1
|
Bod RB, Rokai J, Meszéna D, Fiáth R, Ulbert I, Márton G. From End to End: Gaining, Sorting, and Employing High-Density Neural Single Unit Recordings. Front Neuroinform 2022; 16:851024. [PMID: 35769832 PMCID: PMC9236662 DOI: 10.3389/fninf.2022.851024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 05/06/2022] [Indexed: 11/15/2022] Open
Abstract
The meaning behind neural single unit activity has constantly been a challenge, so it will persist in the foreseeable future. As one of the most sourced strategies, detecting neural activity in high-resolution neural sensor recordings and then attributing them to their corresponding source neurons correctly, namely the process of spike sorting, has been prevailing so far. Support from ever-improving recording techniques and sophisticated algorithms for extracting worthwhile information and abundance in clustering procedures turned spike sorting into an indispensable tool in electrophysiological analysis. This review attempts to illustrate that in all stages of spike sorting algorithms, the past 5 years innovations' brought about concepts, results, and questions worth sharing with even the non-expert user community. By thoroughly inspecting latest innovations in the field of neural sensors, recording procedures, and various spike sorting strategies, a skeletonization of relevant knowledge lays here, with an initiative to get one step closer to the original objective: deciphering and building in the sense of neural transcript.
Collapse
Affiliation(s)
- Réka Barbara Bod
- Laboratory of Experimental Neurophysiology, Department of Physiology, Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureş, Târgu Mureş, Romania
| | - János Rokai
- Integrative Neuroscience Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
- School of PhD Studies, Semmelweis University, Budapest, Hungary
| | - Domokos Meszéna
- Integrative Neuroscience Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Richárd Fiáth
- Integrative Neuroscience Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - István Ulbert
- Integrative Neuroscience Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Gergely Márton
- Integrative Neuroscience Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| |
Collapse
|
2
|
Li W, Xu Z, Wang H, Wu T. The Effect of Electrical Stimulation on the Response of Mouse Retinal Ganglion Cells. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:5704-5708. [PMID: 34892416 DOI: 10.1109/embc46164.2021.9630580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Retinal prostheses can restore the basic visual function of patients with retinal degeneration, which relies on effective electrical stimulation to evoke the physiological activities of retinal ganglion cells (RGCs). Current electrical stimulation strategies suffer from unstable effects and insufficient stimulation positions. Therefore, it is crucial to determine the optimal parameters for precise and safe electrical stimulation. Biphasic voltages (cathode-first) with a pulse width of 25 ms and different amplitudes were used to ex vivo stimulate RGCs of three wild-type (WT) mice using a commercial microelectrode array (MEA) recording system. Based on a facile and efficient spike sorting method, comprehensive statistics of RGCs response types were performed, and the influence of electrical stimulation on RGCs response status was analyzed. There were three types of RGCs response measured from the retinas of three WT mice, and the proportions were calculated to be 91.5%, 3.11% and 5.39%, respectively. This work can provide an in-depth understanding of the internal effects of electrical stimulation and RGCs response, with the potential as a useful guidance for optimizing parameters of electrical stimulation strategies in retinal prostheses.
Collapse
|