregulated tRFs (tRF-Gly-GCC-007, tRF-Gly-GCC-008, and tRF-Gly-GCC-009) were in accordance with the sequencing result. Target genes of tRFs were involved in positive regulation of protein phosphorylation and cell adhesion process by significantly downregulating UCHL1 expression, which might participate in lipolysis. This study might provide therapeutic targets and potential diagnostic biomarkers for obesity treatment.
Collapse
Affiliation(s)
- Zhou Peng
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingyang Cai
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Xirong Guo
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Siliang Xu
- State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
11
|
Rentsendorj A, Raedschelders K, Fuchs DT, Sheyn J, Vaibhav V, Porritt RA, Shi H, Dagvadorj J, de Freitas Germano J, Koronyo Y, Arditi M, Black KL, Gaire BP, Van Eyk JE, Koronyo-Hamaoui M. Osteopontin depletion in macrophages perturbs proteostasis via regulating UCHL1-UPS axis and mitochondria-mediated apoptosis. Front Immunol 2023; 14:1155935. [PMID: 37325640 PMCID: PMC10266348 DOI: 10.3389/fimmu.2023.1155935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/19/2023] [Indexed: 06/17/2023] Open
Abstract
Introduction Osteopontin (OPN; also known as SPP1), an immunomodulatory cytokine highly expressed in bone marrow-derived macrophages (BMMΦ), is known to regulate diverse cellular and molecular immune responses. We previously revealed that glatiramer acetate (GA) stimulation of BMMΦ upregulates OPN expression, promoting an anti-inflammatory, pro-healing phenotype, whereas OPN inhibition triggers a pro-inflammatory phenotype. However, the precise role of OPN in macrophage activation state is unknown. Methods Here, we applied global proteome profiling via mass spectrometry (MS) analysis to gain a mechanistic understanding of OPN suppression versus induction in primary macrophage cultures. We analyzed protein networks and immune-related functional pathways in BMMΦ either with OPN knockout (OPNKO) or GA-mediated OPN induction compared with wild type (WT) macrophages. The most significant differentially expressed proteins (DEPs) were validated using immunocytochemistry, western blot, and immunoprecipitation assays. Results and discussion We identified 631 DEPs in OPNKO or GA-stimulated macrophages as compared to WT macrophages. The two topmost downregulated DEPs in OPNKO macrophages were ubiquitin C-terminal hydrolase L1 (UCHL1), a crucial component of the ubiquitin-proteasome system (UPS), and the anti-inflammatory Heme oxygenase 1 (HMOX-1), whereas GA stimulation upregulated their expression. We found that UCHL1, previously described as a neuron-specific protein, is expressed by BMMΦ and its regulation in macrophages was OPN-dependent. Moreover, UCHL1 interacted with OPN in a protein complex. The effects of GA activation on inducing UCHL1 and anti-inflammatory macrophage profiles were mediated by OPN. Functional pathway analyses revealed two inversely regulated pathways in OPN-deficient macrophages: activated oxidative stress and lysosome-mitochondria-mediated apoptosis (e.g., ROS, Lamp1-2, ATP-synthase subunits, cathepsins, and cytochrome C and B subunits) and inhibited translation and proteolytic pathways (e.g., 60S and 40S ribosomal subunits and UPS proteins). In agreement with the proteome-bioinformatics data, western blot and immunocytochemical analyses revealed that OPN deficiency perturbs protein homeostasis in macrophages-inhibiting translation and protein turnover and inducing apoptosis-whereas OPN induction by GA restores cellular proteostasis. Taken together, OPN is essential for macrophage homeostatic balance via the regulation of protein synthesis, UCHL1-UPS axis, and mitochondria-mediated apoptotic processes, indicating its potential application in immune-based therapies.
Collapse
Affiliation(s)
- Altan Rentsendorj
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Koen Raedschelders
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Dieu-Trang Fuchs
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Julia Sheyn
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Vineet Vaibhav
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Rebecca A. Porritt
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Haoshen Shi
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | | | | | - Yosef Koronyo
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Moshe Arditi
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Keith L. Black
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Bhakta Prasad Gaire
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Jennifer E. Van Eyk
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Maya Koronyo-Hamaoui
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| |
Collapse
|
12
|
Feng Z, Tao S, Huang Z, Zheng B, Kong X, Xiang Y, Zhang Q, Song H, Xu Z, Wei X, Zhao F, Chen J. The deubiquitinase UCHL1 negatively controls osteoclastogenesis by regulating TAZ/NFATC1 signalling. Int J Biol Sci 2023; 19:2319-2332. [PMID: 37215988 PMCID: PMC10197889 DOI: 10.7150/ijbs.82152] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 04/17/2023] [Indexed: 05/24/2023] Open
Abstract
The ubiquitin‒proteasome system (UPS) plays a key role in maintaining protein homeostasis and bone remodelling. However, the role of deubiquitinating enzymes (DUBs) in bone resorption is still not well defined. Here, we identified the deubiquitinase ubiquitin C-terminal hydrolase 1 (UCHL1) as a negative regulator of osteoclastogenesis by using the GEO database, proteomic analysis, and RNAi. Osteoclast-specific UCHL1 conditional knockout mice exhibited a severe osteoporosis phenotype in an ovariectomized model. Mechanistically, UCHL1 deubiquitinated and stabilized the transcriptional coactivator with PDZ-binding motif (TAZ) at the K46 residue, thereby inhibiting osteoclastogenesis. The TAZ protein underwent K48-linked polyubiquitination, which was degraded by UCHL1. As a substrate of UCHL1, TAZ regulates NFATC1 through a nontranscriptional coactivator function by competing with calcineurin A (CNA) for binding to NFATC1, which inhibits NFATC1 dephosphorylation and nuclear transport to impede osteoclastogenesis. Moreover, overexpression of UCHL1 locally alleviated acute and chronic bone loss. These findings suggest that activating UCHL1 may serve as a novel therapeutic approach targeting bone loss in various bone pathological states.
Collapse
Affiliation(s)
- Zhenhua Feng
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Siyue Tao
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Zhaobo Huang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Bingjie Zheng
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Xiangxi Kong
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Yufeng Xiang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Qibin Zhang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Haixin Song
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Zhikun Xu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Xiaoan Wei
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Fengdong Zhao
- ✉ Corresponding authors: Jian Chen () and Fengdong Zhao ()
| | - Jian Chen
- ✉ Corresponding authors: Jian Chen () and Fengdong Zhao ()
| |
Collapse
|
13
|
Bouron A, Aubry L, Loreth D, Fauvarque MO, Meyer-Schwesinger C. Role of the deubiquitinating enzyme UCH-L1 in mitochondrial function. Front Cell Neurosci 2023; 17:1149954. [PMID: 37032833 PMCID: PMC10076731 DOI: 10.3389/fncel.2023.1149954] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/10/2023] [Indexed: 04/11/2023] Open
Affiliation(s)
- Alexandre Bouron
- Université Grenoble Alpes, Inserm, CEA, UA13, BGE, Grenoble, France
- *Correspondence: Alexandre Bouron
| | - Laurence Aubry
- Université Grenoble Alpes, Inserm, CEA, UA13, BGE, Grenoble, France
| | - Desirée Loreth
- Institute of Cellular and Integrative Physiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Catherine Meyer-Schwesinger
- Institute of Cellular and Integrative Physiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
14
|
Zhu Z, He Z, Tang T, Wang F, Chen H, Li B, Chen G, Wang J, Tian W, Chen D, Wu X, Liu X, Zhou Z, Liu S. Integrative Bioinformatics Analysis Revealed Mitochondrial Dysfunction-Related Genes Underlying Intervertebral Disc Degeneration. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1372483. [PMID: 36267810 PMCID: PMC9578809 DOI: 10.1155/2022/1372483] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/15/2022] [Indexed: 11/25/2022]
Abstract
Objective Mitochondrial dysfunction plays an important role in intervertebral disc degeneration (IDD). We aim to explore the pathways and key genes that cause mitochondrial dysfunction during IDD and to further reveal the pathogenesis of IDD based on bioinformatic analyses. Methods Datasets GSE70362 and GSE124272 were downloaded from the Gene Expression Omnibus. Differentially expressed genes (DEGs) of mitochondrial dysfunction between IDD patients and healthy controls were screened by package limma package. Critical genes were identified by adopting gene ontology (GO), Kyoto encyclopedia of genes and genomes (KEGG) pathways, and protein-protein interaction (PPI) networks. We collected both degenerated and normal disc tissues obtained surgically, and we performed western blot and qPCR to verify the key DEGs identified in intervertebral disc tissues. Results In total, 40 cases of IDD and 24 healthy controls were included. We identified 152 DEGs, including 67 upregulated genes and 85 downregulated genes. Four genes related to mitochondrial dysfunction (SOX9, FLVCR1, NR5A1 and UCHL1) were screened out. Of them, SOX9, FLVCR1, and UCHL1 were down-regulated in peripheral blood and intervertebral disc tissues of IDD patients, while NR5A1 was up-regulated. The analysis of immune infiltration showed the concentrations of mast cells activated were significantly the highest in IDD patients. Compared with the control group, the level of T cells CD4 memory resting was the lowest in the patients. In addition, 24 cases of IDD tissues and 12 cases of normal disc tissues were obtained to verify the results of bioinformatics analysis. Both western blot and qPCR results were consistent with the results of bioinformatics analysis. Conclusion We identified four genes (SOX9, FLVCR1, NR5A1 and UCHL1) associated with mitochondrial dysfunction that play an important role in the progress of disc degeneration. The identification of these differential genes may provide new insights for the diagnosis and treatment of IDD.
Collapse
Affiliation(s)
- Zhengya Zhu
- Innovation Platform of Regeneration and Repair of Spinal Cord and Nerve Injury, Department of Orthopaedic Surgery, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China
| | - Zhongyuan He
- Innovation Platform of Regeneration and Repair of Spinal Cord and Nerve Injury, Department of Orthopaedic Surgery, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Orthopaedic Research Institute/Department of Spinal Surgery, The First Affiliated Hospital of sun Yat-Sen University, Guangzhou 510080, China
| | - Tao Tang
- Innovation Platform of Regeneration and Repair of Spinal Cord and Nerve Injury, Department of Orthopaedic Surgery, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Orthopaedic Research Institute/Department of Spinal Surgery, The First Affiliated Hospital of sun Yat-Sen University, Guangzhou 510080, China
| | - Fuan Wang
- Innovation Platform of Regeneration and Repair of Spinal Cord and Nerve Injury, Department of Orthopaedic Surgery, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Orthopaedic Research Institute/Department of Spinal Surgery, The First Affiliated Hospital of sun Yat-Sen University, Guangzhou 510080, China
| | - Hongkun Chen
- Innovation Platform of Regeneration and Repair of Spinal Cord and Nerve Injury, Department of Orthopaedic Surgery, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China
| | - Baoliang Li
- Innovation Platform of Regeneration and Repair of Spinal Cord and Nerve Injury, Department of Orthopaedic Surgery, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Orthopaedic Research Institute/Department of Spinal Surgery, The First Affiliated Hospital of sun Yat-Sen University, Guangzhou 510080, China
| | - Guoliang Chen
- Innovation Platform of Regeneration and Repair of Spinal Cord and Nerve Injury, Department of Orthopaedic Surgery, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Orthopaedic Research Institute/Department of Spinal Surgery, The First Affiliated Hospital of sun Yat-Sen University, Guangzhou 510080, China
| | - Jianmin Wang
- Innovation Platform of Regeneration and Repair of Spinal Cord and Nerve Injury, Department of Orthopaedic Surgery, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China
| | - Wei Tian
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, Beijing Research Institute of Orthopaedics and Traumatology, Beijing Jishuitan Hospital, Beijing 100035, China
| | - Dafu Chen
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, Beijing Research Institute of Orthopaedics and Traumatology, Beijing Jishuitan Hospital, Beijing 100035, China
| | - Xinbao Wu
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, Beijing Research Institute of Orthopaedics and Traumatology, Beijing Jishuitan Hospital, Beijing 100035, China
| | - Xizhe Liu
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Orthopaedic Research Institute/Department of Spinal Surgery, The First Affiliated Hospital of sun Yat-Sen University, Guangzhou 510080, China
| | - Zhiyu Zhou
- Innovation Platform of Regeneration and Repair of Spinal Cord and Nerve Injury, Department of Orthopaedic Surgery, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Orthopaedic Research Institute/Department of Spinal Surgery, The First Affiliated Hospital of sun Yat-Sen University, Guangzhou 510080, China
| | - Shaoyu Liu
- Innovation Platform of Regeneration and Repair of Spinal Cord and Nerve Injury, Department of Orthopaedic Surgery, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Orthopaedic Research Institute/Department of Spinal Surgery, The First Affiliated Hospital of sun Yat-Sen University, Guangzhou 510080, China
| |
Collapse
|
15
|
Ahmed RO, Ali A, Al-Tobasei R, Leeds T, Kenney B, Salem M. Weighted Single-Step GWAS Identifies Genes Influencing Fillet Color in Rainbow Trout. Genes (Basel) 2022; 13:genes13081331. [PMID: 35893068 PMCID: PMC9332390 DOI: 10.3390/genes13081331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/22/2022] [Accepted: 07/23/2022] [Indexed: 02/04/2023] Open
Abstract
The visual appearance of the fish fillet is a significant determinant of consumers' purchase decisions. Depending on the rainbow trout diet, a uniform bright white or reddish/pink fillet color is desirable. Factors affecting fillet color are complex, ranging from the ability of live fish to accumulate carotenoids in the muscle to preharvest environmental conditions, early postmortem muscle metabolism, and storage conditions. Identifying genetic markers of fillet color is a desirable goal but a challenging task for the aquaculture industry. This study used weighted, single-step GWAS to explore the genetic basis of fillet color variation in rainbow trout. We identified several SNP windows explaining up to 3.5%, 2.5%, and 1.6% of the additive genetic variance for fillet redness, yellowness, and whiteness, respectively. SNPs are located within genes implicated in carotenoid metabolism (β,β-carotene 15,15'-dioxygenase, retinol dehydrogenase) and myoglobin homeostasis (ATP synthase subunit β, mitochondrial (ATP5F1B)). These genes are involved in processes that influence muscle pigmentation and postmortem flesh coloration. Other identified genes are involved in the maintenance of muscle structural integrity (kelch protein 41b (klh41b), collagen α-1(XXVIII) chain (COL28A1), and cathepsin K (CTSK)) and protection against lipid oxidation (peroxiredoxin, superoxide dismutase 2 (SOD2), sestrin-1, Ubiquitin carboxyl-terminal hydrolase-10 (USP10)). A-to-G single-nucleotide polymorphism in β,β-carotene 15,15'-dioxygenase, and USP10 result in isoleucine-to-valine and proline-to-leucine non-synonymous amino acid substitutions, respectively. Our observation confirms that fillet color is a complex trait regulated by many genes involved in carotenoid metabolism, myoglobin homeostasis, protection against lipid oxidation, and maintenance of muscle structural integrity. The significant SNPs identified in this study could be prioritized via genomic selection in breeding programs to improve fillet color in rainbow trout.
Collapse
Affiliation(s)
- Ridwan O. Ahmed
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA; (R.O.A.); (A.A.)
| | - Ali Ali
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA; (R.O.A.); (A.A.)
| | - Rafet Al-Tobasei
- Computational Science Program, Middle Tennessee State University, Murfreesboro, TN 37132, USA;
| | - Tim Leeds
- United States Department of Agriculture Kearneysville, National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, Kearneysville, WV 25430, USA;
| | - Brett Kenney
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV 26506, USA;
| | - Mohamed Salem
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA; (R.O.A.); (A.A.)
- Correspondence:
| |
Collapse
|
16
|
Antony R, Aby K, Gao H, Eichholz M, Srinivasan R, Li Y. UCHL1 Regulates Lipid and Perilipin 2 Level in Skeletal Muscle. Front Physiol 2022; 13:855193. [PMID: 35464088 PMCID: PMC9021748 DOI: 10.3389/fphys.2022.855193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/21/2022] [Indexed: 11/14/2022] Open
Abstract
Ubiquitin C-terminal hydrolase L1 (UCHL1) is a deubiquitinating enzyme that was originally found in neurons. We found that UCHL1 is highly expressed in slow oxidative skeletal muscles, but its functions remain to be fully understood. In this study, we observed that UCHL1 protein levels in skeletal muscle and C2C12 myotubes were downregulated by fasting or glucose starvation respectively. Skeletal muscle selective knockout (smKO) of UCHL1 resulted in a significant reduction of lipid content in skeletal muscle and improved glucose tolerance. UCHL1 smKO did not significantly change the levels of key proteins involved in oxidative metabolism such as SDHA, Akt, or PDH. Interestingly, while the levels of the major lipases and lipid transporters were unchanged, perilipin 2 was significantly downregulated in UCHL1 smKO muscle. Consistently, in C2C12 myotubes, UCHL1 siRNA knockdown also reduced perilipin 2 protein level. This data suggests that UCHL1 may stabilize perilipin 2 and thus lipid storage in skeletal muscle.
Collapse
Affiliation(s)
| | | | | | | | | | - Yifan Li
- Division of Basic Biomedical Sciences, University of South Dakota Sanford School of Medicine, Vermillion, SD, United States
| |
Collapse
|
17
|
Aby K, Antony R, Eichholz M, Srinivasan R, Li Y. Enhanced pro-BDNF-p75NTR pathway activity in denervated skeletal muscle. Life Sci 2021; 286:120067. [PMID: 34678261 PMCID: PMC8595791 DOI: 10.1016/j.lfs.2021.120067] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 10/07/2021] [Accepted: 10/15/2021] [Indexed: 12/29/2022]
Abstract
AIMS Brain derived neurotrophic factor (BDNF) and the related receptors TrkB and p75NTR are expressed in skeletal muscle, yet their functions remain to be fully understood. Skeletal muscle denervation, which occurs in spinal injury, peripheral neuropathies, and aging, negatively affects muscle mass and function. In this study, we wanted to understand the role of BDNF, TrkB, and p75NTR in denervation-induced adverse effects on skeletal muscle. MAIN METHODS Mice with unilateral sciatic denervation were used. Protein levels of pro- and mature BDNF, TrkB, p75NTR, activations of their downstream signaling pathways, and inflammation in the control and denervated muscle were measured with Western blot and tissue staining. Treatment with a p75NTR inhibitor and BDNF skeletal muscle specific knockout in mice were used to examine the role of p75NTR and pro-BDNF. KEY FINDINGS In denervated muscle, pro-BDNF and p75NTR were significantly upregulated, and JNK and NF-kB, two major downstream signaling pathways of p75NTR, were activated, along with muscle atrophy and inflammation. Inhibition of p75NTR using LM11A-31 significantly reduced JNK activation and inflammatory cytokines in the denervated muscle. Moreover, skeletal muscle specific knockout of BDNF reduced pro-BDNF level, JNK activation and inflammation in the denervated muscle. SIGNIFICANCE These results reveal for the first time that the upregulation of pro-BDNF and activation of p75NTR pathway are involved in denervation-induced inflammation in skeletal muscle. The results suggest that inhibition of pro-BDNF-p75NTR pathway can be a new target to treat skeletal muscle inflammation.
Collapse
Affiliation(s)
- Katherine Aby
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA
| | - Ryan Antony
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA
| | - Mary Eichholz
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA
| | - Rekha Srinivasan
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA
| | - Yifan Li
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA.
| |
Collapse
|
18
|
Ben-Jemaa S, Senczuk G, Ciani E, Ciampolini R, Catillo G, Boussaha M, Pilla F, Portolano B, Mastrangelo S. Genome-Wide Analysis Reveals Selection Signatures Involved in Meat Traits and Local Adaptation in Semi-Feral Maremmana Cattle. Front Genet 2021; 12:675569. [PMID: 33995500 PMCID: PMC8113768 DOI: 10.3389/fgene.2021.675569] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 04/07/2021] [Indexed: 12/31/2022] Open
Abstract
The Maremmana cattle is an ancient Podolian-derived Italian breed raised in semi-wild conditions with distinctive morphological and adaptive traits. The aim of this study was to detect potential selection signatures in Maremmana using medium-density single nucleotide polymorphism array. Putative selection signatures were investigated combining three statistical approaches designed to quantify the excess of haplotype homozygosity either within (integrated haplotype score, iHS) or among pairs of populations (Rsb and XP-EHH), and contrasting the Maremmana with a single reference population composed of a pool of seven Podolian-derived Italian breeds. Overall, the three haplotype-based analyses revealed selection signatures distributed over 19 genomic regions. Of these, six relevant candidate regions were identified by at least two approaches. We found genomic signatures of selective sweeps spanning genes related to mitochondrial function, muscle development, growth, and meat traits (SCIN, THSD7A, ETV1, UCHL1, and MYOD1), which reflects the different breeding schemes between Maremmana (semi-wild conditions) and the other Podolian-derived Italian breeds (semi-extensive). We also identified several genes linked to Maremmana adaptation to the environment of the western-central part of Italy, known to be hyperendemic for malaria and other tick-borne diseases. These include several chemokine (C-C motif) ligand genes crucially involved in both innate and adaptive immune responses to intracellular parasite infections and other genes playing key roles in pulmonary disease (HEATR9, MMP28, and ASIC2) or strongly associated with malaria resistance/susceptibility (AP2B1). Our results provide a glimpse into diverse selection signatures in Maremmana cattle and can be used to enhance our understanding of the genomic basis of environmental adaptation in cattle.
Collapse
Affiliation(s)
- Slim Ben-Jemaa
- Laboratoire des Productions Animales et Fourragères, Institut National de la Recherche Agronomique de Tunisie, University of Carthage, Ariana, Tunisia
| | - Gabriele Senczuk
- Dipartimento di Agricoltura, Ambiente e Alimenti, University of Molise, Campobasso, Italy
| | - Elena Ciani
- Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, University of Bari “Aldo Moro”, Bari, Italy
| | | | - Gennaro Catillo
- Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria (CREA), Centro di Ricerca Zootecnia e Acquacoltura, Lodi, Italy
| | - Mekki Boussaha
- INRAE, AgroParisTech, University of Paris Saclay, Saint Aubin, France
| | - Fabio Pilla
- Dipartimento di Agricoltura, Ambiente e Alimenti, University of Molise, Campobasso, Italy
| | - Baldassare Portolano
- Dipartimento di Scienze Agrarie, Alimentari e Forestali, University of Palermo, Palermo, Italy
| | - Salvatore Mastrangelo
- Dipartimento di Scienze Agrarie, Alimentari e Forestali, University of Palermo, Palermo, Italy
| |
Collapse
|