1
|
Renaux E, Baudouin C, Marchese D, Clovis Y, Lee SK, Gofflot F, Rezsohazy R, Clotman F. Lhx4 surpasses its paralog Lhx3 in promoting the differentiation of spinal V2a interneurons. Cell Mol Life Sci 2024; 81:286. [PMID: 38970652 PMCID: PMC11335214 DOI: 10.1007/s00018-024-05316-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 07/08/2024]
Abstract
Paralog factors are considered to ensure the robustness of biological processes by providing redundant activity in cells where they are co-expressed. However, the specific contribution of each factor is frequently underestimated. In the developing spinal cord, multiple families of transcription factors successively contribute to differentiate an initially homogenous population of neural progenitors into a myriad of neuronal subsets with distinct molecular, morphological, and functional characteristics. The LIM-homeodomain transcription factors Lhx3, Lhx4, Isl1 and Isl2 promote the segregation and differentiation of spinal motor neurons and V2 interneurons. Based on their high sequence identity and their similar distribution, the Lhx3 and Lhx4 paralogs are considered to contribute similarly to these processes. However, the specific contribution of Lhx4 has never been studied. Here, we provide evidence that Lhx3 and Lhx4 are present in the same cell populations during spinal cord development. Similarly to Lhx3, Lhx4 can form multiproteic complexes with Isl1 or Isl2 and the nuclear LIM interactor NLI. Lhx4 can stimulate a V2-specific enhancer more efficiently than Lhx3 and surpasses Lhx3 in promoting the differentiation of V2a interneurons in chicken embryo electroporation experiments. Finally, Lhx4 inactivation in mice results in alterations of differentiation of the V2a subpopulation, but not of motor neuron production, suggesting that Lhx4 plays unique roles in V2a differentiation that are not compensated by the presence of Lhx3. Thus, Lhx4 could be the major LIM-HD factor involved in V2a interneuron differentiation during spinal cord development and should be considered for in vitro differentiation of spinal neuronal populations.
Collapse
Affiliation(s)
- Estelle Renaux
- Université catholique de Louvain, Louvain Institute of Biomolecular Science and Technology, Animal Molecular and Cellular Biology, Louvain-la-Neuve, 1348, Belgium
- Université catholique de Louvain, Institute of Neuroscience, Laboratory of Neural Differentiation, Brussels, 1200, Belgium
| | - Charlotte Baudouin
- Université catholique de Louvain, Institute of Neuroscience, Laboratory of Neural Differentiation, Brussels, 1200, Belgium
| | - Damien Marchese
- Université catholique de Louvain, Louvain Institute of Biomolecular Science and Technology, Animal Molecular and Cellular Biology, Louvain-la-Neuve, 1348, Belgium
| | - Yoanne Clovis
- Pediatric Neuroscience Research Program, Papé Family Pediatric Research Institute, Department of Pediatrics, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Soo-Kyung Lee
- Pediatric Neuroscience Research Program, Papé Family Pediatric Research Institute, Department of Pediatrics, Oregon Health and Science University, Portland, OR, 97239, USA
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, 14260, USA
| | - Françoise Gofflot
- Université catholique de Louvain, Louvain Institute of Biomolecular Science and Technology, Animal Molecular and Cellular Biology, Louvain-la-Neuve, 1348, Belgium
| | - René Rezsohazy
- Université catholique de Louvain, Louvain Institute of Biomolecular Science and Technology, Animal Molecular and Cellular Biology, Louvain-la-Neuve, 1348, Belgium
| | - Frédéric Clotman
- Université catholique de Louvain, Louvain Institute of Biomolecular Science and Technology, Animal Molecular and Cellular Biology, Louvain-la-Neuve, 1348, Belgium.
- Université catholique de Louvain, Institute of Neuroscience, Laboratory of Neural Differentiation, Brussels, 1200, Belgium.
| |
Collapse
|
2
|
Chee FT, Harun S, Mohd Daud K, Sulaiman S, Nor Muhammad NA. Exploring gene regulation and biological processes in insects: Insights from omics data using gene regulatory network models. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 189:1-12. [PMID: 38604435 DOI: 10.1016/j.pbiomolbio.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/18/2023] [Accepted: 04/03/2024] [Indexed: 04/13/2024]
Abstract
Gene regulatory network (GRN) comprises complicated yet intertwined gene-regulator relationships. Understanding the GRN dynamics will unravel the complexity behind the observed gene expressions. Insect gene regulation is often complicated due to their complex life cycles and diverse ecological adaptations. The main interest of this review is to have an update on the current mathematical modelling methods of GRNs to explain insect science. Several popular GRN architecture models are discussed, together with examples of applications in insect science. In the last part of this review, each model is compared from different aspects, including network scalability, computation complexity, robustness to noise and biological relevancy.
Collapse
Affiliation(s)
- Fong Ting Chee
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Sarahani Harun
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Kauthar Mohd Daud
- Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia
| | - Suhaila Sulaiman
- FGV R&D Sdn Bhd, FGV Innovation Center, PT23417 Lengkuk Teknologi, Bandar Baru Enstek, 71760 Nilai, Negeri Sembilan, Malaysia
| | - Nor Azlan Nor Muhammad
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia.
| |
Collapse
|
3
|
Shaker MR, Lee JH, Kim KH, Ban S, Kim VJ, Kim JY, Lee JY, Sun W. Spatiotemporal contribution of neuromesodermal progenitor-derived neural cells in the elongation of developing mouse spinal cord. Life Sci 2021; 282:119393. [PMID: 34004249 DOI: 10.1016/j.lfs.2021.119393] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 02/26/2021] [Accepted: 03/18/2021] [Indexed: 12/16/2022]
Abstract
AIMS During vertebrate development, the posterior end of the embryo progressively elongates in a head-to-tail direction to form the body plan. Recent lineage tracing experiments revealed that bi-potent progenitors, called neuromesodermal progenitors (NMPs), produce caudal neural and mesodermal tissues during axial elongation. However, their precise location and contribution to spinal cord development remain elusive. MAIN METHODS Here we used NMP-specific markers (Sox2 and BraT) and a genetic lineage tracing system to localize NMP progeny in vivo. KEY FINDINGS Sox2 and BraT double positive cells were initially located at the tail tip, but were later found in the caudal neural tube, which is a unique feature of mouse development. In the neural tube, they produced neural progenitors (NPCs) and contributed to the spinal cord gradually along the AP axis during axial elongation. Interestingly, NMP-derived NPCs preferentially contributed to the ventral side first and later to the dorsal side at the lumbar spinal cord level, which may be associated with atypical junctional neurulation in mice. SIGNIFICANCE Our current observations detail the contribution of NMP progeny to spinal cord elongation and provide insights into how different species uniquely execute caudal morphogenesis.
Collapse
Affiliation(s)
- Mohammed R Shaker
- Department of Anatomy and Division of Brain, Korea 21 Plus Program for Biomedical Science, Korea University College of Medicine, 73, Inchon-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Ju-Hyun Lee
- Department of Anatomy and Division of Brain, Korea 21 Plus Program for Biomedical Science, Korea University College of Medicine, 73, Inchon-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Kyung Hyun Kim
- Division of Pediatric Neurosurgery, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul National University College of Medicine, 101 Daehakro, Jongno-gu, Seoul 110-769, Republic of Korea; Neural Development and Anomaly Laboratory, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, 101 Daehakro, Jongno-gu, Seoul, 110-769, Republic of Korea
| | - Saeli Ban
- Neural Development and Anomaly Laboratory, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, 101 Daehakro, Jongno-gu, Seoul, 110-769, Republic of Korea
| | - Veronica Jihyun Kim
- Neural Development and Anomaly Laboratory, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, 101 Daehakro, Jongno-gu, Seoul, 110-769, Republic of Korea
| | - Joo Yeon Kim
- Department of Anatomy and Division of Brain, Korea 21 Plus Program for Biomedical Science, Korea University College of Medicine, 73, Inchon-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Ji Yeoun Lee
- Division of Pediatric Neurosurgery, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul National University College of Medicine, 101 Daehakro, Jongno-gu, Seoul 110-769, Republic of Korea; Neural Development and Anomaly Laboratory, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, 101 Daehakro, Jongno-gu, Seoul, 110-769, Republic of Korea
| | - Woong Sun
- Department of Anatomy and Division of Brain, Korea 21 Plus Program for Biomedical Science, Korea University College of Medicine, 73, Inchon-ro, Seongbuk-gu, Seoul 02841, Republic of Korea.
| |
Collapse
|