1
|
Guan J, Xu Y, Liu L, Su M, Ma J. Assessment of postoperative prognosis in patients with acute ST-segment elevation myocardial infarction after PCI using LRP1. Front Cardiovasc Med 2025; 12:1520696. [PMID: 40083817 PMCID: PMC11903468 DOI: 10.3389/fcvm.2025.1520696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 02/07/2025] [Indexed: 03/16/2025] Open
Abstract
Purpose To evaluate the prognostic value of Low-density lipoprotein receptor-related protein 1 (LRP1) in patients with acute ST-segment elevation myocardial infarction (STEMI) following percutaneous coronary intervention (PCI). Method This prospective study included 96 STEMI patients who underwent PCI and 19 control subjects with normal coronary arteries. Coronary blood was taken from both groups, and LRP1 expression levels were quantified using real-time quantitative PCR (qPCR). The STEMI patients were stratified into low, middle, and high LRP1 groups based on tertiles of LRP1 expression. The primary endpoint was the occurrence of major adverse cardiovascular events (MACE) during a six-month follow-up period post-PCI. Results LRP1 expression in arterial blood was significantly lower in the STEMI group [0.63(0.23,1.1)] compared to the control group [1.5(0.84,1.85)] (P < 0.05). The incidence of MACE showed an increasing trend across the LRP1 tertiles: 6.7% (95% CI: 1.9-21.3%) in the low LRP1 group, 22.6% (95% CI: 11.4-39.8%) in the middle LRP1 group, and 41.9% (95% CI: 26.4-59.2%) in the high LRP1 group. The high LRP1 group exhibited a significantly higher MACE rate compared to the low LRP1 group (P < 0.05). Spearman's rank correlation analysis revealed positive correlations between LRP1 and both NT-proBNP and cTnT (r = 0.349, 95% CI: 0.156-0.515, P < 0.001; r = 0.328, 95% CI: 0.133-0.497, P = 0.001, respectively), and a negative correlation with LVEF values (r = -0.285, 95% CI: -0.460 to -0.087, P = 0.006). Receiver operating characteristic (ROC) analysis identified an LRP1 expression threshold of 0.79 for predicting MACE within six months post-PCI, with a sensitivity of 81.8% (95% CI: 61.5-92.7%), a specificity of 70% (95% CI: 58.5-79.5%), and an area under the curve (AUC) of 0.789 (95% CI: 0.688-0.890, P < 0.001). Conclusion LRP1 expression appears to be an independent predictor of MACE in STEMI patients and may have prognostic value for short-term outcomes following PCI.
Collapse
Affiliation(s)
| | | | | | | | - Jingru Ma
- Cardiology Department, The Second Affiliated Hospital of Shenyang Medical College, Shenyang, China
| |
Collapse
|
2
|
Kang S, Lee J, Ali DN, Choi S, Nesbitt J, Min PH, Trushina E, Choi DS. Low to moderate ethanol exposure reduces astrocyte-induced neuroinflammatory signaling and cognitive decline in presymptomatic APP/PS1 mice. Sci Rep 2024; 14:23989. [PMID: 39402264 PMCID: PMC11473946 DOI: 10.1038/s41598-024-75202-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 10/03/2024] [Indexed: 10/19/2024] Open
Abstract
Alcohol use disorder has been associated with the development of neurodegenerative diseases, including Alzheimer's disease (AD). However, recent studies demonstrate that moderate alcohol consumption may be protective against dementia and cognitive decline. We examined astrocyte function, low-density lipoprotein (LDL) receptor-related protein 1 (LRP1), and the NF-κB p65 and IKK-α/β signaling pathways in modulating neuroinflammation and amyloid beta (Aβ) deposition. We assessed apolipoprotein E (ApoE) in the brain of APP/PS1 mice using IHC and ELISA in response to low to moderate ethanol exposure (MEE). First, to confirm the intracerebral distribution of ApoE, we co-stained with GFAP, a marker for astrocytes that biosynthesize ApoE. We sought to investigate whether the ethanol-induced upregulation of LRP1 could potentially inhibit the activity of IL-1β and TNF-α induced IKK-α/β towards NF-κB p65, resulting in a reduction of pro-inflammatory cytokines. To evaluate the actual Aβ load in the brains of APP/PS1 mice, we performed with a specific antibody Aβ (Thioflavin S) on both air- and ethanol-exposed groups, subsequently analyzing Aβ levels. We also measured glucose uptake using 18F- fluorodeoxyglucose (FDG)-positron emission tomography (PET). Finally, we investigated whether MEE induced cognitive and memory changes using the Y maze, noble object recognition test, and Morris water maze. Our findings demonstrate that MEE reduced astrocytic glial fibrillary acidic protein (GFAP) and ApoE levels in the cortex and hippocampus in presymptomatic APP/PS1 mice. Interestingly, increased LRP1 protein expression was accompanied by dampening the IKK-α/β-NF-κB p65 pathway, resulting in decreased IL-1β and TNF-α levels in male mice. Notably, female mice show reduced levels of anti-inflammatory cytokines IL-4, and IL-10 without altering IL-1β and TNF-α concentrations. In both males and females, Aβ plaques, a hallmark of AD, were reduced in the cortex and hippocampus of APP/PS1 mice exposed to ethanol starting at pre-symptomatic stage. Consistently, MEE increased FDG-PET-based brain activities and normalized cognitive and memory deficits in the APP/PS1 mice. Our findings suggest that MEE may benefit AD pathology via modulating LRP1 expression, potentially reducing neuroinflammation and attenuating Aβ deposition. Our study implies that reduced astrocyte-derived ApoE and LDL cholesterol levels are critical for attenuating AD pathology.
Collapse
Affiliation(s)
- Shinwoo Kang
- Department of Molecular Pharmacology and Experimental Therapeutics, Clinic College of Medicine, 200 First Street SW, Rochester, MN, 55905, USA
- Department of Pharmacology College of Medicine, Soonchunhyang University, 22 Soonchunhyango-ro, Ansan, Chungcheongnam-do, 31508, South Korea
| | - Jeyeon Lee
- Department of Radiology, Mayo Clinic College of Medicine and Science, 200 First Street SW, Rochester, MN, 55905, USA
| | - Dina N Ali
- Department of Molecular Pharmacology and Experimental Therapeutics, Clinic College of Medicine, 200 First Street SW, Rochester, MN, 55905, USA
| | - Sun Choi
- Department of Molecular Pharmacology and Experimental Therapeutics, Clinic College of Medicine, 200 First Street SW, Rochester, MN, 55905, USA
| | - Jarred Nesbitt
- Department of Neurology, Mayo Clinic College of Medicine and Science, 200 First Street SW, Rochester, MN, 55905, USA
| | - Paul H Min
- Department of Radiology, Mayo Clinic College of Medicine and Science, 200 First Street SW, Rochester, MN, 55905, USA
| | - Eugenia Trushina
- Department of Molecular Pharmacology and Experimental Therapeutics, Clinic College of Medicine, 200 First Street SW, Rochester, MN, 55905, USA
- Department of Neurology, Mayo Clinic College of Medicine and Science, 200 First Street SW, Rochester, MN, 55905, USA
| | - Doo-Sup Choi
- Department of Molecular Pharmacology and Experimental Therapeutics, Clinic College of Medicine, 200 First Street SW, Rochester, MN, 55905, USA.
- Department of Psychiatry and Psychology, Mayo Clinic College of Medicine and Science, 200 First Street SW, Rochester, MN, 55905, USA.
- Neuroscience Program, Mayo Clinic College of Medicine and Science, 200 First Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
3
|
Kang S, Lee J, Choi S, Nesbitt J, Min PH, Trushina E, Choi DS. Moderate ethanol exposure reduces astrocyte-induced neuroinflammatorysignaling and cognitive decline in presymptomatic APP/PS1 mice. RESEARCH SQUARE 2023:rs.3.rs-3627637. [PMID: 38077051 PMCID: PMC10705690 DOI: 10.21203/rs.3.rs-3627637/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Background Alcohol use disorder (AUD) has been associated with the development of neurodegenerative diseases, including Alzheimer's disease (AD). However, recent studies demonstrate that moderate alcohol consumption may be protective against dementia and cognitive decline. Methods We examined astrocyte function, low-density lipoprotein (LDL) receptor-related protein 1 (LRP1), and the NF-κB p65 and IKK-α/β signaling pathways in modulating neuroinflammation and amyloid beta (Aβ) deposition. We assessed apolipoprotein E (ApoE) in the mouse brain using IHC and ELISA in response to moderate ethanol exposure (MEE). First, to confirm the intracerebral distribution of ApoE, we co-stained with GFAP, a marker for astrocytes that biosynthesize ApoE. We sought to investigate whether the ethanol-induced upregulation of LRP1 could potentially inhibit the activity of IL-1β and TNF-α induced IKK-α/β towards NF-κB p65, resulting in a reduction of pro-inflammatory cytokines. To evaluate the actual Aβ load in the brains of APP/PS1 mice, we performed with a specific antibody Aβ (Thioflavin S) on both air- and ethanol-exposed groups, subsequently analyzing Aβ levels. We also measured glucose uptake activity using 18F-FDG in APP/PS1 mice. Finally, we investigated whether MEE induced cognitive and memory changes using the Y maze, noble objective recognition (NOR) test, and Morris water maze (MWM). Results Our findings demonstrate that MEE reduced astrocytic glial fibrillary acidic protein (GFAP) and ApoE levels in the cortex and hippocampus in presymptomatic APP/PS1 mice. Interestingly, increased LRP1 protein expression is accompanied by dampening the IKK-α/β-NF-κB p65 pathway, resulting in decreased IL-1β and TNF-α levels in male mice. Notably, female mice show reduced anti-inflammatory cytokines, IL-4, and IL-10 levels without altering IL-1β and TNF-α concentrations. In both males and females, Aβ plaques, a hallmark of AD, were reduced in the cortex and hippocampus of ethanol-exposed presymptomatic APP/PS1 mice. Consistently, MEE increased fluorodeoxyglucose (FDG)-positron emission tomography (PET)-based brain activities and normalized cognitive and memory deficits in the APP/PS1 mice. Conclusions Our findings suggest that MEE may benefit AD pathology via modulating LRP1 expression, potentially reducing neuroinflammation and attenuating Aβ deposition. Our study implies that reduced astrocyte derived ApoE and LDL cholesterol levels are critical for attenuating AD pathology.
Collapse
Affiliation(s)
| | - Jeyeon Lee
- Mayo Clinic College of Medicine, and Science
| | - Sun Choi
- Mayo Clinic College of Medicine, and Science
| | | | - Paul H Min
- Mayo Clinic College of Medicine, and Science
| | | | | |
Collapse
|
4
|
Soler Y, Rodriguez M, Austin D, Gineste C, Gelber C, El-Hage N. SERPIN-Derived Small Peptide (SP16) as a Potential Therapeutic Agent against HIV-Induced Inflammatory Molecules and Viral Replication in Cells of the Central Nervous System. Cells 2023; 12:cells12040632. [PMID: 36831299 PMCID: PMC9954444 DOI: 10.3390/cells12040632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/26/2023] [Accepted: 01/29/2023] [Indexed: 02/18/2023] Open
Abstract
Despite the success of combined antiretroviral therapy (cART) increasing the survival rate in human immunodeficiency virus (HIV) patients, low levels of viremia persist in the brain of patients leading to glia (microglia and astrocytes)-induced neuroinflammation and consequently, the reactivation of HIV and neuronal injury. Here, we tested the therapeutic efficacy of a Low-Density Lipoprotein Receptor-Related Protein 1 (LRP-1) agonistic small peptide drug (SP16) in attenuating HIV replication and the secretion of inflammatory molecules in brain reservoirs. SP16 was developed by Serpin Pharma and is derived from the pentapeptide sequence of the serine protease inhibitor alpha-1-antitrypsin (A1AT). The SP16 peptide sequence was subsequently modified to improve the stability, bioavailability, efficacy, and binding to LRP-1; a scavenger regulatory receptor that internalizes ligands to induce anti-viral, anti-inflammatory, and pro-survival signals. Using glial cells infected with HIV, we showed that: (i) SP16 attenuated viral-induced secretion of pro-inflammatory molecules; and (ii) SP16 attenuated viral replication. Using an artificial 3D blood-brain barrier (BBB) system, we showed that: (i) SP16 was transported across the BBB; and (ii) restored the permeability of the BBB compromised by HIV. Mechanistically, we showed that SP16 interaction with LRP-1 and binding lead to: (i) down-regulation in the expression levels of nuclear factor-kappa beta (NF-κB); and (ii) up-regulation in the expression levels of Akt. Using an in vivo mouse model, we showed that SP16 was transported across the BBB after intranasal delivery, while animals infected with EcoHIV undergo a reduction in (i) viral replication and (ii) viral secreted inflammatory molecules, after exposure to SP16 and antiretrovirals. Overall, these studies confirm a therapeutic response of SP16 against HIV-associated inflammatory effects in the brain.
Collapse
Affiliation(s)
- Yemmy Soler
- Department of Immunology and Nanomedicine, Herbert Wertheim College of Medicine, Miami, FL 33199, USA
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
| | - Myosotys Rodriguez
- Department of Immunology and Nanomedicine, Herbert Wertheim College of Medicine, Miami, FL 33199, USA
| | - Dana Austin
- Serpin Pharma, 9501 Discovery Blvd Suite 120, Manassas, VA 20109, USA
| | - Cyrille Gineste
- Serpin Pharma, 9501 Discovery Blvd Suite 120, Manassas, VA 20109, USA
| | - Cohava Gelber
- Serpin Pharma, 9501 Discovery Blvd Suite 120, Manassas, VA 20109, USA
| | - Nazira El-Hage
- Department of Immunology and Nanomedicine, Herbert Wertheim College of Medicine, Miami, FL 33199, USA
- Correspondence: ; Tel.: +1-(305)-348-4346; Fax: +1-(305)-348-1109
| |
Collapse
|
5
|
Restoration of CD4 + T Cells during NAFLD without Modulation of the Hepatic Immunological Pattern Is Not Sufficient to Prevent HCC. Cancers (Basel) 2022; 14:cancers14225502. [PMID: 36428596 PMCID: PMC9688124 DOI: 10.3390/cancers14225502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/26/2022] [Accepted: 11/05/2022] [Indexed: 11/12/2022] Open
Abstract
Predominant inflammatory immunological patterns as well as the depletion of CD4+ T cells during nonalcoholic fatty liver disease (NAFLD) are reported to be associated with the progression of hepatocellular carcinoma (HCC). Here, we report that an LRP-1 agonistic peptide, SP16, when administered during advanced NAFLD progression, restored the depleted CD4+ T cell population but did not significantly affect the inflammatory immunological pattern. This data suggests that restoration of CD4+ T cells without modulation of the hepatic immunological pattern is not sufficient to prevent HCC. However, SP16 administered early during NAFLD progression modulated the inflammatory profile. Future studies will determine if regulation of the inflammatory immune response by SP16 early in NAFLD progression will prevent HCC.
Collapse
|
6
|
Ameka M, Hasty AH. Paying the Iron Price: Liver Iron Homeostasis and Metabolic Disease. Compr Physiol 2022; 12:3641-3663. [PMID: 35766833 PMCID: PMC10155403 DOI: 10.1002/cphy.c210039] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Iron is an essential metal element whose bioavailability is tightly regulated. Under normal conditions, systemic and cellular iron homeostases are synchronized for optimal function, based on the needs of each system. During metabolic dysfunction, this synchrony is lost, and markers of systemic iron homeostasis are no longer coupled to the iron status of key metabolic organs such as the liver and adipose tissue. The effects of dysmetabolic iron overload syndrome in the liver have been tied to hepatic insulin resistance, nonalcoholic fatty liver disease, and nonalcoholic steatohepatitis. While the existence of a relationship between iron dysregulation and metabolic dysfunction has long been acknowledged, identifying correlative relationships is complicated by the prognostic reliance on systemic measures of iron homeostasis. What is lacking and perhaps more informative is an understanding of how cellular iron homeostasis changes with metabolic dysfunction. This article explores bidirectional relationships between different proteins involved in iron homeostasis and metabolic dysfunction in the liver. © 2022 American Physiological Society. Compr Physiol 12:3641-3663, 2022.
Collapse
Affiliation(s)
- Magdalene Ameka
- Department of Molecular Physiology and Biophysics, School of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | - Alyssa H Hasty
- Department of Molecular Physiology and Biophysics, School of Medicine, Vanderbilt University, Nashville, Tennessee, USA.,VA Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| |
Collapse
|
7
|
Tian JJ, Levy M, Zhang X, Sinnott R, Maddela R. Counteracting Health Risks by Modulating Homeostatic Signaling. Pharmacol Res 2022; 182:106281. [PMID: 35661711 DOI: 10.1016/j.phrs.2022.106281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/14/2022] [Accepted: 05/27/2022] [Indexed: 10/18/2022]
Abstract
Homeostasis was initially conceptualized by Bernard and Cannon around a century ago as a steady state of physiological parameters that vary within a certain range, such as blood pH, body temperature, and heart rate1,2. The underlying mechanisms that maintain homeostasis are explained by negative feedbacks that are executed by the neuronal, endocrine, and immune systems. At the cellular level, homeostasis, such as that of redox and energy steady state, also exists and is regulated by various cell signaling pathways. The induction of homeostatic mechanism is critical for human to adapt to various disruptive insults (stressors); while on the other hand, adaptation occurs at the expense of other physiological processes and thus runs the risk of collateral damages, particularly under conditions of chronic stress. Conceivably, anti-stress protection can be achieved by stressor-mimicking medicinals that elicit adaptive responses prior to an insult and thereby serve as health risk countermeasures; and in situations where maladaptation may occur, downregulating medicinals could be used to suppress the responses and prevent subsequent pathogenesis. Both strategies are preemptive interventions particularly suited for individuals who carry certain lifestyle, environmental, or genetic risk factors. In this article, we will define and characterize a new modality of prophylactic intervention that forestalls diseases via modulating homeostatic signaling. Moreover, we will provide evidence from the literature that support this concept and distinguish it from other homeostasis-related interventions such as adaptogen, hormesis, and xenohormesis.
Collapse
Affiliation(s)
- Junqiang J Tian
- USANA Health Science, Inc., 3838 Parkway Blvd, Salt Lake City, UT 84121, USA.
| | - Mark Levy
- USANA Health Science, Inc., 3838 Parkway Blvd, Salt Lake City, UT 84121, USA
| | - Xuekai Zhang
- Beijing University of Chinese Medicine, No. 11, Bei San Huan Dong Lu, Chaoyang District, Beijing100029, China; US Center for Chinese Medicine, 14801 Physicians lane, 171 A 2nd Floor, #281, Rockville MD 20850, USA
| | - Robert Sinnott
- USANA Health Science, Inc., 3838 Parkway Blvd, Salt Lake City, UT 84121, USA
| | - Rolando Maddela
- USANA Health Science, Inc., 3838 Parkway Blvd, Salt Lake City, UT 84121, USA
| |
Collapse
|
8
|
Wang Z, Martellucci S, Van Enoo A, Austin D, Gelber C, Campana WM. α1-Antitrypsin derived SP16 peptide demonstrates efficacy in rodent models of acute and neuropathic pain. FASEB J 2022; 36:e22093. [PMID: 34888951 PMCID: PMC8669735 DOI: 10.1096/fj.202101031rr] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 11/02/2021] [Accepted: 11/23/2021] [Indexed: 01/03/2023]
Abstract
SP16 is an innovative peptide derived from the carboxyl-terminus of α1-Antitrypsin (AAT), corresponding to residues 364-380, and contains recognition sequences for the low-density lipoprotein receptor-related protein-1 (LRP1). LRP1 is an endocytic and cell-signaling receptor that regulates inflammation. Deletion of Lrp1 in Schwann cells increases neuropathic pain; however, the role of LRP1 activation in nociceptive and neuropathic pain regulation remains unknown. Herein, we show that SP16 is bioactive in sensory neurons in vitro. Neurite length and regenerative gene expression were increased by SP16. In PC12 cells, SP16 activated Akt and ERK1/2 cell-signaling in an LRP1-dependent manner. When formalin was injected into mouse hind paws, to model inflammatory pain, SP16 dose-dependently attenuated nociceptive pain behaviors in the early and late phases. In a second model of acute pain using capsaicin, SP16 significantly reduced paw licking in both male and female mice (p < .01) similarly to enzymatically inactive tissue plasminogen activator, a known LRP1 interactor. SP16 also prevented development of tactile allodynia after partial nerve ligation and this response was sustained for nine days (p < .01). Immunoblot analysis of the injured nerve revealed decreased CD11b (p < .01) and Toll-like receptor-4 (p < .005). In injured dorsal root ganglia SP16 reduced CD11b+ cells (p < .05) and GFAP (p < .005), indicating that inflammatory cell recruitment and satellite cell activation were inhibited. In conclusion, administration of SP16 blocked pain-related responses in three distinct pain models, suggesting efficacy against acute nociceptive, inflammatory, and neuropathic pain. SP16 also attenuated innate immunity in the PNS. These studies identify SP16 as a potentially effective treatment for pain.
Collapse
Affiliation(s)
- Zixuan Wang
- Department of Anesthesiology, School of Medicine, University of California, San Diego, La Jolla CA, 92093-0629 USA
| | - Stefano Martellucci
- Department of Anesthesiology, School of Medicine, University of California, San Diego, La Jolla CA, 92093-0629 USA
| | - Alicia Van Enoo
- Department of Anesthesiology, School of Medicine, University of California, San Diego, La Jolla CA, 92093-0629 USA;,Program in Neurosciences, University of California, San Diego, La Jolla CA 92093, USA
| | | | | | - Wendy M. Campana
- Department of Anesthesiology, School of Medicine, University of California, San Diego, La Jolla CA, 92093-0629 USA;,Program in Neurosciences, University of California, San Diego, La Jolla CA 92093, USA;,San Diego Veterans Administration Health Care System, CA, 92161, USA
| |
Collapse
|