1
|
Kwon AJ, Morales L, Chatagnier L, Quigley J, Pascua J, Pinkowski N, Brasser SM, Hong MY. Effects of moderate ethanol exposure on risk factors for cardiovascular disease and colorectal cancer in adult Wistar rats. Alcohol 2024; 117:55-63. [PMID: 38531501 DOI: 10.1016/j.alcohol.2024.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/14/2024] [Accepted: 03/21/2024] [Indexed: 03/28/2024]
Abstract
While past studies have provided evidence linking excessive alcohol consumption to increased risk for cardiovascular diseases (CVDs) and colorectal cancer (CRC), existing data on the effects of moderate alcohol use on these conditions have produced mixed results. The purpose of this study was to investigate the effects of moderate alcohol consumption on risk factors associated with the development of CVDs and CRC in adult rats. Twenty-four, 14-month-old, non-deprived male Wistar rats were randomly assigned to either an ethanol group, which consisted of voluntary access to a 20% (v/v) ethanol solution on alternate days, or a water control group (n = 12/group) for 13 weeks. Blood samples were collected to analyze levels of albumin, glucose, adiponectin, lipids, oxidized low-density lipoprotein cholesterol, high-density lipoprotein cholesterol (HDL-C), apolipoprotein A1 (apoA1), C-reactive protein (CRP), high-mobility group box 1 protein (HMGB-1), tumor necrosis factor-alpha (TNF-α), thyroxine, thyroid-stimulating hormone, 8-oxo-2'-deoxyguanosine (8-oxo-dG), liver function enzymes, and antioxidant capacity. Colonic gene expression related to colon carcinogenesis was also assessed. Ethanol-treated rats were found to have significantly higher HDL-C and apoA1 levels compared to controls. Moderate alcohol consumption led to significantly lower CRP levels and a trend for decrease in HMGB-1, TNF-α, and 8-oxo-dG levels. In the ethanol-exposed group, colonic gene expression of superoxide dismutase was upregulated while aldehyde dehydrogenase 2 showed a trend for increase compared to the control group. These results indicate that adopting a moderate approach to alcohol consumption could potentially improve health biomarkers related to CVD and CRC by increasing HDL-C levels and antioxidant activity and reducing DNA damage and inflammatory activity.
Collapse
Affiliation(s)
- Anna J Kwon
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA, 92182, USA.
| | - Lani Morales
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA, 92182, USA.
| | - Louise Chatagnier
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA, 92182, USA.
| | - Jacqueline Quigley
- Department of Psychology, San Diego State University, San Diego, CA, 92182, USA.
| | - Jeremy Pascua
- Department of Psychology, San Diego State University, San Diego, CA, 92182, USA.
| | - Natalie Pinkowski
- Department of Psychology, San Diego State University, San Diego, CA, 92182, USA.
| | - Susan M Brasser
- Department of Psychology, San Diego State University, San Diego, CA, 92182, USA.
| | - Mee Young Hong
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA, 92182, USA.
| |
Collapse
|
2
|
Mokhtari K, Peymani M, Rashidi M, Hushmandi K, Ghaedi K, Taheriazam A, Hashemi M. Colon cancer transcriptome. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 180-181:49-82. [PMID: 37059270 DOI: 10.1016/j.pbiomolbio.2023.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/31/2023] [Accepted: 04/06/2023] [Indexed: 04/16/2023]
Abstract
Over the last four decades, methodological innovations have continuously changed transcriptome profiling. It is now feasible to sequence and quantify the transcriptional outputs of individual cells or thousands of samples using RNA sequencing (RNA-seq). These transcriptomes serve as a connection between cellular behaviors and their underlying molecular mechanisms, such as mutations. This relationship, in the context of cancer, provides a chance to unravel tumor complexity and heterogeneity and uncover novel biomarkers or treatment options. Since colon cancer is one of the most frequent malignancies, its prognosis and diagnosis seem to be critical. The transcriptome technology is developing for an earlier and more accurate diagnosis of cancer which can provide better protectivity and prognostic utility to medical teams and patients. A transcriptome is a whole set of expressed coding and non-coding RNAs in an individual or cell population. The cancer transcriptome includes RNA-based changes. The combined genome and transcriptome of a patient may provide a comprehensive picture of their cancer, and this information is beginning to affect treatment decision-making in real-time. A full assessment of the transcriptome of colon (colorectal) cancer has been assessed in this review paper based on risk factors such as age, obesity, gender, alcohol use, race, and also different stages of cancer, as well as non-coding RNAs like circRNAs, miRNAs, lncRNAs, and siRNAs. Similarly, they have been examined independently in the transcriptome study of colon cancer.
Collapse
Affiliation(s)
- Khatere Mokhtari
- Department of Modern Biology, ACECR Institute of Higher Education (Isfahan Branch), Isfahan, Iran
| | - Maryam Peymani
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, 4815733971, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, 4815733971, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Kamran Ghaedi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
3
|
Zhou X, Li S, Ma T, Zeng J, Li H, Liu X, Li F, Jiang B, Zhao M, Liu Z, Qin Y. MEX3A knockdown inhibits the tumorigenesis of colorectal cancer via modulating CDK2 expression. Exp Ther Med 2021; 22:1343. [PMID: 34630697 PMCID: PMC8495542 DOI: 10.3892/etm.2021.10778] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 07/26/2021] [Indexed: 12/20/2022] Open
Abstract
Colorectal cancer (CRC) is a malignant tumor of the gastrointestinal tract and a leading cause of cancer-associated mortality worldwide. Mex-3 RNA binding family member A (MEX3A) promotes the progression of multiple types of cancer, including ovarian and cervical cancer. However, to the best of our knowledge, the role of MEX3A in CRC is not completely understood. Therefore, the present study aimed to investigate the function of MEX3A in CRC. The mRNA and protein expression levels of MEX3A in CRC cells were analyzed using reverse transcription-quantitative PCR and western blotting, respectively. Cell Counting Kit-8 assays were used to measure cell viability. Cell apoptosis and cell cycle distribution were detected via flow cytometry, and CRC cell invasion was analyzed by performing Transwell assays. Moreover, the mitochondrial membrane potential in CRC cells was measured via JC-1 staining. The results of the present study revealed that the expression levels of MEX3A were upregulated in CRC tissues compared with adjacent healthy tissues. MEX3A knockdown notably inhibited CRC cell viability, and induced apoptosis and mitochondrial injury. In addition, MEX3A knockdown markedly induced G1 phase cell cycle arrest in CRC cells via downregulating CDK2 expression. In conclusion, the findings of the present study suggested that MEX3A knockdown may inhibit the tumorigenesis of CRC cells by regulating CDK2 expression. Therefore, MEX3A may serve as a novel target for CRC treatment.
Collapse
Affiliation(s)
- Xin Zhou
- Department of General Surgery, Xiangtan Central Hospital, Xiangtan, Hunan 411100, P.R. China
| | - Shaojie Li
- Department of General Surgery, Xiangtan Central Hospital, Xiangtan, Hunan 411100, P.R. China
| | - Tiexiang Ma
- Department of General Surgery, Xiangtan Central Hospital, Xiangtan, Hunan 411100, P.R. China
| | - Jian Zeng
- Department of General Surgery, Xiangtan Central Hospital, Xiangtan, Hunan 411100, P.R. China
| | - Huanyu Li
- Department of General Surgery, Xiangtan Central Hospital, Xiangtan, Hunan 411100, P.R. China
| | - Xiang Liu
- Department of General Surgery, Xiangtan Central Hospital, Xiangtan, Hunan 411100, P.R. China
| | - Feng Li
- Department of General Surgery, Xiangtan Central Hospital, Xiangtan, Hunan 411100, P.R. China
| | - Bin Jiang
- Department of General Surgery, Xiangtan Central Hospital, Xiangtan, Hunan 411100, P.R. China
| | - Ming Zhao
- Department of General Surgery, Xiangtan Central Hospital, Xiangtan, Hunan 411100, P.R. China
| | - Zhuo Liu
- Department of General Surgery, Xiangtan Central Hospital, Xiangtan, Hunan 411100, P.R. China
| | - Yiyu Qin
- Clinical Medical College, Follow-up Research Center, Jiangsu Vocational College of Medicine, Yancheng, Jiangsu 224005, P.R. China
| |
Collapse
|
4
|
Birková A, Hubková B, Čižmárová B, Bolerázska B. Current View on the Mechanisms of Alcohol-Mediated Toxicity. Int J Mol Sci 2021; 22:9686. [PMID: 34575850 PMCID: PMC8472195 DOI: 10.3390/ijms22189686] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 02/07/2023] Open
Abstract
Alcohol is a psychoactive substance that is widely used and, unfortunately, often abused. In addition to acute effects such as intoxication, it may cause many chronic pathological conditions. Some of the effects are very well described and explained, but there are still gaps in the explanation of empirically co-founded dysfunction in many alcohol-related conditions. This work focuses on reviewing actual knowledge about the toxic effects of ethanol and its degradation products.
Collapse
Affiliation(s)
- Anna Birková
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, 04011 Kosice, Slovakia
| | - Beáta Hubková
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, 04011 Kosice, Slovakia
| | - Beáta Čižmárová
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, 04011 Kosice, Slovakia
| | - Beáta Bolerázska
- 1st Department of Stomatology, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, 04011 Kosice, Slovakia
| |
Collapse
|