1
|
Zhou Y, Mihail ES, Luo Z, Sood S, Islam MS, Wang J. Exploring Morphological, Transcriptomic, and Metabolomic Differences Between Two Sister Lines with Contrasting Resistance to Orange Rust Disease in Sugarcane. Int J Mol Sci 2025; 26:3490. [PMID: 40331937 PMCID: PMC12027349 DOI: 10.3390/ijms26083490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 04/03/2025] [Accepted: 04/03/2025] [Indexed: 05/08/2025] Open
Abstract
Sugarcane (Saccharum spp.) hybrid, one of the most important crops in Florida, has been affected by orange rust (OR) disease caused by Puccinia kuehnii since 2007, resulting in significant yield loss. Developing resistant cultivars to this disease has become an important goal in sugarcane breeding programs. However, the specific genes and molecular mechanisms underlying the resistance to OR disease in sugarcane are still not clear. In this study, we selected two sugarcane sister lines with different genotypes-showing contrasting resistance responses to the disease-from a major quantitative trait loci (QTL) region controlling OR disease resistance. Morphological and anatomical observations revealed that the resistant line (540) had significantly smaller stomatal size and lower stomatal density than the susceptible line (664). Transcriptomic analyses showed that resistant line 540 had increased cell surface modification activity, suggesting possible increased surface receptors. Differentially expressed gene and coexpression analyses also revealed key genes involved in the biosynthesis of anti-fungal molecules, such as hordatines, arabidopyrones, and alkaloids. They also showed a strong increase in long non-coding RNA expression, playing a role in transcriptional regulation. Transcriptomic-metabolomic joint analysis suggested that the biosynthesis of phenylpropanoid derivatives with purported antioxidant and anti-fungal capabilities increased in line 540, especially those deriving from ferulate. Genes, pathways, and some single-nucleotide polymorphisms identified in this study will provide fundamental information and resources to advance the knowledge of sugarcane molecular genetic mechanisms in relation to OR disease, supporting breeding programs in developing cultivars with improved resistance to OR.
Collapse
Affiliation(s)
- Yupeng Zhou
- Department of Agronomy, College of Agricultural and Life Sciences, University of Florida, Gainesville, FL 32611, USA; (Y.Z.); (E.S.M.); (Z.L.)
| | - Edvin Sebastian Mihail
- Department of Agronomy, College of Agricultural and Life Sciences, University of Florida, Gainesville, FL 32611, USA; (Y.Z.); (E.S.M.); (Z.L.)
| | - Ziliang Luo
- Department of Agronomy, College of Agricultural and Life Sciences, University of Florida, Gainesville, FL 32611, USA; (Y.Z.); (E.S.M.); (Z.L.)
| | - Sushma Sood
- Sugarcane Production Research Unit, USDA ARS SEA, 12990 US Hwy 441 N, Canal Point, FL 33438, USA;
| | - Md Sariful Islam
- Sugarcane Production Research Unit, USDA ARS SEA, 12990 US Hwy 441 N, Canal Point, FL 33438, USA;
| | - Jianping Wang
- Department of Agronomy, College of Agricultural and Life Sciences, University of Florida, Gainesville, FL 32611, USA; (Y.Z.); (E.S.M.); (Z.L.)
| |
Collapse
|
2
|
Sirangelo TM. Molecular Investigations to Improve Fusarium Head Blight Resistance in Wheat: An Update Focusing on Multi-Omics Approaches. PLANTS (BASEL, SWITZERLAND) 2024; 13:2179. [PMID: 39204615 PMCID: PMC11359810 DOI: 10.3390/plants13162179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/24/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024]
Abstract
Fusarium head blight (FHB) is mainly caused by Fusarium graminearum (Fg) and is a very widespread disease throughout the world, leading to severe damage to wheat with losses in both grain yield and quality. FHB also leads to mycotoxin contamination in the infected grains, being toxic to humans and animals. In spite of the continuous advancements to elucidate more and more aspects of FHB host resistance, to date, our knowledge about the molecular mechanisms underlying wheat defense response to this pathogen is not comprehensive, most likely due to the complex wheat-Fg interaction. Recently, due to climate changes, such as high temperature and heavy rainfall, FHB has become more frequent and severe worldwide, making it even more urgent to completely understand wheat defense mechanisms. In this review, after a brief description of the first wheat immune response to Fg, we discuss, for each FHB resistance type, from Type I to Type V resistances, the main molecular mechanisms involved, the major quantitative trait loci (QTLs) and candidate genes found. The focus is on multi-omics research helping discover crucial molecular pathways for each resistance type. Finally, according to the emerging examined studies and results, a wheat response model to Fg attack, showing the major interactions in the different FHB resistance types, is proposed. The aim is to establish a useful reference point for the researchers in the field interested to adopt an interdisciplinary omics approach.
Collapse
Affiliation(s)
- Tiziana M Sirangelo
- Division Biotechnologies and Agroindustry, ENEA-Italian National Agency for New Technologies, Energy and Sustainable Economic Development, 00123 Rome, Italy
| |
Collapse
|
3
|
Cloutier S, Edwards T, Zheng C, Booker HM, Islam T, Nabetani K, Kutcher HR, Molina O, You FM. Fine-mapping of a major locus for Fusarium wilt resistance in flax (Linum usitatissimum L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:27. [PMID: 38245903 PMCID: PMC10800302 DOI: 10.1007/s00122-023-04528-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/11/2023] [Indexed: 01/23/2024]
Abstract
KEY MESSAGE Fine-mapping of a locus on chromosome 1 of flax identified an S-lectin receptor-like kinase (SRLK) as the most likely candidate for a major Fusarium wilt resistance gene. Fusarium wilt, caused by the soil-borne fungal pathogen Fusarium oxysporum f. sp. lini, is a devastating disease in flax. Genetic resistance can counteract this disease and limit its spread. To map major genes for Fusarium wilt resistance, a recombinant inbred line population of more than 700 individuals derived from a cross between resistant cultivar 'Bison' and susceptible cultivar 'Novelty' was phenotyped in Fusarium wilt nurseries at two sites for two and three years, respectively. The population was genotyped with 4487 single nucleotide polymorphism (SNP) markers. Twenty-four QTLs were identified with IciMapping, 18 quantitative trait nucleotides with 3VmrMLM and 108 linkage disequilibrium blocks with RTM-GWAS. All models identified a major QTL on chromosome 1 that explained 20-48% of the genetic variance for Fusarium wilt resistance. The locus was estimated to span ~ 867 Kb but included a ~ 400 Kb unresolved region. Whole-genome sequencing of 'CDC Bethune', 'Bison' and 'Novelty' produced ~ 450 Kb continuous sequences of the locus. Annotation revealed 110 genes, of which six were considered candidate genes. Fine-mapping with 12 SNPs and 15 Kompetitive allele-specific PCR (KASP) markers narrowed down the interval to ~ 69 Kb, which comprised the candidate genes Lus10025882 and Lus10025891. The latter, a G-type S-lectin receptor-like kinase (SRLK) is the most likely resistance gene because it is the only polymorphic one. In addition, Fusarium wilt resistance genes previously isolated in tomato and Arabidopsis belonged to the SRLK class. The robust KASP markers can be used in marker-assisted breeding to select for this major Fusarium wilt resistance locus.
Collapse
Affiliation(s)
- S Cloutier
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, ON, K1A 0C6, Canada.
| | - T Edwards
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, ON, K1A 0C6, Canada
| | - C Zheng
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, ON, K1A 0C6, Canada
| | - H M Booker
- Crop Development Centre, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK, S7N 5A8, Canada
- Department of Plant Agriculture, Ontario Agricultural College, University of Guelph, 50 Stone Road E, Guelph, ON, N1G 2W1, Canada
| | - T Islam
- Crop Development Centre, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK, S7N 5A8, Canada
| | - K Nabetani
- Crop Development Centre, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK, S7N 5A8, Canada
| | - H R Kutcher
- Crop Development Centre, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK, S7N 5A8, Canada
| | - O Molina
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, 101 Route 100, Morden, MB, R6M 1Y5, Canada
| | - F M You
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, ON, K1A 0C6, Canada.
| |
Collapse
|
4
|
Dharajiya DT, Shukla N, Pandya M, Joshi M, Patel AK, Joshi CG. Resistant cumin cultivar, GC-4 counters Fusarium oxysporum f. sp. cumini infection through up-regulation of steroid biosynthesis, limonene and pinene degradation and butanoate metabolism pathways. FRONTIERS IN PLANT SCIENCE 2023; 14:1204828. [PMID: 37915505 PMCID: PMC10616826 DOI: 10.3389/fpls.2023.1204828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 09/21/2023] [Indexed: 11/03/2023]
Abstract
Cumin (Cuminum cyminum L.), an important spice crop belonging to the Apiaceae family is infected by Fusarium oxysporum f. sp. cumini (Foc) to cause wilt disease, one of the most devastating diseases of cumin adversely affects its production. As immune responses of cumin plants against the infection of Foc are not well studied, this research aimed to identify the genes and pathways involved in responses of cumin (cv. GC-2, GC-3, GC-4, and GC-5) to the wilt pathogen. Differential gene expression analysis revealed a total of 2048, 1576, 1987, and 1174 differentially expressed genes (DEGs) in GC-2, GC-3, GC-4, and GC-5, respectively. In the resistant cultivar GC-4 (resistant against Foc), several important transcripts were identified. These included receptors, transcription factors, reactive oxygen species (ROS) generating and scavenging enzymes, non-enzymatic compounds, calcium ion (Ca2+) transporters and receptors, R-proteins, and PR-proteins. The expression of these genes is believed to play crucial roles in conferring resistance against Foc. Gene ontology (GO) analysis of the up-regulated DEGs showed significant enrichment of 19, 91, 227, and 55 biological processes in GC-2, GC-3, GC-4, and GC-5, respectively. Notably, the resistant cultivar GC-4 exhibited enrichment in key GO terms such as 'secondary metabolic process', 'response to reactive oxygen species', 'phenylpropanoid metabolic process', and 'hormone-mediated signaling pathway'. Furthermore, the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed the enrichment of 28, 57, 65, and 30 pathways in GC-2, GC-3, GC-4, and GC-5, respectively, focusing on the up-regulated DEGs. The cultivar GC-4 showed enrichment in pathways related to steroid biosynthesis, starch and sucrose metabolism, fatty acid biosynthesis, butanoate metabolism, limonene and pinene degradation, and carotenoid biosynthesis. The activation or up-regulation of various genes and pathways associated with stress resistance demonstrated that the resistant cultivar GC-4 displayed enhanced defense mechanisms against Foc. These findings provide valuable insights into the defense responses of cumin that could contribute to the development of cumin cultivars with improved resistance against Foc.
Collapse
Affiliation(s)
| | | | | | - Madhvi Joshi
- Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology, Government of Gujarat, Gandhinagar, Gujarat, India
| | - Amrutlal K. Patel
- Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology, Government of Gujarat, Gandhinagar, Gujarat, India
| | - Chaitanya G. Joshi
- Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology, Government of Gujarat, Gandhinagar, Gujarat, India
| |
Collapse
|
5
|
Sirangelo TM, Ludlow RA, Spadafora ND. Molecular Mechanisms Underlying Potential Pathogen Resistance in Cannabis sativa. PLANTS (BASEL, SWITZERLAND) 2023; 12:2764. [PMID: 37570918 PMCID: PMC10420965 DOI: 10.3390/plants12152764] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/23/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023]
Abstract
Cannabis (Cannabis sativa L.) is one of the earliest cultivated crops, valued for producing a broad spectrum of compounds used in medicinal products and being a source of food and fibre. Despite the availability of its genome sequences, few studies explore the molecular mechanisms involved in pathogen defense, and the underlying biological pathways are poorly defined in places. Here, we provide an overview of Cannabis defence responses against common pathogens, such as Golovinomyces spp., Fusarium spp., Botrytis cinerea and Pythium spp. For each of these pathogens, after a summary of their characteristics and symptoms, we explore studies identifying genes involved in Cannabis resistance mechanisms. Many studies focus on the potential involvement of disease-resistance genes, while others refer to other plants however whose results may be of use for Cannabis research. Omics investigations allowing the identification of candidate defence genes are highlighted, and genome editing approaches to generate resistant Cannabis species based on CRISPR/Cas9 technology are discussed. According to the emerging results, a potential defence model including both immune and defence mechanisms in Cannabis plant-pathogen interactions is finally proposed. To our knowledge, this is the first review of the molecular mechanisms underlying pathogen resistance in Cannabis.
Collapse
Affiliation(s)
- Tiziana M. Sirangelo
- ENEA-Italian National Agency for New Technologies, Energy and Sustainable Economic Development-Division Biotechnologies and Agroindustry, 00123 Rome, Italy
| | - Richard A. Ludlow
- School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, UK;
| | - Natasha D. Spadafora
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
6
|
Paliwal S, Tripathi MK, Tiwari S, Tripathi N, Payasi DK, Tiwari PN, Singh K, Yadav RK, Asati R, Chauhan S. Molecular Advances to Combat Different Biotic and Abiotic Stresses in Linseed ( Linum usitatissimum L.): A Comprehensive Review. Genes (Basel) 2023; 14:1461. [PMID: 37510365 PMCID: PMC10379177 DOI: 10.3390/genes14071461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/11/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Flax, or linseed, is considered a "superfood", which means that it is a food with diverse health benefits and potentially useful bioactive ingredients. It is a multi-purpose crop that is prized for its seed oil, fibre, nutraceutical, and probiotic qualities. It is suited to various habitats and agro-ecological conditions. Numerous abiotic and biotic stressors that can either have a direct or indirect impact on plant health are experienced by flax plants as a result of changing environmental circumstances. Research on the impact of various stresses and their possible ameliorators is prompted by such expectations. By inducing the loss of specific alleles and using a limited number of selected varieties, modern breeding techniques have decreased the overall genetic variability required for climate-smart agriculture. However, gene banks have well-managed collectionns of landraces, wild linseed accessions, and auxiliary Linum species that serve as an important source of novel alleles. In the past, flax-breeding techniques were prioritised, preserving high yield with other essential traits. Applications of molecular markers in modern breeding have made it easy to identify quantitative trait loci (QTLs) for various agronomic characteristics. The genetic diversity of linseed species and the evaluation of their tolerance to abiotic stresses, including drought, salinity, heavy metal tolerance, and temperature, as well as resistance to biotic stress factors, viz., rust, wilt, powdery mildew, and alternaria blight, despite addressing various morphotypes and the value of linseed as a supplement, are the primary topics of this review.
Collapse
Affiliation(s)
- Shruti Paliwal
- Department of Genetics and Plant Breeding, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
| | - Manoj Kumar Tripathi
- Department of Genetics and Plant Breeding, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
- Department of Plant Molecular Biology and Biotechnology, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
| | - Sushma Tiwari
- Department of Genetics and Plant Breeding, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
- Department of Plant Molecular Biology and Biotechnology, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
| | - Niraj Tripathi
- Directorate of Research Services, Jawaharlal Nehru Krishi Vishwa Vidyalaya, Jabalpur 482004, India
| | - Devendra K Payasi
- All India Coordinated Research Project on Linseed, Jawaharlal Nehru Krishi Vishwa Vidyalaya, Regional Agricultural Research Station, Sagar 470001, India
| | - Prakash N Tiwari
- Department of Plant Molecular Biology and Biotechnology, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
| | - Kirti Singh
- Department of Genetics and Plant Breeding, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
| | - Rakesh Kumar Yadav
- Department of Genetics and Plant Breeding, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
| | - Ruchi Asati
- Department of Genetics and Plant Breeding, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
| | - Shailja Chauhan
- Department of Genetics and Plant Breeding, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
| |
Collapse
|
7
|
Danaeipour Z, Garoosi G, Tohidfar M, Bakhtiarizadeh MR, Mirjalili MH. Comprehensive RNA-Seq-based study and metabolite profiling to identify genes involved in podophyllotoxin biosynthesis in Linum album Kotschy ex Boiss. (Linaceae). Sci Rep 2023; 13:9219. [PMID: 37286620 DOI: 10.1038/s41598-023-36102-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 05/30/2023] [Indexed: 06/09/2023] Open
Abstract
Linum album is a well-known rich source of anticancer compounds, i.e., podophyllotoxin (PTOX) and other lignans. These compounds play an important role in the plant's defensive system. The RNA-Seq data of flax (L. usitatissimum) were analyzed under various biotic and abiotic stresses to comprehend better the importance of lignans in plant defense responses. Then, the association between the lignan contents and some related gene expressions was experimented with HPLC and qRT-PCR, respectively. Transcriptomic profiling showed a specific expression pattern in different organs, and just the commonly regulated gene EP3 was detected with a significant increase under all stresses. The in silico analysis of the PTOX biosynthesis pathway identified a list of genes, including laccase (LAC11), lactoperoxidase (POD), 4-coumarate-CoA ligase (4CL), and secoisolariciresinol dehydrogenase (SDH). These genes increased significantly under individual stresses. The HPLC analysis showed that the measured lignan contents generally increased under stress. In contrast, a quantitative expression of the genes involved in this pathway using qRT-PCR showed a different pattern that seems to contribute to regulating PTOX content in response to stress. Identified modifications of critical genes related to PTOX biosynthesis in response to multiple stresses can provide a baseline for improving PTOX content in L. album.
Collapse
Affiliation(s)
- Zahra Danaeipour
- Department of Biotechnology, Faculty of Agriculture and Natural Resources, Imam Khomeini International University, Qazvin, 3414916818, Iran
| | - Ghasemali Garoosi
- Department of Biotechnology, Faculty of Agriculture and Natural Resources, Imam Khomeini International University, Qazvin, 3414916818, Iran.
| | - Masoud Tohidfar
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, 1983969411, Iran.
| | | | - Mohammad Hossein Mirjalili
- Department of Agriculture, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, 1983969411, Iran
| |
Collapse
|
8
|
Bhagat N, Magotra S, Gupta R, Sharma S, Verma S, Verma PK, Ali T, Shree A, Vakhlu J. Invasion and Colonization of Pathogenic Fusarium oxysporum R1 in Crocus sativus L. during Corm Rot Disease Progression. J Fungi (Basel) 2022; 8:1246. [PMID: 36547579 PMCID: PMC9784501 DOI: 10.3390/jof8121246] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/03/2022] [Accepted: 10/12/2022] [Indexed: 11/29/2022] Open
Abstract
The corm rot of saffron caused by Fusarium oxysporum (Fox) has been reported to be the most destructive fungal disease of the herb globally. The pathogen, Fusarium oxysporum R1 (Fox R1) isolated by our group from Kashmir, India, was found to be different from Fusarium oxysporum f.sp. gladioli commonly reported corm rot agent of saffron. In the present study, Fox R1 was further characterized using housekeeping genes and pathogenicity tests, as Fusarium oxysporum R1 f.sp. iridacearum race 4. Though Fox R1 invaded the saffron plant through both corm and roots, the corm was found to be the preferred site of infection. In addition, the route of pathogen movement wastracked by monitoring visual symptoms, semi-quantitative PCR, quantitative-PCR (q-PCR), real-time imaging of egfp-tagged Fusarium oxysporum R1, and Fox R1 load quantification. This study is the first study of its kind on the bidirectional pathogenesis from corm to roots and vice-versa, as the literature only reports unidirectional upward movement from roots to other parts of the plant. In addition, the colonization pattern of Fox R1 in saffron corms and roots was studied. The present study involved a systematic elucidation of the mode and mechanism of pathogenesis in the saffron Fusarium oxysporum strain R1 pathosystem.
Collapse
Affiliation(s)
- Nancy Bhagat
- Metagenomic Laboratory, School of Biotechnology, University of Jammu, Jammu 180006, India
| | - Shanu Magotra
- Metagenomic Laboratory, School of Biotechnology, University of Jammu, Jammu 180006, India
- University Institute of Biotechnology, Chandigarh University, Ajitgarh 140413, India
| | - Rikita Gupta
- Metagenomic Laboratory, School of Biotechnology, University of Jammu, Jammu 180006, India
| | - Shikha Sharma
- Metagenomic Laboratory, School of Biotechnology, University of Jammu, Jammu 180006, India
| | - Sandhya Verma
- Plant Immunity Laboratory, National Institute of Plant Genome Research (NIPGR), New Delhi 110067, India
| | - Praveen Kumar Verma
- Plant Immunity Laboratory, National Institute of Plant Genome Research (NIPGR), New Delhi 110067, India
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Tahir Ali
- Metagenomic Laboratory, School of Biotechnology, University of Jammu, Jammu 180006, India
| | - Ankita Shree
- Plant Immunity Laboratory, National Institute of Plant Genome Research (NIPGR), New Delhi 110067, India
| | - Jyoti Vakhlu
- Metagenomic Laboratory, School of Biotechnology, University of Jammu, Jammu 180006, India
| |
Collapse
|
9
|
Yadav B, Kaur V, Narayan OP, Yadav SK, Kumar A, Wankhede DP. Integrated omics approaches for flax improvement under abiotic and biotic stress: Current status and future prospects. FRONTIERS IN PLANT SCIENCE 2022; 13:931275. [PMID: 35958216 PMCID: PMC9358615 DOI: 10.3389/fpls.2022.931275] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/27/2022] [Indexed: 05/03/2023]
Abstract
Flax (Linum usitatissimum L.) or linseed is one of the important industrial crops grown all over the world for seed oil and fiber. Besides oil and fiber, flax offers a wide range of nutritional and therapeutic applications as a feed and food source owing to high amount of α-linolenic acid (omega-3 fatty acid), lignans, protein, minerals, and vitamins. Periodic losses caused by unpredictable environmental stresses such as drought, heat, salinity-alkalinity, and diseases pose a threat to meet the rising market demand. Furthermore, these abiotic and biotic stressors have a negative impact on biological diversity and quality of oil/fiber. Therefore, understanding the interaction of genetic and environmental factors in stress tolerance mechanism and identification of underlying genes for economically important traits is critical for flax improvement and sustainability. In recent technological era, numerous omics techniques such as genomics, transcriptomics, metabolomics, proteomics, phenomics, and ionomics have evolved. The advancements in sequencing technologies accelerated development of genomic resources which facilitated finer genetic mapping, quantitative trait loci (QTL) mapping, genome-wide association studies (GWAS), and genomic selection in major cereal and oilseed crops including flax. Extensive studies in the area of genomics and transcriptomics have been conducted post flax genome sequencing. Interestingly, research has been focused more for abiotic stresses tolerance compared to disease resistance in flax through transcriptomics, while the other areas of omics such as metabolomics, proteomics, ionomics, and phenomics are in the initial stages in flax and several key questions remain unanswered. Little has been explored in the integration of omic-scale data to explain complex genetic, physiological and biochemical basis of stress tolerance in flax. In this review, the current status of various omics approaches for elucidation of molecular pathways underlying abiotic and biotic stress tolerance in flax have been presented and the importance of integrated omics technologies in future research and breeding have been emphasized to ensure sustainable yield in challenging environments.
Collapse
Affiliation(s)
- Bindu Yadav
- Division of Germplasm Evaluation, ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Vikender Kaur
- Division of Germplasm Evaluation, ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Om Prakash Narayan
- College of Arts and Sciences, University of Florida, Gainesville, FL, United States
| | - Shashank Kumar Yadav
- Division of Germplasm Evaluation, ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Ashok Kumar
- Division of Germplasm Evaluation, ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | | |
Collapse
|
10
|
Kanapin A, Bankin M, Rozhmina T, Samsonova A, Samsonova M. Genomic Regions Associated with Fusarium Wilt Resistance in Flax. Int J Mol Sci 2021; 22:12383. [PMID: 34830265 PMCID: PMC8623186 DOI: 10.3390/ijms222212383] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/13/2021] [Accepted: 11/15/2021] [Indexed: 01/22/2023] Open
Abstract
Modern flax cultivars are susceptible to many diseases; arguably, the most economically damaging of these is the Fusarium wilt fungal disease. Over the past decades international flax breeding initiatives resulted in the development of resistant cultivars. However, much remains to be learned about the mechanisms of resistance to Fusarium infection in flax. As a first step to uncover the genetic factors associated with resistance to Fusarium wilt disease, we performed a genome-wide association study (GWAS) using 297 accessions from the collection of the Federal Research Centre of the Bast Fiber Crops, Torzhok, Russia. These genotypes were infected with a highly pathogenic Fusarium oxysporum f.sp. lini MI39 strain; the wilt symptoms were documented in the course of three successive years. Six different single-locus models implemented in GAPIT3 R package were applied to a selected subset of 72,526 SNPs. A total of 15 QTNs (Quantitative Trait Nucleotides) were detected during at least two years of observation, while eight QTNs were found during all three years of the experiment. Of these, ten QTNs occupied a region of 640 Kb at the start of chromosome 1, while the remaining QTNs mapped to chromosomes 8, 11 and 13. All stable QTNs demonstrate a statistically significant allelic effect across 3 years of the experiment. Importantly, several QTNs spanned regions that harbored genes involved in the pathogen recognition and plant immunity response, including the KIP1-like protein (Lus10025717) and NBS-LRR protein (Lus10025852). Our results provide novel insights into the genetic architecture of flax resistance to Fusarium wilt and pinpoint potential candidate genes for further in-depth studies.
Collapse
Affiliation(s)
- Alexander Kanapin
- Centre for Computational Biology, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia; (A.K.); (A.S.)
| | - Mikhail Bankin
- Mathematical Biology & Bioinformatics Laboratory, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia;
| | - Tatyana Rozhmina
- Laboratory of Breeding Technologies, Federal Research Center for Bast Fiber Crops, 172002 Torzhok, Russia;
| | - Anastasia Samsonova
- Centre for Computational Biology, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia; (A.K.); (A.S.)
| | - Maria Samsonova
- Mathematical Biology & Bioinformatics Laboratory, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia;
| |
Collapse
|
11
|
Achari SR, Edwards J, Mann RC, Kaur JK, Sawbridge T, Summerell BA. Comparative transcriptomic analysis of races 1, 2, 5 and 6 of Fusarium oxysporum f.sp. pisi in a susceptible pea host identifies differential pathogenicity profiles. BMC Genomics 2021; 22:734. [PMID: 34627148 PMCID: PMC8502283 DOI: 10.1186/s12864-021-08033-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 09/23/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND The fungal pathogen Fusarium oxysporum f.sp. pisi (Fop) causes Fusarium wilt in peas. There are four races globally: 1, 2, 5 and 6 and all of these races are present in Australia. Molecular infection mechanisms have been studied in a few other F. oxysporum formae speciales; however, there has been no transcriptomic Fop-pea pathosystem study. RESULTS A transcriptomic study was carried out to understand the molecular pathogenicity differences between the races. Transcriptome analysis at 20 days post-inoculation revealed differences in the differentially expressed genes (DEGs) in the Fop races potentially involved in fungal pathogenicity variations. Most of the DEGs in all the races were engaged in transportation, metabolism, oxidation-reduction, translation, biosynthetic processes, signal transduction, proteolysis, among others. Race 5 expressed the most virulence-associated genes. Most genes encoding for plant cell wall degrading enzymes, CAZymes and effector-like proteins were expressed in race 2. Race 6 expressed the least number of genes at this time point. CONCLUSION Fop races deploy various factors and complex strategies to mitigate host defences to facilitate colonisation. This investigation provides an overview of the putative pathogenicity genes in different Fop races during the necrotrophic stage of infection. These genes need to be functionally characterised to confirm their pathogenicity/virulence roles and the race-specific genes can be further explored for molecular characterisation.
Collapse
Affiliation(s)
- Saidi R Achari
- AgriBio, Agriculture Victoria Research, DJPR, Bundoora, Victoria, Australia.
- School of Applied Systems Biology, La Trobe University, Bundoora, Victoria, Australia.
| | - Jacqueline Edwards
- AgriBio, Agriculture Victoria Research, DJPR, Bundoora, Victoria, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, Victoria, Australia
| | - Ross C Mann
- AgriBio, Agriculture Victoria Research, DJPR, Bundoora, Victoria, Australia
| | - Jatinder K Kaur
- AgriBio, Agriculture Victoria Research, DJPR, Bundoora, Victoria, Australia
| | - Tim Sawbridge
- AgriBio, Agriculture Victoria Research, DJPR, Bundoora, Victoria, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, Victoria, Australia
| | - Brett A Summerell
- Australian Institute of Botanical Science, Royal Botanic Gardens & Domain Trust, Sydney, NSW, Australia
| |
Collapse
|