1
|
Wang H, Gao Y, Bai J, Liu H, Li Y, Zhang J, Ma C, Zhao X, Zhang L, Wan K, Zhu D. CircLMBR1 inhibits phenotypic transformation of hypoxia-induced pulmonary artery smooth muscle via the splicing factor PUF60. Eur J Pharmacol 2024; 980:176855. [PMID: 39059570 DOI: 10.1016/j.ejphar.2024.176855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/04/2024] [Accepted: 07/24/2024] [Indexed: 07/28/2024]
Abstract
Phenotypic transformation of pulmonary artery smooth muscle cells (PASMCs) contributes to vascular remodeling in hypoxic pulmonary hypertension (PH). Recent studies have suggested that circular RNAs (circRNAs) may play important roles in the vascular remodeling of hypoxia-induced PH. However, whether circRNAs cause pulmonary vascular remodeling by regulating the phenotypic transformation in PH has not been investigated. Microarray and RT-qPCR analysis identified that circLMBR1, a novel circRNA, decreased in mouse lung tissues of the hypoxia-SU5416 PH model, as well as in human PASMCs and mouse PASMCs exposed to hypoxia. Overexpression of circLMBR1 in the Semaxinib (SU5416) mouse model ameliorated hypoxia-induced PH and vascular remodeling in the lungs. Notably, circLMBR1 was mainly distributed in the nucleus and bound to the splicing factor PUF60. CircLMBR1 suppressed the phenotypic transformation of human PASMCs and vascular remodeling by inhibiting PUF60 expression. Furthermore, we identified U2AF65 as the downstream regulatory factor of PUF60. U2AF65 directly interacted with the pre-mRNA of the contractile phenotype marker smooth muscle protein 22-α (SM22α) and inhibited its splicing. Meanwhile, hypoxia exposure increased the formation of the PUF60-U2AF65 complex, thereby inhibiting SM22α production and inducing the transition of human PASMCs from a contractile phenotype to a synthetic phenotype. Overall, our results verified the important role of circLMBR1 in the pathological process of PH. We also proposed a new circLMBR1/PUF60-U2AF65/pre-SM22α pathway that could regulate the phenotypic transformation and proliferation of human PASMCs. This study may provide new perspectives for the diagnosis and treatment of PH.
Collapse
MESH Headings
- Pulmonary Artery/metabolism
- Pulmonary Artery/pathology
- Pulmonary Artery/drug effects
- Animals
- Humans
- Mice
- Vascular Remodeling/drug effects
- Vascular Remodeling/genetics
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/pathology
- Phenotype
- RNA, Circular/genetics
- RNA, Circular/metabolism
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/drug effects
- Male
- Splicing Factor U2AF/genetics
- Splicing Factor U2AF/metabolism
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/pathology
- Hypertension, Pulmonary/genetics
- Hypoxia/metabolism
- Hypoxia/genetics
- Mice, Inbred C57BL
- Cell Hypoxia
- Indoles/pharmacology
- Pyrroles
Collapse
Affiliation(s)
- Hongdan Wang
- Central Laboratory of Harbin Medical University (Daqing), Daqing, 163319, PR China; College of Pharmacy, Harbin Medical University, Harbin, 150081, PR China
| | - Yupei Gao
- Central Laboratory of Harbin Medical University (Daqing), Daqing, 163319, PR China; College of Pharmacy, Harbin Medical University, Harbin, 150081, PR China
| | - June Bai
- Central Laboratory of Harbin Medical University (Daqing), Daqing, 163319, PR China; College of Pharmacy, Harbin Medical University, Harbin, 150081, PR China
| | - Huiyu Liu
- Central Laboratory of Harbin Medical University (Daqing), Daqing, 163319, PR China; College of Pharmacy, Harbin Medical University, Harbin, 150081, PR China
| | - Yiying Li
- Central Laboratory of Harbin Medical University (Daqing), Daqing, 163319, PR China; College of Pharmacy, Harbin Medical University, Harbin, 150081, PR China
| | - Junting Zhang
- Central Laboratory of Harbin Medical University (Daqing), Daqing, 163319, PR China; College of Pharmacy, Harbin Medical University, Harbin, 150081, PR China
| | - Cui Ma
- Central Laboratory of Harbin Medical University (Daqing), Daqing, 163319, PR China; College of Medical Laboratory Science and Technology, Harbin Medical University (Daqing), Daqing, 163319, PR China
| | - Xijuan Zhao
- Central Laboratory of Harbin Medical University (Daqing), Daqing, 163319, PR China; College of Medical Laboratory Science and Technology, Harbin Medical University (Daqing), Daqing, 163319, PR China
| | - Lixin Zhang
- Central Laboratory of Harbin Medical University (Daqing), Daqing, 163319, PR China; College of Medical Laboratory Science and Technology, Harbin Medical University (Daqing), Daqing, 163319, PR China
| | - Kuiyu Wan
- Central Laboratory of Harbin Medical University (Daqing), Daqing, 163319, PR China
| | - Daling Zhu
- Central Laboratory of Harbin Medical University (Daqing), Daqing, 163319, PR China; College of Pharmacy, Harbin Medical University, Harbin, 150081, PR China; Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, Harbin Medical University, Harbin, 150081, PR China.
| |
Collapse
|
2
|
Roca-Martínez J, Kang HS, Sattler M, Vranken W. Analysis of the inter-domain orientation of tandem RRM domains with diverse linkers: connecting experimental with AlphaFold2 predicted models. NAR Genom Bioinform 2024; 6:lqae002. [PMID: 38288375 PMCID: PMC10823583 DOI: 10.1093/nargab/lqae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/07/2023] [Accepted: 01/09/2024] [Indexed: 01/31/2024] Open
Abstract
The RNA recognition motif (RRM) is the most prevalent RNA binding domain in eukaryotes and is involved in most RNA metabolism processes. Single RRM domains have a limited RNA specificity and affinity and tend to be accompanied by other RNA binding domains, frequently additional RRMs that contribute to an avidity effect. Within multi-RRM proteins, the most common arrangement are tandem RRMs, with two domains connected by a variable linker. Despite their prevalence, little is known about the features that lead to specific arrangements, and especially the role of the connecting linker. In this work, we present a novel and robust way to investigate the relative domain orientation in multi-domain proteins using inter-domain vectors referenced to a stable secondary structure element. We apply this method to tandem RRM domains and cluster experimental tandem RRM structures according to their inter-domain and linker-domain contacts, and report how this correlates with their orientation. By extending our analysis to AlphaFold2 predicted structures, with particular attention to the inter-domain predicted aligned error, we identify new orientations not reported experimentally. Our analysis provides novel insights across a range of tandem RRM orientations that may help for the design of proteins with a specific RNA binding mode.
Collapse
Affiliation(s)
- Joel Roca-Martínez
- Interuniversity Institute of Bioinformatics in Brussels, VUB/ULB, Brussels 1050, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels 1050, Belgium
| | - Hyun-Seo Kang
- Helmholtz Munich, Molecular Targets and Therapeutics Center, Institute of Structural Biology, 85764 Neuherberg, Germany
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Bavarian NMR Center, 85747 Garching, Germany
| | - Michael Sattler
- Helmholtz Munich, Molecular Targets and Therapeutics Center, Institute of Structural Biology, 85764 Neuherberg, Germany
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Bavarian NMR Center, 85747 Garching, Germany
| | - Wim Vranken
- Interuniversity Institute of Bioinformatics in Brussels, VUB/ULB, Brussels 1050, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels 1050, Belgium
| |
Collapse
|
3
|
Huang W, Kew C, Fernandes SDA, Löhrke A, Han L, Demetriades C, Antebi A. Decreased spliceosome fidelity and egl-8 intron retention inhibit mTORC1 signaling to promote longevity. NATURE AGING 2022; 2:796-808. [PMID: 37118503 PMCID: PMC10154236 DOI: 10.1038/s43587-022-00275-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 07/28/2022] [Indexed: 11/09/2022]
Abstract
AbstractChanges in splicing fidelity are associated with loss of homeostasis and aging, yet only a handful of splicing factors have been shown to be causally required to promote longevity, and the underlying mechanisms and downstream targets in these paradigms remain elusive. Surprisingly, we found a hypomorphic mutation within ribonucleoprotein RNP-6/poly(U)-binding factor 60 kDa (PUF60), a spliceosome component promoting weak 3′-splice site recognition, which causes aberrant splicing, elevates stress responses and enhances longevity in Caenorhabditis elegans. Through genetic suppressor screens, we identify a gain-of-function mutation within rbm-39, an RNP-6-interacting splicing factor, which increases nuclear speckle formation, alleviates splicing defects and curtails longevity caused by rnp-6 mutation. By leveraging the splicing changes induced by RNP-6/RBM-39 activities, we uncover intron retention in egl-8/phospholipase C β4 (PLCB4) as a key splicing target prolonging life. Genetic and biochemical evidence show that neuronal RNP-6/EGL-8 downregulates mammalian target of rapamycin complex 1 (mTORC1) signaling to control organismal lifespan. In mammalian cells, PUF60 downregulation also potently and specifically inhibits mTORC1 signaling. Altogether, our results reveal that splicing fidelity modulates lifespan through mTOR signaling.
Collapse
|