1
|
Bezmalinovic A, Navarrete Á, Latorre M, Celentano D, Herrera EA, García-Herrera C. Characterization of mechanical damage and viscoelasticity on aortas from guinea pigs subjected to hypoxia. Sci Rep 2025; 15:13447. [PMID: 40251229 PMCID: PMC12008416 DOI: 10.1038/s41598-025-96086-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 03/26/2025] [Indexed: 04/20/2025] Open
Abstract
To reliably assess the rupture risk of the aorta, along with the hazardousness of cardiovascular diseases and other extreme conditions or the effect of possible treatments, it is necessary to understand the influence of damage mechanisms along with the frequency and rate of mechanical loads. In particular, hypobaric hypoxia, an oxygen deficiency in the organism due to its low atmospheric partial pressure, is reported to alter the mechanical properties of blood vessels. In this work, we characterized the passive mechanical response of the aorta, seeking to capture the influence of hypoxia on their elastic, damage, and viscoelastic properties under ex-vivo conditions. The mechanical behavior of the aortic wall is described using an anisotropic hyperelastic model including two fiber families with asymmetric dispersion, along with an anisotropic damage model and an orthotropic viscoelastic model based on a reverse multiplicative decomposition of the deformation gradient. The constitutive model was experimentally calibrated from uniaxial-relaxation and biaxial-tensile test results, previously performed on thoracic aorta samples of guinea pigs. A group of guinea pigs subjected to hypoxia was contrasted with a normoxic (control) group. Cyclic-load stages of uniaxial tests were used to assess dissipation. Once the constitutive model was implemented and calibrated, its performance was evaluated via the numerical simulation of a bulge pressurization test to estimate energy dissipation and pressure associated with the onset of damage. Results indicated that hypoxia does not alter the visco-hyperelastic or damage behavior of the aorta. Besides, the pressure delivered by bulge-test simulations at the onset of damage on collagen fibers was representative of an arterial hypertensive condition.
Collapse
Affiliation(s)
- Alejandro Bezmalinovic
- Biomechanics and Biomaterials Laboratory, Department of Mechanical Engineering, Universidad de Santiago de Chile, Santiago, Chile
| | - Álvaro Navarrete
- Biomechanics and Biomaterials Laboratory, Department of Mechanical Engineering, Universidad de Santiago de Chile, Santiago, Chile
| | - Marcos Latorre
- Center for Research and Innovation in Bioengineering, Universitat Politècnica de València, Valencia, Spain
| | - Diego Celentano
- Department of Mechanical and Metallurgical Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Emilio A Herrera
- Pathophysiology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile
- International Center for Andean Studies (INCAS), Universidad de Chile, Santiago, Chile
| | - Claudio García-Herrera
- Biomechanics and Biomaterials Laboratory, Department of Mechanical Engineering, Universidad de Santiago de Chile, Santiago, Chile.
| |
Collapse
|
2
|
Szydlowska B, Ding Y, Moore C, Cai Z, Torres-Castanedo CG, Collins CP, Jones E, Hersam MC, Sun C, Ameer GA. Polydiolcitrate-MoS 2 Composite for 3D Printing Radio-Opaque, Bioresorbable Vascular Scaffolds. ACS APPLIED MATERIALS & INTERFACES 2024; 16:45422-45432. [PMID: 39102678 PMCID: PMC11368090 DOI: 10.1021/acsami.4c07364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/16/2024] [Accepted: 07/19/2024] [Indexed: 08/07/2024]
Abstract
Implantable polymeric biodegradable devices, such as biodegradable vascular scaffolds, cannot be fully visualized using standard X-ray-based techniques, compromising their performance due to malposition after deployment. To address this challenge, we describe a new radiopaque and photocurable liquid polymer-ceramic composite (mPDC-MoS2) consisting of methacrylated poly(1,12 dodecamethylene citrate) (mPDC) and molybdenum disulfide (MoS2) nanosheets. The composite was used as an ink with microcontinuous liquid interface production (μCLIP) to fabricate bioresorbable vascular scaffolds (BVS). Prints exhibited excellent crimping and expansion mechanics without strut failures and, importantly, with X-ray visibility in air and muscle tissue. Notably, MoS2 nanosheets displayed physical degradation over time in phosphate-buffered saline solution, suggesting the potential for producing radiopaque, fully bioresorbable devices. mPDC-MoS2 is a promising bioresorbable X-ray-visible composite material suitable for 3D printing medical devices, such as vascular scaffolds, that require noninvasive X-ray-based monitoring techniques for implantation and evaluation. This innovative biomaterial composite system holds significant promise for the development of biocompatible, fluoroscopically visible medical implants, potentially enhancing patient outcomes and reducing medical complications.
Collapse
Affiliation(s)
- Beata
M. Szydlowska
- Department
of Materials Science and Engineering, Northwestern
University, Evanston, Illinois 60208, United States
- Center
for Advanced Regenerative Engineering (CARE), Northwestern University, Evanston, Illinois 60208, United States
| | - Yonghui Ding
- Center
for Advanced Regenerative Engineering (CARE), Northwestern University, Evanston, Illinois 60208, United States
- Department
of Biomedical Engineering, Northwestern
University, Evanston, Illinois 60208, United States
| | - Connor Moore
- Center
for Advanced Regenerative Engineering (CARE), Northwestern University, Evanston, Illinois 60208, United States
| | - Zizhen Cai
- Department
of Materials Science and Engineering, Northwestern
University, Evanston, Illinois 60208, United States
| | - Carlos G. Torres-Castanedo
- Department
of Materials Science and Engineering, Northwestern
University, Evanston, Illinois 60208, United States
| | - Caralyn P. Collins
- Center
for Advanced Regenerative Engineering (CARE), Northwestern University, Evanston, Illinois 60208, United States
- Department
of Mechanical Engineering, Northwestern
University, Evanston, Illinois 60208, United States
| | - Evan Jones
- Center
for Advanced Regenerative Engineering (CARE), Northwestern University, Evanston, Illinois 60208, United States
- Department
of Mechanical Engineering, Northwestern
University, Evanston, Illinois 60208, United States
| | - Mark C. Hersam
- Department
of Materials Science and Engineering, Northwestern
University, Evanston, Illinois 60208, United States
- Center
for Advanced Regenerative Engineering (CARE), Northwestern University, Evanston, Illinois 60208, United States
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department
of Electrical and Computer Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Cheng Sun
- Center
for Advanced Regenerative Engineering (CARE), Northwestern University, Evanston, Illinois 60208, United States
- Department
of Mechanical Engineering, Northwestern
University, Evanston, Illinois 60208, United States
| | - Guillermo A. Ameer
- Center
for Advanced Regenerative Engineering (CARE), Northwestern University, Evanston, Illinois 60208, United States
- Department
of Biomedical Engineering, Northwestern
University, Evanston, Illinois 60208, United States
- Department
of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
- Simpson
Querrey Institute, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry
for Life Processes Institute, Northwestern
University, Evanston, Illinois 60208, United States
- International
Institute for Nanotechnology, Northwestern
University, Evanston, Illinois 60208, United States
| |
Collapse
|
3
|
Chen H, Zhao M, Li Y, Wang Q, Xing Y, Bian C, Li J. A study on the ultimate mechanical properties of middle-aged and elderly human aorta based on uniaxial tensile test. Front Bioeng Biotechnol 2024; 12:1357056. [PMID: 38576445 PMCID: PMC10991712 DOI: 10.3389/fbioe.2024.1357056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 03/07/2024] [Indexed: 04/06/2024] Open
Abstract
Background The mechanical properties of the aorta are particularly important in clinical medicine and forensic science, serving as basic data for further exploration of aortic disease or injury mechanisms. Objective To study the influence of various factors (age, gender, test direction, anatomical location, and pathological characteristics) on the mechanical properties and thickness of the aorta. Methods In this study, a total of 24 aortas (age range: 54-88 years old) were collected, one hundred and seventy-four dog-bone-shaped samples were made, and then the uniaxial tensile test was run, finally, pathological grouping was performed through histological staining. Results Atherosclerotic plaques were mainly distributed near the openings of blood vessel branches. The distribution was most severe in the abdominal aorta, followed by the aortic arch. Aortic atherosclerosis was a more severe trend in the male group. In the comparison of thickness, there were no significant differences in age (over 50 years) and test direction, the average thickness of the aorta was greater in the male group than the female group and decreased progressively from the ascending aorta to the abdominal aorta. Comparing the mechanical parameters, various parameters are mainly negatively correlated with age, especially in the circumferential ascending aorta (εp "Y = -0.01402*X + 1.762, R2 = 0.6882", εt "Y = -0.01062*X + 1.250, R2 = 0.6772"); the parameters of males in the healthy group were larger, while the parameters of females were larger in atherosclerosis group; the aorta has anisotropy, the parameters in the circumferential direction were greater than those in the axial direction; the parameters of the ascending aorta were the largest in the circumferential direction, the ultimate stress [σp "1.69 (1.08,2.32)"] and ultimate elastic modulus [E2"8.28 (6.67,10.25)"] of the abdominal aorta were significantly larger in the axial direction; In the circumferential direction, the stress [σp "2.2 (1.31,3.98)", σt "0.13 (0.09,0.31)"] and ultimate elastic modulus (E2 "14.10 ± 7.21") of adaptive intimal thickening were greater than those of other groups, the strain (εp "0.82 ± 0.17", εt "0.53 ± 0.14") of pathological intimal thickening was the largest in the pathological group. Conclusion The present study systematically analyzed the influence of age, sex, test direction, anatomical site, and pathological characteristics on the biomechanical properties of the aorta, described the distribution of aortic atherosclerosis, and illustrated the characteristics of aortic thickness changes. At the same time, new insights into the grouping of pathological features were presented.
Collapse
Affiliation(s)
- Hongbing Chen
- Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing, China
- Chongqing Engineering Research Center for Criminal Investigation Technology, Chongqing, China
- Chongqing Key Laboratory of Forensic Medicine, Chongqing, China
| | - Minzhu Zhao
- Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing, China
- Chongqing Engineering Research Center for Criminal Investigation Technology, Chongqing, China
- Chongqing Key Laboratory of Forensic Medicine, Chongqing, China
| | - Yongguo Li
- Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing, China
- Chongqing Engineering Research Center for Criminal Investigation Technology, Chongqing, China
- Chongqing Key Laboratory of Forensic Medicine, Chongqing, China
| | - Qi Wang
- Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing, China
- Chongqing Engineering Research Center for Criminal Investigation Technology, Chongqing, China
- Chongqing Key Laboratory of Forensic Medicine, Chongqing, China
| | - Yu Xing
- Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing, China
- Chongqing Engineering Research Center for Criminal Investigation Technology, Chongqing, China
- Chongqing Key Laboratory of Forensic Medicine, Chongqing, China
| | - Cunhao Bian
- Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing, China
- Chongqing Engineering Research Center for Criminal Investigation Technology, Chongqing, China
- Chongqing Key Laboratory of Forensic Medicine, Chongqing, China
| | - Jianbo Li
- Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing, China
- Chongqing Engineering Research Center for Criminal Investigation Technology, Chongqing, China
- Chongqing Key Laboratory of Forensic Medicine, Chongqing, China
| |
Collapse
|
4
|
Lee CW, Lee C, Baek S, Akkoyun E, Ryu D. Investigating the influence of collagen cross-linking on mechanical properties of thoracic aortic tissue. Front Bioeng Biotechnol 2024; 12:1305128. [PMID: 38476969 PMCID: PMC10928930 DOI: 10.3389/fbioe.2024.1305128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 02/07/2024] [Indexed: 03/14/2024] Open
Abstract
Vascular diseases, such as abdominal aortic aneurysms, are associated with tissue degeneration of the aortic wall, resulting in variations in mechanical properties, such as tissue ultimate stress and a high slope. Variations in the mechanical properties of tissues may be associated with an increase in the number of collagen cross-links. Understanding the effect of collagen cross-linking on tissue mechanical properties can significantly aid in predicting diseased aortic tissue rupture and improve the clarity of decisions regarding surgical procedures. Therefore, this study focused on increasing the density of the aortic tissue through cross-linking and investigating the mechanical properties of the thoracic aortic tissue in relation to density. Uniaxial tensile tests were conducted on the porcine thoracic aorta in four test regions (anterior, posterior, distal, and proximal), two loading directions (circumferential and longitudinal), and density increase rates (0%-12%). As a result, the PPC (Posterior/Proximal/Circumferential) group experienced a higher ultimate stress than the PDC (Posterior/Distal/Circumferential) group. However, this relationship reversed when the specimen density exceeded 3%. In addition, the ultimate stress of the ADC (Anterior/Distal/Circumferential) and PPC group was greater than that of the APC (Anterior/Proximal/Circumferential) group, while these findings were reversed when the specimen density exceeded 6% and 9%, respectively. Finally, the high slope of the PDL (Posterior/Distal/Longitudinal) group was lower than that of the ADL (Anterior/Distal/Longitudinal) group, but the high slope of the PDL group appeared larger due to the stabilization treatment. This highlights the potential impact of density variations on the mechanical properties of specific specimen groups.
Collapse
Affiliation(s)
- Chung Won Lee
- Department of Thoracic and Cardiovascular Surgery, School of Medicine, Pusan National University, Busan, Republic of Korea
- Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| | - Chiseung Lee
- Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
- Department of Convergence Medicine and Biomedical Engineering, School of Medicine, Pusan National University, Busan, Republic of Korea
| | - Seungik Baek
- Department of Mechanical Engineering, Michigan State University, East Lansing, MI, United States
| | - Emrah Akkoyun
- TÜBITAK-ULAKBIM, Turkish Academic Network and Information Center, Ankara, Türkiye
| | - Dongman Ryu
- Medical Research Institute, Pusan National University, Busan, Republic of Korea
| |
Collapse
|
5
|
Sokolis DP. Layer-Specific Properties of the Human Infra-Renal Aorta During Aging Considering Pre/Post-Failure Damage. J Biomech Eng 2024; 146:021003. [PMID: 38019302 DOI: 10.1115/1.4064146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 11/27/2023] [Indexed: 11/30/2023]
Abstract
There is little information on the layer-specific failure properties of the adult human abdominal aorta, and there has been no quantification of postfailure damage. Infra-renal aortas were thus taken from forty-seven autopsy subjects and cut into 870 intact-wall and layer strips that underwent uni-axial-tensile testing. Intact-wall failure stress did not differ significantly (p > 0.05) from the medial value longitudinally, nor from the intimal and medial values circumferentially, which were the lowest recorded values. Intact-wall failure stretch did not differ (p > 0.05) from the medial value in either direction. Intact-wall prefailure stretch (defined as failure stretch-stretch at the initiation of the concave phase of the stress-stretch response) did not differ (p > 0.05) from the intimal and medial values, and intact-wall postfailure stretch (viz., full-rupture stretch-failure stretch) did not differ (p > 0.05) from the adventitial value since the adventitia was the last layer to rupture, being most extensible albeit under residual tension. Intact-wall failure stress and stretch declined from 20 to 60 years, explained by steady declines throughout the lifetime of their medial counterparts, implicating beyond 60 years the less age-varying failure properties of the intima under minimal residual compression. The positive correlation of postfailure stretch with age counteracted the declining failure stretch, serving as a compensatory mechanism against rupture. Hypertension, diabetes, and coronary artery disease adversely affected the intact-wall and layer-specific failure stretches while increasing stiffness.
Collapse
Affiliation(s)
- Dimitrios P Sokolis
- Laboratory of Biomechanics, Center of Clinical, Experimental Surgery, and Translational Research, Biomedical Research Foundation of the Academy of Athens, 4 Soranou Ephesiou Street, Athens 115 27, Greece
| |
Collapse
|
6
|
Szydlowska BM, Ding Y, Moore C, Cai Z, Torres-Castanedo CG, Jones E, Hersam MC, Sun C, Ameer GA. A polydiolcitrate-MoS 2 composite for 3D printing Radio-opaque, Bioresorbable Vascular Scaffolds. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.27.564364. [PMID: 37961681 PMCID: PMC10634906 DOI: 10.1101/2023.10.27.564364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Implantable polymeric biodegradable devices, such as biodegradable vascular stents or scaffolds, cannot be fully visualized using standard X-ray-based techniques, compromising their performance due to malposition after deployment. To address this challenge, we describe composites of methacrylated poly(1,12 dodecamethylene citrate) (mPDC) and MoS2 nanosheets to fabricate novel X-ray visible radiopaque and photocurable liquid polymer-ceramic composite (mPDC-MoS2). The composite was used as an ink with micro continuous liquid interface production (μCLIP) to fabricate bioresorbable vascular scaffolds (BVS). Prints exhibited excellent crimping and expansion mechanics without strut failures and, importantly, required X-ray visibility in air and muscle tissue. Notably, MoS2 nanosheets displayed physical degradation over time in a PBS environment, indicating the potential for producing bioresorbable devices. mPDC-MoS2 is a promising bioresorbable X-ray-visible composite material suitable for 3D printing medical devices, particularly vascular scaffolds or stents, that require non-invasive X-ray-based monitoring techniques for implantation and evaluation. This innovative composite system holds significant promise for the development of biocompatible and highly visible medical implants, potentially enhancing patient outcomes and reducing medical complications.
Collapse
Affiliation(s)
- Beata M. Szydlowska
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Yonghui Ding
- Center for Advanced Regenerative Engineering (CARE), Northwestern University, Evanston, IL 60208, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Connor Moore
- Center for Advanced Regenerative Engineering (CARE), Northwestern University, Evanston, IL 60208, USA
| | - Zizhen Cai
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
| | | | - Evan Jones
- Center for Advanced Regenerative Engineering (CARE), Northwestern University, Evanston, IL 60208, USA
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Mark C. Hersam
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Cheng Sun
- Center for Advanced Regenerative Engineering (CARE), Northwestern University, Evanston, IL 60208, USA
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Guillermo A. Ameer
- Center for Advanced Regenerative Engineering (CARE), Northwestern University, Evanston, IL 60208, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Simpson Querrey Institute, Northwestern University, Evanston, IL 60208, USA
- Chemistry for Life Processes Institute, Northwestern University, IL, 60208, USA
- International Institute for Nanotechnology, Northwestern University, IL, 60208, USA
| |
Collapse
|
7
|
Liu D, Feng S, Huang Q, Sun S, Dong G, Long F, Milazzo M, Wang M. Soft, strong, tough, and durable bio-hydrogels via maximizing elastic entropy. ADVANCED FUNCTIONAL MATERIALS 2023; 33:2300426. [PMID: 39399778 PMCID: PMC11469578 DOI: 10.1002/adfm.202300426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Indexed: 10/15/2024]
Abstract
Load-bearing soft tissues are soft but strong, strong yet tough. These properties can only be replicated in synthetic hydrogels, which do not have the biocomplexity required by many biomedical applications. By contrast, natural hydrogels, although retaining the native complexity, are weak and fragile. Here we present a thermomechanical casting method to achieve the mechanical capabilities of synthetic materials in biopolymer hydrogels. The thermomechanical cast and chemically crosslinked biopolymer chains form a short-range disordered but long-range ordered structure in water. Upon stretch, the disordered structure transforms to a hierarchically ordered structure. This disorder-order transformation resembles the synergy of the disordered elastin and ordered collagen in load-bearing soft tissues. As entropy drives a reverse order-disorder transformation, the hydrogels can resist repeated cycles of loads without deterioration in mechanical properties. Gelatin hydrogels produced by this method combine tissue-like tunable mechanical properties that outperform the gelatin prepared by synthetic approaches, and in vivo biocomplexity beyond current natural systems. Unlike polymer engineering approaches, which rely on specific crosslinks provided by special polymers, this strategy utilizes the entropy of swollen chains and is generalizable to many other biopolymers. It could thus significantly accelerate translational success of biomaterials.
Collapse
Affiliation(s)
- Dani Liu
- School of Aeronautic Science and Engineering, Beihang University, Beijing, 100191, China
| | - Shi Feng
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Qingqiu Huang
- Cornell High Energy Synchrotron Source, Cornell University, Ithaca, NY, 14853, USA
| | - Shuofei Sun
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Gening Dong
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Feifei Long
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Mario Milazzo
- Department of Civil and Industrial Engineering, University of Pisa, Pisa, 56122 Italy
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Mingkun Wang
- School of Aeronautic Science and Engineering, Beihang University, Beijing, 100191, China
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
8
|
Li Z, Pei M, Zhang J, Liu N, Wang J, Zou D. A study to characterize the mechanical properties and material constitution of adult descending thoracic aorta based on uniaxial tensile test and digital image correlation. Front Bioeng Biotechnol 2023; 11:1178199. [PMID: 37388776 PMCID: PMC10306407 DOI: 10.3389/fbioe.2023.1178199] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/05/2023] [Indexed: 07/01/2023] Open
Abstract
The mechanical properties and material constitution of the aorta are important in forensic science and clinical medicine. Existing studies on the material constitution of the aorta do not satisfy the practical requirements of forensic and clinical medicine, as the reported failure stress and failure strain values for human aortic materials have a high dispersion. In this study, descending thoracic aortas were obtained from 50 cadavers (dead within 24 h) free of thoracic aortic disease, aged from 27 to 86 years old, which were divided into six age groups. The descending thoracic aorta was divided into proximal and distal segments. A customized 4-mm cutter was used to punch a circumferential and an axial dog-bone-shaped specimen from each segment; the aortic ostia and calcification were avoided. Instron 8,874 and digital image correlation were used to perform a uniaxial tensile test on each sample. Four samples from each descending thoracic aorta produced ideal stress-strain curves. All parameter-fitting regressions from the selected mathematical model converged, and the best-fit parameters of each sample were obtained. The elastic modulus of collagen fiber, failure stress, and the strain showed a decreasing trend with age, while the elastic modulus of elastic fiber showed an increasing trend with age. The elastic modulus of collagen fiber, failure stress, and strain of circumferential tensile were all greater than those for axial tensile. There was no statistical difference in model parameters and physiological moduli between the proximal and distal segments. The failure stress and strain in the proximal circumferential, distal circumferential, and distal axial tensile were all greater for the male group than for the female group. Finally, the Fung-type hyperelastic constitutive equations were fitted for the different segments in different age groups.
Collapse
Affiliation(s)
- Zhengdong Li
- Shanghai Key Laboratory of Forensic Medicine, Key Laboratory of Forensic Science, Ministry of Justice, Shanghai Forensic Service Platform, Academy of Forensic Science, Shanghai, China
| | - Ming Pei
- Institute of Forensic Science, Xuzhou Public Security Bureau, Xuzhou, Jiangsu, China
| | - Jianhua Zhang
- Shanghai Key Laboratory of Forensic Medicine, Key Laboratory of Forensic Science, Ministry of Justice, Shanghai Forensic Service Platform, Academy of Forensic Science, Shanghai, China
| | - Ningguo Liu
- Shanghai Key Laboratory of Forensic Medicine, Key Laboratory of Forensic Science, Ministry of Justice, Shanghai Forensic Service Platform, Academy of Forensic Science, Shanghai, China
| | - Jinming Wang
- Shanghai Key Laboratory of Forensic Medicine, Key Laboratory of Forensic Science, Ministry of Justice, Shanghai Forensic Service Platform, Academy of Forensic Science, Shanghai, China
| | - Donghua Zou
- Shanghai Key Laboratory of Forensic Medicine, Key Laboratory of Forensic Science, Ministry of Justice, Shanghai Forensic Service Platform, Academy of Forensic Science, Shanghai, China
| |
Collapse
|
9
|
Preliminary In Vitro Assessment of Decellularized Porcine Descending Aorta for Clinical Purposes. J Funct Biomater 2023; 14:jfb14030141. [PMID: 36976065 PMCID: PMC10058365 DOI: 10.3390/jfb14030141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Conduit substitutes are increasingly in demand for cardiovascular and urological applications. In cases of bladder cancer, radical cystectomy is the preferred technique: after removing the bladder, a urinary diversion has to be created using autologous bowel, but several complications are associated with intestinal resection. Thus, alternative urinary substitutes are required to avoid autologous intestinal use, preventing complications and facilitating surgical procedures. In the present paper, we are proposing the exploitation of the decellularized porcine descending aorta as a novel and original conduit substitute. After being decellularized with the use of two alternative detergents (Tergitol and Ecosurf) and sterilized, the porcine descending aorta has been investigated to assess its permeability to detergents through methylene blue dye penetration analysis and to study its composition and structure by means of histomorphometric analyses, including DNA quantification, histology, two-photon microscopy, and hydroxyproline quantification. Biomechanical tests and cytocompatibility assays with human mesenchymal stem cells have been also performed. The results obtained demonstrated that the decellularized porcine descending aorta preserves its major features to be further evaluated as a candidate material for urological applications, even though further studies have to be carried out to demonstrate its suitability for the specific application, by performing in vivo tests in the animal model.
Collapse
|
10
|
Petuchova A, Maknickas A, Kostenko E, Stonkus R. Experimental and theoretical investigation of aortic wall tissue in tensile tests. Technol Health Care 2023; 31:2411-2421. [PMID: 37955068 DOI: 10.3233/thc-235007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
BACKGROUND Understanding the mechanical properties of aortic tissue is essential for developing numerical computation tools and assessing the risk of aortic aneurysm fractures. Tensile tests using aortic wall specimens allow for the determination of stress and strain depending on the location and direction of the sample. OBJECTIVE The aim of this study was to perform a mechanical tensile test using canine aorta samples and create a numerical model of aortic tissue tension from the processed data. METHODS Dogbone-shaped samples were dissected from canine aortic segments. The initial measurements were made at zero tension and the tensile tests were conducted at 10 mm/min until rupture. Force and stretch data were used to obtain engineering and true stress-strain curves. The true stress-strain curves were taken until the maximum strength was obtained, after which they were smoothed and fitted using a logistic function with three coefficients. These curves were then used as material mechanical properties for a numerical model of the aortic tissue tension. A simplified rectangle form was used to mimic the middle of the dogbone-shaped portion of the tissue specimen. Experimental displacement data were collected for the boundary conditions of the finite element 3D model. RESULTS The experimental data processing revealed that the logistic function described the nonlinear behaviour of the aorta soft tissue with an accuracy of 95% from the start of the tension to the media layer rupture. By applying numerical simulations, we obtained a correspondence of the load curve with an RMSE = 0.069 for the theoretical and experimental external tension data. CONCLUSION The numerical investigation confirmed that the non-linear soft tissue was validated by applying a logistic function approach to the mechanical properties of the aortic wall.
Collapse
Affiliation(s)
- Aleksandra Petuchova
- Department of Biomechanical Engineering, Faculty of Mechanics, Vilnius Gediminas Technical University, Vilnius, Lithuania
| | - Algirdas Maknickas
- Department of Biomechanical Engineering, Faculty of Mechanics, Vilnius Gediminas Technical University, Vilnius, Lithuania
- Laboratory of Numerical Simulation, Institute of Mechanics, Faculty of Mechanics, Vilnius Gediminas Technical University, Vilnius, Lithuania
| | - Ernest Kostenko
- Department of Biomechanical Engineering, Faculty of Mechanics, Vilnius Gediminas Technical University, Vilnius, Lithuania
- Veterinary Department, Faculty of Agrotechnology, Vilnius College, Vilnius, Lithuania
| | - Rimantas Stonkus
- Department of Mechatronics, Robotics and Digital Manufacturing, Vilnius Gediminas Technical University, Vilnius, Lithuania
| |
Collapse
|
11
|
Cavelier S, Quarrington RD, Jones CF. Tensile properties of human spinal dura mater and pericranium. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2022; 34:4. [PMID: 36586044 PMCID: PMC9805418 DOI: 10.1007/s10856-022-06704-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 11/15/2022] [Indexed: 06/17/2023]
Abstract
Autologous pericranium is a promising dural graft material. An optimal graft should exhibit similar mechanical properties to the native dura, but the mechanical properties of human pericranium have not been characterized, and studies of the biomechanical performance of human spinal dura are limited. The primary aim of this study was to measure the tensile structural and material properties of the pericranium, in the longitudinal and circumferential directions, and of the dura in each spinal region (cervical, thoracic and lumbar) and in three directions (longitudinal anterior and posterior, and circumferential). The secondary aim was to determine corresponding constitutive stress-strain equations using a one-term Ogden model. A total of 146 specimens were tested from 7 cadavers. Linear regression models assessed the effect of tissue type, region, and orientation on the structural and material properties. Pericranium was isotropic, while spinal dura was anisotropic with higher stiffness and strength in the longitudinal than the circumferential direction. Pericranium had lower strength and modulus than spinal dura across all regions in the longitudinal direction but was stronger and stiffer than dura in the circumferential direction. Spinal dura and pericranium had similar strain at peak force, toe, and yield, across all regions and directions. Human pericranium exhibits isotropic mechanical behavior that lies between that of the longitudinal and circumferential spinal dura. Further studies are required to determine if pericranium grafts behave like native dura under in vivo loading conditions. The Ogden parameters reported may be used for computational modeling of the central nervous system. Graphical abstract.
Collapse
Affiliation(s)
- Sacha Cavelier
- Adelaide Spinal Research Group, Centre for Orthopaedic & Trauma Research, Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5005, Australia
- Department of Mechanical Engineering, McGill University, Montréal, QC, H3A 0C3, Canada
| | - Ryan D Quarrington
- Adelaide Spinal Research Group, Centre for Orthopaedic & Trauma Research, Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5005, Australia
- School of Mechanical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Claire F Jones
- Adelaide Spinal Research Group, Centre for Orthopaedic & Trauma Research, Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5005, Australia.
- School of Mechanical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia.
- Department of Orthopaedics and Trauma, Royal Adelaide Hospital, Adelaide, SA, 5000, Australia.
| |
Collapse
|