1
|
Tinajero A, Merchant W, Khan A, Surbhi, Caron A, Reynolds R, Jia L, Gautron L. Spontaneous and pharmacologically induced hypothermia protect mice against endotoxic shock. Br J Pharmacol 2025; 182:2621-2641. [PMID: 39987925 DOI: 10.1111/bph.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/17/2024] [Accepted: 01/03/2025] [Indexed: 02/25/2025] Open
Abstract
BACKGROUND AND PURPOSE Despite the well-known occurrence of hypothermia during sepsis, its underlying biological nature and adaptive value remain debated. EXPERIMENTAL APPROACH Using indirect calorimetry, telemetry, thermal gradient studies and pharmacological studies, we examined the thermal and metabolic responses of mice treated with a shock-inducing lethal dose of lipopolysaccharide (LPS). KEY RESULTS We report that LPS-treated mice undergo spontaneous hypothermia, driven by hypometabolism and cold-seeking behaviours, even when animals approach the end of life. Conversely, rewarming LPS-treated mice at 30°C delayed hypothermia but worsened mortality, thus highlighting the adaptive importance of hypothermia. Additionally, we show that LPS-induced hypothermia was partly mediated by peripheral neurotensin expressed in response to vascular toll-like receptor 4 (TLR4) signalling. The administration of a neurotensin analogue (JMV449) induced pharmacological hypothermia and significantly ameliorated the clinical presentation and lethality rates in LPS-treated mice. Moreover, the therapeutic benefits of pharmacological hypothermia were prevented when LPS-treated mice were switched to 30°C. Lastly, these beneficial outcomes were attributed to a reduction in oxygen consumption, metabolic stress and cytopathic hypoxia, rather than the modulation of the cytokine storm. CONCLUSION AND IMPLICATIONS Collectively, our findings indicate that spontaneous and pharmacologically-induced hypothermia protect against endotoxic shock.
Collapse
Affiliation(s)
- Arely Tinajero
- Department of Internal Medicine and Center for Hypothalamic Research, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Warda Merchant
- Department of Internal Medicine and Center for Hypothalamic Research, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Adan Khan
- Department of Internal Medicine and Center for Hypothalamic Research, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Surbhi
- Department of Internal Medicine and Center for Hypothalamic Research, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Alexandre Caron
- Department of Internal Medicine and Center for Hypothalamic Research, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Ryan Reynolds
- Department of Internal Medicine and Center for Hypothalamic Research, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Lin Jia
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas, USA
| | - Laurent Gautron
- Department of Internal Medicine and Center for Hypothalamic Research, UT Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
2
|
Rae CD, Baur JA, Borges K, Dienel G, Díaz-García CM, Douglass SR, Drew K, Duarte JMN, Duran J, Kann O, Kristian T, Lee-Liu D, Lindquist BE, McNay EC, Robinson MB, Rothman DL, Rowlands BD, Ryan TA, Scafidi J, Scafidi S, Shuttleworth CW, Swanson RA, Uruk G, Vardjan N, Zorec R, McKenna MC. Brain energy metabolism: A roadmap for future research. J Neurochem 2024; 168:910-954. [PMID: 38183680 PMCID: PMC11102343 DOI: 10.1111/jnc.16032] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 11/29/2023] [Accepted: 12/05/2023] [Indexed: 01/08/2024]
Abstract
Although we have learned much about how the brain fuels its functions over the last decades, there remains much still to discover in an organ that is so complex. This article lays out major gaps in our knowledge of interrelationships between brain metabolism and brain function, including biochemical, cellular, and subcellular aspects of functional metabolism and its imaging in adult brain, as well as during development, aging, and disease. The focus is on unknowns in metabolism of major brain substrates and associated transporters, the roles of insulin and of lipid droplets, the emerging role of metabolism in microglia, mysteries about the major brain cofactor and signaling molecule NAD+, as well as unsolved problems underlying brain metabolism in pathologies such as traumatic brain injury, epilepsy, and metabolic downregulation during hibernation. It describes our current level of understanding of these facets of brain energy metabolism as well as a roadmap for future research.
Collapse
Affiliation(s)
- Caroline D. Rae
- School of Psychology, The University of New South Wales, NSW 2052 & Neuroscience Research Australia, Randwick, New South Wales, Australia
| | - Joseph A. Baur
- Department of Physiology and Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Karin Borges
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, QLD, Australia
| | - Gerald Dienel
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
- Department of Cell Biology and Physiology, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Carlos Manlio Díaz-García
- Department of Biochemistry and Molecular Biology, Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | | | - Kelly Drew
- Center for Transformative Research in Metabolism, Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska, USA
| | - João M. N. Duarte
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, & Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Jordi Duran
- Institut Químic de Sarrià (IQS), Universitat Ramon Llull (URL), Barcelona, Spain
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Oliver Kann
- Institute of Physiology and Pathophysiology, University of Heidelberg, D-69120; Interdisciplinary Center for Neurosciences (IZN), University of Heidelberg, Heidelberg, Germany
| | - Tibor Kristian
- Veterans Affairs Maryland Health Center System, Baltimore, Maryland, USA
- Department of Anesthesiology and the Center for Shock, Trauma, and Anesthesiology Research (S.T.A.R.), University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Dasfne Lee-Liu
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Región Metropolitana, Chile
| | - Britta E. Lindquist
- Department of Neurology, Division of Neurocritical Care, Gladstone Institute of Neurological Disease, University of California at San Francisco, San Francisco, California, USA
| | - Ewan C. McNay
- Behavioral Neuroscience, University at Albany, Albany, New York, USA
| | - Michael B. Robinson
- Departments of Pediatrics and System Pharmacology & Translational Therapeutics, Children’s Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Douglas L. Rothman
- Magnetic Resonance Research Center and Departments of Radiology and Biomedical Engineering, Yale University, New Haven, Connecticut, USA
| | - Benjamin D. Rowlands
- School of Chemistry, Faculty of Science, The University of Sydney, Sydney, New South Wales, Australia
| | - Timothy A. Ryan
- Department of Biochemistry, Weill Cornell Medicine, New York, New York, USA
| | - Joseph Scafidi
- Department of Neurology, Kennedy Krieger Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Susanna Scafidi
- Anesthesiology & Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - C. William Shuttleworth
- Department of Neurosciences, University of New Mexico School of Medicine Albuquerque, Albuquerque, New Mexico, USA
| | - Raymond A. Swanson
- Department of Neurology, University of California, San Francisco, and San Francisco Veterans Affairs Medical Center, San Francisco, California, USA
| | - Gökhan Uruk
- Department of Neurology, University of California, San Francisco, and San Francisco Veterans Affairs Medical Center, San Francisco, California, USA
| | - Nina Vardjan
- Laboratory of Cell Engineering, Celica Biomedical, Ljubljana, Slovenia
- Laboratory of Neuroendocrinology—Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Robert Zorec
- Laboratory of Cell Engineering, Celica Biomedical, Ljubljana, Slovenia
- Laboratory of Neuroendocrinology—Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Mary C. McKenna
- Department of Pediatrics and Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
3
|
Oliva P, Suresh RR, Pasquini S, Salmaso V, Will EJ, Tosh DK, Gao ZG, Liu N, Gavrilova O, Vincenzi F, Varani K, Jacobson KA. 2-Amino-5-arylethynyl-thiophen-3-yl-(phenyl)methanones as A 1 Adenosine Receptor Positive Allosteric Modulators. ACS Med Chem Lett 2023; 14:1640-1646. [PMID: 38116442 PMCID: PMC10726435 DOI: 10.1021/acsmedchemlett.3c00315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/06/2023] [Indexed: 12/21/2023] Open
Abstract
A1 adenosine receptor (A1AR) agonists have cerebroprotective, cardioprotective, antinociceptive, and other pharmaceutical applications. We explored the structure-activity relationship of 5-arylethynyl aminothiophenes as A1AR positive allosteric modulators (PAMs). The derivatives were compared in binding and functional assays at the human A1AR, indicating that some fluoro-substituted analogues have enhanced PAM activity. We identified substitution of the terminal phenyl ring in 12 (2-F-Ph), 15 (3,4-F2-Ph, MRS7935), and 21 (2-CF3-Ph) as particularly enhancing the PAM activity. 15 was also shown to act as an A1 ago-PAM with EC50 ≈ 2 μM, without activity (30 μM) at other ARs. Molecular modeling indicated that both the 5-arylethynyl and the 4-neopentyl groups are located in a region outside the receptor transmembrane helix bundle that is in contact with the phospholipid bilayer, consistent with the preference for nonpolar substitution of the aryl moiety. Although they are hydrophobic, these PAMs could provide potential drug candidate molecules for engaging protective A1ARs.
Collapse
Affiliation(s)
- Paola Oliva
- Laboratory
of Bioorganic Chemistry and Mouse Metabolism Core, National
Institute of Diabetes and Digestive and Kidney
Disease, National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland 20892, United States
| | - R. Rama Suresh
- Laboratory
of Bioorganic Chemistry and Mouse Metabolism Core, National
Institute of Diabetes and Digestive and Kidney
Disease, National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland 20892, United States
| | - Silvia Pasquini
- Department
of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Fossato di Mortara 17-19, 44121 Ferrara, Italy
| | - Veronica Salmaso
- Laboratory
of Bioorganic Chemistry and Mouse Metabolism Core, National
Institute of Diabetes and Digestive and Kidney
Disease, National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland 20892, United States
| | - Edward J. Will
- Laboratory
of Bioorganic Chemistry and Mouse Metabolism Core, National
Institute of Diabetes and Digestive and Kidney
Disease, National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland 20892, United States
| | - Dilip K. Tosh
- Laboratory
of Bioorganic Chemistry and Mouse Metabolism Core, National
Institute of Diabetes and Digestive and Kidney
Disease, National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland 20892, United States
| | - Zhan-Guo Gao
- Laboratory
of Bioorganic Chemistry and Mouse Metabolism Core, National
Institute of Diabetes and Digestive and Kidney
Disease, National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland 20892, United States
| | - Naili Liu
- Laboratory
of Bioorganic Chemistry and Mouse Metabolism Core, National
Institute of Diabetes and Digestive and Kidney
Disease, National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland 20892, United States
| | - Oksana Gavrilova
- Laboratory
of Bioorganic Chemistry and Mouse Metabolism Core, National
Institute of Diabetes and Digestive and Kidney
Disease, National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland 20892, United States
| | - Fabrizio Vincenzi
- Department
of Translational Medicine, University of
Ferrara, Via Fossato
di Mortara 17-19, 44121 Ferrara, Italy
| | - Katia Varani
- Department
of Translational Medicine, University of
Ferrara, Via Fossato
di Mortara 17-19, 44121 Ferrara, Italy
| | - Kenneth A. Jacobson
- Laboratory
of Bioorganic Chemistry and Mouse Metabolism Core, National
Institute of Diabetes and Digestive and Kidney
Disease, National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland 20892, United States
| |
Collapse
|
4
|
Xiao C, Gavrilova O, Liu N, Lewicki SA, Reitman ML, Jacobson KA. In vivo phenotypic validation of adenosine receptor-dependent activity of non-adenosine drugs. Purinergic Signal 2023; 19:551-564. [PMID: 36781825 PMCID: PMC10539256 DOI: 10.1007/s11302-023-09924-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 01/31/2023] [Indexed: 02/15/2023] Open
Abstract
Some non-adenosinergic drugs are reported to also act through adenosine receptors (ARs). We used mouse hypothermia, which can be induced by agonism at any of the four ARs, as an in vivo screen for adenosinergic effects. An AR contribution was identified when a drug caused hypothermia in wild type mice that was diminished in mice lacking all four ARs (quadruple knockout, QKO). Alternatively, an adenosinergic effect was identified if a drug potentiated adenosine-induced hypothermia. Four drugs (dipyridamole, nimodipine, cilostazol, cyclosporin A) increased the hypothermia caused by adenosine. Dipyridamole and nimodipine probably achieved this by inhibition of adenosine clearance via ENT1. Two drugs (cannabidiol, canrenoate) did not cause hypothermia in wild type mice. Four other drugs (nifedipine, ranolazine, ketamine, ethanol) caused hypothermia, but the hypothermia was unchanged in QKO mice indicating non-adenosinergic mechanisms. Zinc chloride caused hypothermia and hypoactivity; the hypoactivity was blunted in the QKO mice. Interestingly, the antidepressant amitriptyline caused hypothermia in wild type mice that was amplified in the QKO mice. Thus, we have identified adenosine-related effects for some drugs, while other candidates do not affect adenosine signaling by this in vivo assay. The adenosine-modulating drugs could be considered for repurposing based on predicted effects on AR activation.
Collapse
Affiliation(s)
- Cuiying Xiao
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892-0810, USA
| | - Oksana Gavrilova
- Mouse Metabolism Core, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892-0810, USA
| | - Naili Liu
- Mouse Metabolism Core, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892-0810, USA
| | - Sarah A Lewicki
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892-0810, USA
| | - Marc L Reitman
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892-0810, USA
| | - Kenneth A Jacobson
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892-0810, USA.
| |
Collapse
|
5
|
Xu G, Zhang S, Zheng L, Hu Z, Cheng L, Chen L, Li J, Shi Z. In silico identification of A1 agonists and A2a inhibitors in pain based on molecular docking strategies and dynamics simulations. Purinergic Signal 2023; 19:87-97. [PMID: 34677752 PMCID: PMC9984648 DOI: 10.1007/s11302-021-09808-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/05/2021] [Indexed: 12/19/2022] Open
Abstract
Most recently, the adenosine is considered as one of the most promising targets for treating pain, with few side effects. It exists in the central nervous system, and plays a key role in nociceptive afferent pathway. It is reported that the A1 receptor (A1R) could inhibit Ca2+ channels to reduce the pain like analgesic mechanism of morphine. And, A2a receptor (A2aR) was reported to enhance the accumulation of AMP (cAMP) and released peptides from sensory neurons, resulting in constitutive activation of pain. Much evidence showed that A1R and A2aR could be served as the interesting targets for the treatment of pain. Herein, virtual screening was utilized to identify the small molecule compounds towards A1R and A2aR, and top six molecules were considered as candidates via amber scores. The molecular dynamic (MD) simulations and molecular mechanics/generalized born surface area (MM/GBSA) were employed to further analyze the affinity and binding stability of the six molecules towards A1R and A2aR. Moreover, energy decomposition analysis showed significant residues in A1R and A2aR, including His1383, Phe1276, and Glu1277. It provided basics for discovery of novel agonists and antagonists. Finally, the agonists of A1R (ZINC19943625, ZINC13555217, and ZINC04698406) and inhibitors of A2aR (ZINC19370372, ZINC20176051, and ZINC57263068) were successfully recognized. Taken together, our discovered small molecules may serve as the promising candidate agents for future pain research.
Collapse
Affiliation(s)
- Guangya Xu
- Clinical Genetics Laboratory, Clinical Medical College & Affiliated Hospital & College of Basic Medicine & College of Food and Biological Engineering, Chengdu University, Chengdu, 610081, China
| | - Shutao Zhang
- Clinical Genetics Laboratory, Clinical Medical College & Affiliated Hospital & College of Basic Medicine & College of Food and Biological Engineering, Chengdu University, Chengdu, 610081, China
| | - Lulu Zheng
- Clinical Genetics Laboratory, Clinical Medical College & Affiliated Hospital & College of Basic Medicine & College of Food and Biological Engineering, Chengdu University, Chengdu, 610081, China
| | - Zhongjiao Hu
- Clinical Genetics Laboratory, Clinical Medical College & Affiliated Hospital & College of Basic Medicine & College of Food and Biological Engineering, Chengdu University, Chengdu, 610081, China.,School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
| | - Lijia Cheng
- Clinical Genetics Laboratory, Clinical Medical College & Affiliated Hospital & College of Basic Medicine & College of Food and Biological Engineering, Chengdu University, Chengdu, 610081, China
| | - Lvlin Chen
- Clinical Genetics Laboratory, Clinical Medical College & Affiliated Hospital & College of Basic Medicine & College of Food and Biological Engineering, Chengdu University, Chengdu, 610081, China
| | - Jun Li
- Clinical Genetics Laboratory, Clinical Medical College & Affiliated Hospital & College of Basic Medicine & College of Food and Biological Engineering, Chengdu University, Chengdu, 610081, China. .,Sichuan Wuyan Biotech Co. Ltd Company, Chengdu, 610041, China.
| | - Zheng Shi
- Clinical Genetics Laboratory, Clinical Medical College & Affiliated Hospital & College of Basic Medicine & College of Food and Biological Engineering, Chengdu University, Chengdu, 610081, China. .,School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China.
| |
Collapse
|
6
|
Junkins MS, Bagriantsev SN, Gracheva EO. Towards understanding the neural origins of hibernation. J Exp Biol 2022; 225:273864. [PMID: 34982152 DOI: 10.1242/jeb.229542] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Hibernators thrive under harsh environmental conditions instead of initiating canonical behavioral and physiological responses to promote survival. Although the physiological changes that occur during hibernation have been comprehensively researched, the role of the nervous system in this process remains relatively underexplored. In this Review, we adopt the perspective that the nervous system plays an active, essential role in facilitating and supporting hibernation. Accumulating evidence strongly suggests that the hypothalamus enters a quiescent state in which powerful drives to thermoregulate, eat and drink are suppressed. Similarly, cardiovascular and pulmonary reflexes originating in the brainstem are altered to permit the profoundly slow heart and breathing rates observed during torpor. The mechanisms underlying these changes to the hypothalamus and brainstem are not currently known, but several neuromodulatory systems have been implicated in the induction and maintenance of hibernation. The intersection of these findings with modern neuroscience approaches, such as optogenetics and in vivo calcium imaging, has opened several exciting avenues for hibernation research.
Collapse
Affiliation(s)
- Madeleine S Junkins
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA.,Department of Neuroscience and Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA
| | - Sviatoslav N Bagriantsev
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA
| | - Elena O Gracheva
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA.,Department of Neuroscience and Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA
| |
Collapse
|