1
|
Kunta DB, Ayano KK. Spatio-temporal pollution assessment of Kulfo River using CCME-WQI and pollution tolerance index by benthic macroinvertebrates, Arba Minch, Ethiopia. ENVIRONMENTAL MONITORING AND ASSESSMENT 2025; 197:202. [PMID: 39870985 DOI: 10.1007/s10661-024-13561-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 12/09/2024] [Indexed: 01/29/2025]
Abstract
In developing nations, the biggest threat to public health is the quality of the water. The Kulfo River provides the majority demand of the domestic water and irrigation along its course; however, it is observed that wastes from anthropogenic and natural activities enter the river. Therefore, this study aimed to examine the pollution status by integrating conventional methods with benthic macroinvertebrates. One hundred twenty samples were collected for 15 water quality parameters from five sampling sites during dry and rainy events. The mean concentration of DO, TSS, BOD5, COD, ortho-phosphate, and turbidity did not meet the standard limits in five sampling sites during the rainy season. Benthic macroinvertebrates were collected from the left, middle, and right sides of the river for each sampling site and examined using the Benthos Biomonitoring Protocol Network Manual. CCME index and PTI index of benthic macroinvertebrates were used to examine the pollution status of the river. According to CCME index result, S2 (39.79), S3 (38.90), and S4 (37.71) are classified under poor pollution status during the rainy season and S1 (92.13) and S5 (95.70) are categorized as good and excellent pollution status in the dry season, respectively. On the contrary, based on the PTI index result, S2 (7.0), S3 (9.0), S4 (9.0), and S5 (9.0) are classified under poor pollution status during the rainy season, whereas S2 (14.0), S3 (10.0), and S4 (15.0) are categorized under fair, and sampling sites S1 (21.0) and S5 (20.0) have good pollution status in the dry season. Based on study findings, the Kulfo River is contaminated by pollutant intrusion, resulting in a decrease in its quality. Therefore, management of solid, liquid, runoff, and domestic activities is critical in upstream tributaries and Arba Minch town to prevent river water quality deterioration.
Collapse
Affiliation(s)
- Deberge Beyene Kunta
- Faculty of Water Supply and Environmental Engineering, Arba Minch University Water Technology Institute, P.O.B 21, Arba Minch, Ethiopia.
| | - Kinfe Kassa Ayano
- Faculty of Water Supply and Environmental Engineering, Arba Minch University Water Technology Institute, P.O.B 21, Arba Minch, Ethiopia
| |
Collapse
|
2
|
Silva C, Santos JI, Vidal T, Silva S, Almeida SFP, Gonçalves FJM, Abrantes N, Pereira JL. Potential effects of the discharge of wastewater treatment plant (WWTP) effluents in benthic communities: evidence from three distinct WWTP systems. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:34492-34506. [PMID: 38709406 PMCID: PMC11136724 DOI: 10.1007/s11356-024-33462-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/21/2024] [Indexed: 05/07/2024]
Abstract
Wastewater treatment plant (WWTP) effluents can be sources of environmental contamination. In this study, we aimed to understand whether effluents of three different WWTPs may have ecological effects in riverine recipient ecosystems. To achieve this, we assessed benthic phytobenthos and macroinvertebrate communities at three different locations relative to the effluent discharge: immediately upstream, immediately downstream and 500-m downstream the effluent discharge. Two approaches were employed: the ecological status classification as defined in the Water Framework Directive (WFD) based on biological indicators; constrained multivariate analysis to disentangle the environmental drivers (physicochemical variables and contaminants, namely metals, polycyclic aromatic hydrocarbons, pharmaceuticals, and personal care products) of ecological changes across the study sites. The results showed inconsistencies between the WFD approach and the multivariate approach, as well as between the responses of macroinvertebrates and diatoms. The WWTP effluents impacted benthic communities in a single case: macroinvertebrates were negatively affected by one of the WWTP effluents, likely by the transported pharmaceuticals (other stressors are essentially homogeneous among sites). Given the findings and the scarcity of consistent evidence on ecological impacts that WWTP effluents may have in recipient ecosystems, further research is needed towards more sustainable regulation and linked environmental protection measures.
Collapse
Affiliation(s)
- Carlos Silva
- CESAM - Centre for Environmental and Marine Studies, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
- Department of Biology, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Joana Isabel Santos
- CESAM - Centre for Environmental and Marine Studies, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
- Department of Biology, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Tânia Vidal
- CESAM - Centre for Environmental and Marine Studies, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
- Department of Biology, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Susana Silva
- CESAM - Centre for Environmental and Marine Studies, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Salomé Fernandes Pinheiro Almeida
- Department of Biology, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
- GeoBioTec - Geobiociências, Geotecnologias E Geo-Engenharias, University of Aveiro, Aveiro, Portugal
| | - Fernando José Mendes Gonçalves
- CESAM - Centre for Environmental and Marine Studies, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
- Department of Biology, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Nelson Abrantes
- CESAM - Centre for Environmental and Marine Studies, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
- Department of Biology, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Joana Luísa Pereira
- CESAM - Centre for Environmental and Marine Studies, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.
- Department of Biology, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.
| |
Collapse
|
3
|
Sahoo S, Saha A, Vijaykumar ME, Khan MF, Samanta S, Mol SS, Das BK. Assessment of water quality of Netravathi-Gurupur estuary, India through chemometric approach for fisheries sustainability. MARINE POLLUTION BULLETIN 2024; 200:116043. [PMID: 38278014 DOI: 10.1016/j.marpolbul.2024.116043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/11/2024] [Accepted: 01/11/2024] [Indexed: 01/28/2024]
Abstract
The present study aimed to assess the water quality dynamics (physicochemical properties, nutrient and chlorophyll-a) in the Netravathi-Gurupur estuary, India across the space and seasons and to simplify the complex water quality dataset through a chemometric approach. The results indicated that pH, EC, temperature, alkalinity, salinity, TDS, hardness, chloride and intense mixing of suspended solids, driven by the semidiurnal tides, are the major factors affecting water quality. Spatial heterogeneity and monsoon have profound impact on nutrient distribution revealing the following values (mg l-1): phosphate-P (0.015-0.105), nitrate-N (0.016-0.094), nitrite-N (0.001-0.012), and silicate (1.83-14.50). The estuary was evaluated for suitability for brackish water fisheries. The results indicated fair water quality during pre- and post-monsoon but marginal quality in monsoon, primarily due to dilution associated with reduced salinity. The outcome of this study can be suitably utilized for the sustainable development of estuaries and their feasibility for brackish water fisheries.
Collapse
Affiliation(s)
- Sonalika Sahoo
- Regional Centre of ICAR-Central Inland Fisheries Research Institute, Bangalore 560 089, India
| | - Ajoy Saha
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700 120, India.
| | - M E Vijaykumar
- Regional Centre of ICAR-Central Inland Fisheries Research Institute, Bangalore 560 089, India
| | - M Feroz Khan
- Regional Centre of ICAR-Central Inland Fisheries Research Institute, Bangalore 560 089, India
| | - S Samanta
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700 120, India
| | - Sibina S Mol
- Regional Centre of ICAR-Central Inland Fisheries Research Institute, Bangalore 560 089, India
| | - B K Das
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700 120, India
| |
Collapse
|
4
|
Sun L, Wu L, Liu X, Huang W, Zhu D, Wang Z, Guan R, Liu X. Reducing the Risk of Benthic Algae Outbreaks by Regulating the Flow Velocity in a Simulated South-North Water Diversion Open Channel. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3564. [PMID: 36834257 PMCID: PMC9966353 DOI: 10.3390/ijerph20043564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
The reduction in open-channel flow velocity due to China's South-to-North Water Diversion Project (SNP) increases the risk of benthic algal community blooms resulting in drinking water safety issues. Consequently, it has attracted attention from all walks of life. However, regulatory measures to mitigate the risk of algal blooms and the main risk-causing factors are unclear. This study simulated the river ecosystem of the SNP channel through water diversion. Simulated gradient-increasing river flow velocity affects environmental factors and benthic algal alterations, and can be used to explore the feasibility of regulating the flow velocity to reduce the risk of algal blooms. We found that the algal biomasses in the velocity environments of 0.211 and 0.418 m/s decreased by 30.19% and 39.88%, respectively. Community structure alterations from diatoms to filamentous green algae were 75.56% and 87.53%, respectively. We observed significant differences in biodiversity, especially in terms of richness and evenness. The α diversity index of a species is influenced by physical and chemical environmental factors (especially flow velocity). Our study revealed that flow velocity is the main factor affecting the growth and outbreak of benthic algae. The risk of algal blooms in open channels can be effectively mitigated by regulating the flow velocity. This provides a theoretical basis for ensuring the water safety of large-scale water conservancy projects.
Collapse
Affiliation(s)
- Longfei Sun
- Department of Water Ecology and Environment, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
| | - Leixiang Wu
- Department of Water Ecology and Environment, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
| | - Xiaobo Liu
- Department of Water Ecology and Environment, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
| | - Wei Huang
- Department of Water Ecology and Environment, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
| | - Dayu Zhu
- Department of Water Ecology and Environment, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
| | - Zhuowei Wang
- Department of Water Ecology and Environment, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
| | - Ronghao Guan
- Department of Water Ecology and Environment, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
| | - Xingchen Liu
- Department of Water Ecology and Environment, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
| |
Collapse
|
5
|
Advanced treatment of food processing effluent by indigenous microalgae-bacteria consortia: Population dynamics and enhanced nitrogen uptake. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
6
|
Wang Y, Wu N, Tang T, Wang Y, Cai Q. Small run-of-river hydropower dams and associated water regulation filter benthic diatom traits and affect functional diversity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 813:152566. [PMID: 34952048 DOI: 10.1016/j.scitotenv.2021.152566] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/03/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
Knowledge of benthic diatom traits can help understand ecosystem function and guide biodiversity conservation. This is particularly important in rivers on which there are small run-of-river dams, which currently receive less attention. These dams generate power by drawing water from upstream and discharging it downstream after a large drop in penstock. We examine 15 functional diatom traits in habitats upstream, surrounding, and downstream of 23 small run-of-river dams in Xiangxi River, China. We compare the effects of these small dams on benthic diatom species traits, and taxonomic and functional diversity, from 90 sites. Dams change local environmental (e.g., channel width, flow velocity, depth) and physicochemical (e.g., dissolved oxygen, water temperature) variables, and a shift in diatom life forms and guilds is apparent, from taxa with strong attachment and low profile in high velocity waters (i.e., H1, H2 and H4) to those with weak attachment or that are planktonic below dams and outlets (i.e., H3 and H5), and towards high profile taxa below dams. Significant differences in biodiversity, particularly in functional richness, redundancy, and evenness, are apparent. Species and functional diversity indices are influenced by physical and chemical environmental factors (especially flow velocity and water depth). We found that diatom functional traits reflect longitudinal changes in flow and ecological condition, and suggest that monitoring such traits could be useful in adjusting flows to minimize ecosystem impacts. To maintain ecological flow and reasonable water depth within rivers we advocate for improved connectivity, carrying capacity and resilience of water ecosystems via a long-term, trait-based understanding of the impacts of small run-of-river dams.
Collapse
Affiliation(s)
- Yaochun Wang
- Department of Geography and Spatial Information Techniques, Ningbo University, Ningbo 315211, China
| | - Naicheng Wu
- Department of Geography and Spatial Information Techniques, Ningbo University, Ningbo 315211, China; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Tao Tang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yuyu Wang
- Department of Geography and Spatial Information Techniques, Ningbo University, Ningbo 315211, China
| | - Qinghua Cai
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|