1
|
Pinheiro MBM, Rozini SV, Quirino-Teixeira AC, Barbosa-Lima G, Lopes JF, Sacramento CQ, Bozza FA, Bozza PT, Hottz ED. Dengue induces iNOS expression and nitric oxide synthesis in platelets through IL-1R. Front Immunol 2022; 13:1029213. [PMID: 36569864 PMCID: PMC9767985 DOI: 10.3389/fimmu.2022.1029213] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/09/2022] [Indexed: 12/12/2022] Open
Abstract
Introduction Dengue is an arthropod-born disease caused by dengue virus (DENV), that may manifest as a mild illness or severe form, characterized by hemorrhagic fever and shock. Nitric oxide (NO) is a vasodilator signaling molecule and an inhibitor of platelet aggregation known to be increased in platelets from dengue patients. However, the mechanisms underlying NO synthesis by platelets during dengue are not yet elucidated. IL-1β is a pro-inflammatory cytokine able to induce iNOS expression in leukocytes and present in dengue patients at high levels. Nevertheless, the role of IL-1β in platelet activation, especially regarding iNOS expression, are not clear. Methods We prospectively followed a cohort of 28 dengue-infected patients to study NO synthesis in platelets and its relationship with disease outcomes. We used in vitro infection and stimulation models to gain insights on the mechanisms. Results and Discussion We confirmed that platelets from dengue patients express iNOS and produce higher levels of NO during the acute phase compared to healthy volunteers, returning to normal levels after recovery. Platelet NO production during acute dengue infection was associated with the presence of warning signs, hypoalbuminemia and hemorrhagic manifestations, suggesting a role in dengue pathophysiology. By investigating the mechanisms, we evidenced increased iNOS expression in platelets stimulated with dengue patients´ plasma, indicating induction by circulating inflammatory mediators. We then investigated possible factors able to induce platelet iNOS expression and observed higher levels of IL-1β in plasma from patients with dengue, which were correlated with NO production by platelets. Since platelets can synthesize and respond to IL-1β, we investigated whether IL-1β induces iNOS expression and NO synthesis in platelets. We observed that recombinant human IL-1β enhanced iNOS expression and dose-dependently increased NO synthesis by platelets. Finally, platelet infection with DENV in vitro induced iNOS expression and NO production, besides the secretion of both IL-1α and IL-1β. Importantly, treatment with IL-1 receptor antagonist or a combination of anti-IL-1α and anti-IL-1β antibodies prevented DENV-induced iNOS expression and NO synthesis. Our data show that DENV induces iNOS expression and NO production in platelets through mechanisms depending on IL-1 receptor signaling.
Collapse
Affiliation(s)
- Mariana Brandi Mendonça Pinheiro
- Laboratory of Immunothrombosis, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Stephane Vicente Rozini
- Laboratory of Immunothrombosis, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Anna Cecíllia Quirino-Teixeira
- Laboratory of Immunothrombosis, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Giselle Barbosa-Lima
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Juliana F. Lopes
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Carolina Q. Sacramento
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil,National Institute for Science and Technology on Innovation in Diseases of Neglected Populations (INCT/IDPN), Center for Technological Development in Health (CDTS), Fiocruz, Rio de Janeiro, Brazil
| | - Fernando A. Bozza
- National Institute of Infectious Disease Evandro Chagas, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil,D’Or Institute for Research and Education, Rio de Janeiro, Brazil
| | - Patrícia T. Bozza
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Eugenio D. Hottz
- Laboratory of Immunothrombosis, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil,Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil,*Correspondence: Eugenio D. Hottz,
| |
Collapse
|
2
|
Rajamanickam K, Leela V, Suganya G, Basha SH, Parthiban M, Visha P, Elango A. Thermal cum lipopolysaccharide-induced stress challenge downregulates functional response of bovine monocyte-derived macrophages. J Therm Biol 2022; 108:103301. [DOI: 10.1016/j.jtherbio.2022.103301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/20/2022] [Accepted: 07/27/2022] [Indexed: 10/16/2022]
|
3
|
Silva GM, Podversich F, Schulmeister TM, Sanford C, Cangiano LR, Nelson CD, DiLorenzo N. Impacts of polyclonal antibody preparations from avian origin as a feed additive to beef cattle: immune responses during the step-up transition diets. J Anim Sci 2021; 99:skab340. [PMID: 34758067 PMCID: PMC8668181 DOI: 10.1093/jas/skab340] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 11/08/2021] [Indexed: 11/13/2022] Open
Abstract
This study investigated the effects of feeding an avian-derived polyclonal antibody preparation (PAP; CAMAS, Inc.) against Streptococcus bovis, Fusobacterium necrophorum, and lipopolysaccharides (LPS; 40%, 35%, and 25% of the preparation, respectively) on immune responses (haptoglobin [Hp], serum amyloid A [SAA], rectal temperature [RT], leukocyte counts, and expression of cell adhesion molecules cluster of differentiation [CD] CD11b, CD14, and CD62L) of beef steers during a 21-d step-up adaptation to a high-grain diet. Eight ruminally cannulated Angus crossbred beef steers (658 ± 79 kg of BW) were assigned in a cross-over design and transitioned from a diet containing bermudagrass hay (Cynodon dactylon (L.) Pers.) ad libitum plus 0.45 kg/d of molasses with 0 (CON) or 3 g of PAP to a high-grain diet. Transition consisted of three 7-d steps of increased inclusion of cracked corn (35%, 60%, and 82% of the diet dry matter for STEP1, STEP2, and STEP3, respectively). On each transition day and 7 d after STEP3 (STEP3-7d), RT was obtained every 3 h for a total of 24 h, whereas blood was collected on days 0, 1, and 3, relative to diet transition. There were no effects of PAP inclusion in any of the blood parameters (P > 0.11). However, a tendency for day effect (P = 0.10) was observed for concentrations of Hp, which were greater on days 3 and 7 vs. day 0 relative to the second diet transition (STEP2). Plasma concentrations of SAA were greater on days 1, 3, and 7 compared to day 0 during STEP1 (P = 0.01), while during STEP2 and STEP3, SAA concentrations increased (P < 0.01) from day 0 to 3. During STEP2, PAP steers tended to have lower (P = 0.08) RT than CON steers. Neutrophil and monocyte counts were the least during STEP3 (P < 0.01), whereas expression of CD11b and CD62L was the least through forage feeding (P < 0.01). Concentration of starch in the diet was correlated to all the variables tested (P ≤ 0.01), except for the percentage of B cells (P = 0.22). Yet only ruminal pH, RT, monocyte, and neutrophil counts presented strong correlation coefficients. In conclusion, the step-up transition from forage to high-grain diets triggered systemic inflammation in beef steers as observed by increased plasma concentrations of Hp, SAA, and expression on adhesion molecules in leukocytes. However, feeding polyclonal antibody preparations against S. bovis, F. necrophorum, and LPS did not provide benefits to mitigate inflammation.
Collapse
Affiliation(s)
- Gleise M Silva
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Federico Podversich
- Department of Animal Sciences, North Florida Research and Education Center, University of Florida, Marianna, FL 32446, USA
| | - Tessa M Schulmeister
- Department of Animal Sciences, North Florida Research and Education Center, University of Florida, Marianna, FL 32446, USA
| | - Carla Sanford
- Department of Animal & Range Sciences, Montana State University, Bozeman, MT 59717, USA
| | - Lautaro R Cangiano
- Department of Animal Biosciences, Animal Science and Nutrition, University of Guelph, Guelph, ON N1G 1Y2, Canada
| | - Corwin D Nelson
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Nicolas DiLorenzo
- Department of Animal Sciences, North Florida Research and Education Center, University of Florida, Marianna, FL 32446, USA
| |
Collapse
|
4
|
Matosinho CGR, Rosse IC, Fonseca PAS, de Oliveira FS, Dos Santos FG, Araújo FMG, de Matos Salim AC, Lopes BC, Arbex WA, Machado MA, Peixoto MGCD, da Silva Verneque R, Martins MF, da Silva MVGB, Oliveira G, Pires DEV, Carvalho MRS. Identification and in silico characterization of structural and functional impacts of genetic variants in milk protein genes in the Zebu breeds Guzerat and Gyr. Trop Anim Health Prod 2021; 53:524. [PMID: 34705124 DOI: 10.1007/s11250-021-02970-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 10/14/2021] [Indexed: 10/20/2022]
Abstract
Whole genome sequencing of bovine breeds has allowed identification of genetic variants in milk protein genes. However, functional repercussion of such variants at a molecular level has seldom been investigated. Here, the results of a multistep Bioinformatic analysis for functional characterization of recently identified genetic variants in Brazilian Gyr and Guzerat breeds is described, including predicted effects on the following: (i) evolutionary conserved nucleotide positions/regions; (ii) protein function, stability, and interactions; (iii) splicing, branching, and miRNA binding sites; (iv) promoters and transcription factor binding sites; and (v) collocation with QTL. Seventy-one genetic variants were identified in the caseins (CSN1S1, CSN2, CSN1S2, and CSN3), LALBA, LGB, and LTF genes. Eleven potentially regulatory variants and two missense mutations were identified. LALBA Ile60Val was predicted to affect protein stability and flexibility, by reducing the number the disulfide bonds established. LTF Thr546Asn is predicted to generate steric clashes, which could mildly affect iron coordination. In addition, LALBA Ile60Val and LTF Thr546Asn affect exonic splicing enhancers and silencers. Consequently, both mutations have the potential of affecting immune response at individual level, not only in the mammary gland. Although laborious, this multistep procedure for classifying variants allowed the identification of potentially functional variants for milk protein genes.
Collapse
Affiliation(s)
- Carolina Guimarães Ramos Matosinho
- Programa de Pós-Graduação Em GenéticaDepartamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31901-207, Brazil
| | - Izinara Cruz Rosse
- Programa de Pós-Graduação Em GenéticaDepartamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31901-207, Brazil
- Departamento de Farmácia, Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, MG, 35400-000, Brazil
| | - Pablo Augusto Souza Fonseca
- Programa de Pós-Graduação Em GenéticaDepartamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31901-207, Brazil.
- Department of Animal Biosciences, Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, ON, N1G2W1, Canada.
| | - Francislon Silva de Oliveira
- Programa de Pós-Graduação Em GenéticaDepartamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31901-207, Brazil
- Grupo de Genômica E Biologia Computacional, Centro de Pesquisas René Rachou - Fiocruz Minas, Belo Horizonte, MG, 30190-00, Brazil
| | - Fausto Gonçalves Dos Santos
- Grupo de Genômica E Biologia Computacional, Centro de Pesquisas René Rachou - Fiocruz Minas, Belo Horizonte, MG, 30190-00, Brazil
| | - Flávio Marcos Gomes Araújo
- Grupo de Genômica E Biologia Computacional, Centro de Pesquisas René Rachou - Fiocruz Minas, Belo Horizonte, MG, 30190-00, Brazil
| | - Anna Christina de Matos Salim
- Grupo de Genômica E Biologia Computacional, Centro de Pesquisas René Rachou - Fiocruz Minas, Belo Horizonte, MG, 30190-00, Brazil
| | | | | | | | | | - Rui da Silva Verneque
- EPAMIG, Belo Horizonte, MG, 31170-495, Brazil
- Embrapa Gado de Leite, Juiz de Fora, MG, 36038-330, Brazil
| | | | | | - Guilherme Oliveira
- Grupo de Genômica E Biologia Computacional, Centro de Pesquisas René Rachou - Fiocruz Minas, Belo Horizonte, MG, 30190-00, Brazil
- Instituto Tecnológico Vale, Belém, PA, 66055-09, Brazil
| | - Douglas Eduardo Valente Pires
- School of Computing and Information Systems, University of Melbourne, Parkville, VIC, 3052, Australia
- Bio21 Institute, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Maria Raquel Santos Carvalho
- Programa de Pós-Graduação Em GenéticaDepartamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31901-207, Brazil
| |
Collapse
|
5
|
Botwright NA, Mohamed AR, Slinger J, Lima PC, Wynne JW. Host-Parasite Interaction of Atlantic salmon ( Salmo salar) and the Ectoparasite Neoparamoeba perurans in Amoebic Gill Disease. Front Immunol 2021; 12:672700. [PMID: 34135900 PMCID: PMC8202022 DOI: 10.3389/fimmu.2021.672700] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/05/2021] [Indexed: 12/13/2022] Open
Abstract
Marine farmed Atlantic salmon (Salmo salar) are susceptible to recurrent amoebic gill disease (AGD) caused by the ectoparasite Neoparamoeba perurans over the growout production cycle. The parasite elicits a highly localized response within the gill epithelium resulting in multifocal mucoid patches at the site of parasite attachment. This host-parasite response drives a complex immune reaction, which remains poorly understood. To generate a model for host-parasite interaction during pathogenesis of AGD in Atlantic salmon the local (gill) and systemic transcriptomic response in the host, and the parasite during AGD pathogenesis was explored. A dual RNA-seq approach together with differential gene expression and system-wide statistical analyses of gene and transcription factor networks was employed. A multi-tissue transcriptomic data set was generated from the gill (including both lesioned and non-lesioned tissue), head kidney and spleen tissues naïve and AGD-affected Atlantic salmon sourced from an in vivo AGD challenge trial. Differential gene expression of the salmon host indicates local and systemic upregulation of defense and immune responses. Two transcription factors, znfOZF-like and znf70-like, and their associated gene networks significantly altered with disease state. The majority of genes in these networks are candidates for mediators of the immune response, cellular proliferation and invasion. These include Aurora kinase B-like, rho guanine nucleotide exchange factor 25-like and protein NDNF-like inhibited. Analysis of the N. perurans transcriptome during AGD pathology compared to in vitro cultured N. perurans trophozoites, as a proxy for wild type trophozoites, identified multiple gene candidates for virulence and indicates a potential master regulatory gene system analogous to the two-component PhoP/Q system. Candidate genes identified are associated with invasion of host tissue, evasion of host defense mechanisms and formation of the mucoid lesion. We generated a novel model for host-parasite interaction during AGD pathogenesis through integration of host and parasite functional profiles. Collectively, this dual transcriptomic study provides novel molecular insights into the pathology of AGD and provides alternative theories for future research in a step towards improved management of AGD.
Collapse
Affiliation(s)
- Natasha A Botwright
- Livestock and Aquaculture, CSIRO Agriculture and Food, St Lucia, QLD, Australia
| | - Amin R Mohamed
- Livestock and Aquaculture, CSIRO Agriculture and Food, St Lucia, QLD, Australia
| | - Joel Slinger
- Livestock and Aquaculture, CSIRO Agriculture and Food, Woorim, QLD, Australia
| | - Paula C Lima
- Livestock and Aquaculture, CSIRO Agriculture and Food, St Lucia, QLD, Australia
| | - James W Wynne
- Livestock and Aquaculture, CSIRO Agriculture and Food, Hobart, TAS, Australia
| |
Collapse
|