1
|
De Wilt L, Sobocki BK, Jansen G, Tabeian H, de Jong S, Peters GJ, Kruyt F. Mechanisms underlying reversed TRAIL sensitivity in acquired bortezomib-resistant non-small cell lung cancer cells. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2024; 7:12. [PMID: 38835345 PMCID: PMC11149110 DOI: 10.20517/cdr.2024.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/26/2024] [Accepted: 03/29/2024] [Indexed: 06/06/2024]
Abstract
Aim: The therapeutic targeting of the tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) death receptors in cancer, including non-small cell lung cancer (NSCLC), is a widely studied approach for tumor selective apoptotic cell death therapy. However, apoptosis resistance is often encountered. The main aim of this study was to investigate the apoptotic mechanism underlying TRAIL sensitivity in three bortezomib (BTZ)-resistant NSCLC variants, combining induction of both the intrinsic and extrinsic pathways. Methods: Sensitivity to TRAIL in BTZ-resistant variants was determined using a tetrazolium (MTT) and a clonogenic assay. A RT-qPCR profiling mRNA array was used to determine apoptosis pathway-specific gene expression. The expression of these proteins was determined through ELISA assays and western Blotting, while apoptosis (sub-G1) and cytokine expression were determined using flow cytometry. Apoptotic genes were silenced by specific siRNAs. Lipid rafts were isolated with fractional ultracentrifugation. Results: A549BTZR (BTZ-resistant) cells were sensitive to TRAIL in contrast to parental A549 cells, which are resistant to TRAIL. TRAIL-sensitive H460 cells remained equally sensitive for TRAIL as H460BTZR. In A549BTZR cells, we identified an increased mRNA expression of TNFRSF11B [osteoprotegerin (OPG)] and caspase-1, -4 and -5 mRNAs involved in cytokine activation and immunogenic cell death. Although the OPG, interleukin-6 (IL-6), and interleukin-8 (IL-8) protein levels were markedly enhanced (122-, 103-, and 11-fold, respectively) in the A549BTZR cells, this was not sufficient to trigger TRAIL-induced apoptosis in the parental A549 cells. Regarding the extrinsic apoptotic pathway, the A549BTZR cells showed TRAIL-R1-dependent TRAIL sensitivity. The shift of TRAIL-R1 from non-lipid into lipid rafts enhanced TRAIL-induced apoptosis. In the intrinsic apoptotic pathway, a strong increase in the mRNA and protein levels of the anti-apoptotic myeloid leukemia cell differentiation protein (Mcl-1) and B-cell leukemia/lymphoma 2 (Bcl-2) was found, whereas the B-cell lymphoma-extra large (Bcl-xL) expression was reduced. However, the stable overexpression of Bcl-xL in the A549BTZR cells did not reverse the TRAIL sensitivity in the A549BTZR cells, but silencing of the BH3 Interacting Domain Death Agonist (BID) protein demonstrated the importance of the intrinsic apoptotic pathway, regardless of Bcl-xL. Conclusion: In summary, increased sensitivity to TRAIL-R1 seems predominantly related to the relocalization into lipid rafts and increased extrinsic and intrinsic apoptotic pathways.
Collapse
Affiliation(s)
- Leonie De Wilt
- Department of Medical Oncology, Amsterdam University Medical Centers, Location VUMC, Vrije Universiteit Amsterdam, Amsterdam 1007MB, the Netherlands
- Authors contributed equally
| | - Bartosz Kamil Sobocki
- Department of Biochemistry, Medical University of Gdańsk, Gdańsk 80-210, Poland
- Authors contributed equally
| | - Gerrit Jansen
- Department of Rheumatology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, the Netherlands
| | - Hessan Tabeian
- Department of Medical Oncology, Amsterdam University Medical Centers, Location VUMC, Vrije Universiteit Amsterdam, Amsterdam 1007MB, the Netherlands
| | - Steven de Jong
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen 9713 GZ, the Netherlands
| | - Godefridus J. Peters
- Department of Medical Oncology, Amsterdam University Medical Centers, Location VUMC, Vrije Universiteit Amsterdam, Amsterdam 1007MB, the Netherlands
- Department of Biochemistry, Medical University of Gdańsk, Gdańsk 80-210, Poland
| | - Frank Kruyt
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen 9713 GZ, the Netherlands
| |
Collapse
|
2
|
Qu X, Wang X, Liu B, Chen M, Ning J, Liu H, Liu G, Xu X, Zhang X, Yu K, Xu H, Lu X, Wang C. Potential roles of IFI44 genes in high resistance to Vibrio in hybrids of Argopecten scallops. FISH & SHELLFISH IMMUNOLOGY 2023; 135:108702. [PMID: 36948367 DOI: 10.1016/j.fsi.2023.108702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/13/2023] [Accepted: 03/18/2023] [Indexed: 06/18/2023]
Abstract
Vibrio bacteria are often fatal to aquatic organisms and selection of Vibrio-resistant strains is warranted for aquaculture animals. In this study, we found that hybrids between bay scallops and Peruvian scallops exhibited significantly higher resistance to Vibrio challenge, but little is available on its mechanism. Interferon induced protein 44 (IFI44), a member of the type I interferon (IFN) family, plays an important role in the IFN immune response in invertebrates, which may also participate in the resistance to Vibrio in scallops. To explore the roles of IFI44 genes in the resistance to Vibrio, they were identified and characterized in the bay scallop (designated as AiIFI44), the Peruvian scallop (designated as ApIFI44), and their reciprocal hybrids (designated as AipIFI44 and ApiIFI44, respectively). Their open reading frame (ORF) sequences were all 1434 bp, encoding 477 amino acids, but with large variations among the four genes. The AipIFI44 and ApiIFI44 exhibited higher similarity with ApIFI44 than with AiIFI44. All four genes have a TLDc structural domain with significant variations in sequences among them. Predicted differences in conformation and posttranslational modifications may lead to altered protein activity. We further demonstrated that the AiIFI44, AipIFI44 and ApiIFI44 expressed in all the tested tissues, with the highest expression in the gills and hepatopancreas. In response to Vibrio anguillarum challenge, the profile of mRNA expression of IFI44 gene differed among the bay scallops and the two hybrids. In the bay scallops, it increased at 6 h but dramatically decreased after 12-48 h. However, the mRNA expression of both AipIFI44 and ApiIFI44 decreased at 6 h but continuously increased thereafter and reached the highest value at 48 h. The results in the present study suggest the immune responds of IFI44 in scallops and it may be related to the higher resistance to Vibrio bacterial in hybrids.
Collapse
Affiliation(s)
- Xiaoxu Qu
- College of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong, 266109, China
| | - Xia Wang
- College of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong, 266109, China
| | - Bo Liu
- College of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong, 266109, China
| | - Min Chen
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China
| | - Junhao Ning
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China
| | - Haijun Liu
- Yantai Spring-Sea AquaSeed, Co., Ltd., Yantai, 264006, China
| | - Guilong Liu
- Yantai Spring-Sea AquaSeed, Co., Ltd., Yantai, 264006, China
| | - Xin Xu
- Yantai Spring-Sea AquaSeed, Co., Ltd., Yantai, 264006, China
| | - Xiaotong Zhang
- College of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong, 266109, China
| | - Kai Yu
- College of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong, 266109, China
| | - He Xu
- Jiangsu Baoyuan Biotechnology Co., Ltd., Lianyungang, 222144, China; Jiangsu Haitai MariTech Co., Ltd., Lianyungang, 222144, China
| | - Xia Lu
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China.
| | - Chunde Wang
- College of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong, 266109, China; Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China.
| |
Collapse
|
3
|
Agraval H, Crue T, Schaunaman N, Numata M, Day BJ, Chu HW. Electronic Cigarette Exposure Increases the Severity of Influenza a Virus Infection via TRAIL Dysregulation in Human Precision-Cut Lung Slices. Int J Mol Sci 2023; 24:ijms24054295. [PMID: 36901724 PMCID: PMC10002047 DOI: 10.3390/ijms24054295] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/09/2023] [Accepted: 02/19/2023] [Indexed: 02/24/2023] Open
Abstract
The use of electronic nicotine dispensing systems (ENDS), also known as electronic cigarettes (ECs), is common among adolescents and young adults with limited knowledge about the detrimental effects on lung health such as respiratory viral infections and underlying mechanisms. Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), a protein of the TNF family involved in cell apoptosis, is upregulated in COPD patients and during influenza A virus (IAV) infections, but its role in viral infection during EC exposures remains unclear. This study was aimed to investigate the effect of ECs on viral infection and TRAIL release in a human lung precision-cut lung slices (PCLS) model, and the role of TRAIL in regulating IAV infection. PCLS prepared from lungs of nonsmoker healthy human donors were exposed to EC juice (E-juice) and IAV for up to 3 days during which viral load, TRAIL, lactate dehydrogenase (LDH), and TNF-α in the tissue and supernatants were determined. TRAIL neutralizing antibody and recombinant TRAIL were utilized to determine the contribution of TRAIL to viral infection during EC exposures. E-juice increased viral load, TRAIL, TNF-α release and cytotoxicity in IAV-infected PCLS. TRAIL neutralizing antibody increased tissue viral load but reduced viral release into supernatants. Conversely, recombinant TRAIL decreased tissue viral load but increased viral release into supernatants. Further, recombinant TRAIL enhanced the expression of interferon-β and interferon-λ induced by E-juice exposure in IAV-infected PCLS. Our results suggest that EC exposure in human distal lungs amplifies viral infection and TRAIL release, and that TRAIL may serve as a mechanism to regulate viral infection. Appropriate levels of TRAIL may be important to control IAV infection in EC users.
Collapse
Affiliation(s)
- Hina Agraval
- Department of Medicine, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA
| | - Taylor Crue
- School of Medicine, University of Colorado, 12700 E 19th Ave, Aurora, CO 80045, USA
| | - Niccolette Schaunaman
- Department of Medicine, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA
| | - Mari Numata
- Department of Medicine, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA
| | - Brian J. Day
- Department of Medicine, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA
| | - Hong Wei Chu
- Department of Medicine, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA
- Correspondence: ; Tel.: +1-303-398-1689
| |
Collapse
|
4
|
Holmgren C, Sunström Thörnberg E, Granqvist V, Larsson C. Induction of Breast Cancer Cell Apoptosis by TRAIL and Smac Mimetics: Involvement of RIP1 and cFLIP. Curr Issues Mol Biol 2022; 44:4803-4821. [PMID: 36286042 PMCID: PMC9600666 DOI: 10.3390/cimb44100327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/21/2022] [Accepted: 09/28/2022] [Indexed: 11/26/2022] Open
Abstract
Smac mimetics are a group of compounds able to facilitate cell death in cancer cells. TNF-related apoptosis-inducing ligand (TRAIL) is a death receptor ligand currently explored in combination with Smac mimetics. The molecular mechanisms determining if the combination treatment results in apoptosis are however not fully understood. In this study, we aimed to shed light on these mechanisms in breast cancer cells. Three breast cancer cell lines, MDA-MB-468, CAMA-1 and MCF-7, were used to evaluate the effects of Smac mimetic LCL-161 and TRAIL using cell death assays and Western blot. The combination treatment induces apoptosis and caspase-8 cleavage in MDA-MB-468 and CAMA-1 but not in MCF-7 cells and downregulation of caspase-8 blocked apoptosis. Downregulation, but not kinase inhibition, of receptor-interacting protein 1 (RIP1) suppressed apoptosis in CAMA-1. Apoptosis is preceded by association of RIP1 with caspase-8. Downregulating cellular FLICE-like inhibitory protein (c-FLIP) resulted in increased caspase cleavage and some induction of apoptosis by TRAIL and LCL-161 in MCF-7. In CAMA-1, c-FLIP depletion potentiated TRAIL-induced caspase cleavage and LCL-161 did not increase it further. Our results lend further support to a model where LCL-161 enables the formation of a complex including RIP1 and caspase-8 and circumvents c-FLIP-mediated inhibition of caspase activation.
Collapse
|
5
|
Granqvist V, Holmgren C, Larsson C. The combination of TRAIL and the Smac mimetic LCL-161 induces an irreversible phenotypic change of MCF-7 breast cancer cells. Exp Mol Pathol 2022; 125:104739. [PMID: 35007560 DOI: 10.1016/j.yexmp.2021.104739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 11/22/2021] [Accepted: 12/28/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Breast cancer is the most common malignancy affecting women. Although the prognosis generally is good, a substantial number of patients still suffer from relapse, emphasizing the need for novel treatments. Smac mimetics were developed to facilitate cell death by blocking inhibitor of apoptosis proteins (IAPs). It has been suggested that TNF-related apoptosis inducing ligand (TRAIL) can be used together with Smac mimetics to induce cancer cell death. METHODS Cell viability was studied with Trypan blue staining and Annexin V assay, siRNA was used to downregulate specific proteins, protein levels were estimated with Western blot, and mRNA levels were analyzed with qPCR, microarray and RNA-seq. For global expression, groups were compared with principal component analysis and the limma package in R. Gene enrichment was analyzed with Fisher's test. For other experiments, significance of difference was tested by one-way ANOVA, followed by Tukey's HSD test. RESULTS The combination of Smac mimetic LCL-161 and TRAIL induces an irreversible change in phenotype, but not cell death, of luminal MCF-7 breast cancer cells. The cells become small and circular and dissociate from each other and the effect could not be reversed by returning the cells to regular growth medium. The morphology change could be prevented by caspase inhibition using z-VAD-FMK and downregulation of caspase-8. Caspase-7 is also indicated to be of importance since downregulation of this caspase resulted in fewer morphologically changed cells. Enrichment analyses of changes in global gene expression demonstrated that genes associated with estrogen receptor (ER) signaling are downregulated, whereas nuclear factor kappa B- (NF-κB) and interferon- (IFN) driven genes are upregulated in altered cells. However, inhibition of these pathways did not influence the change in morphology. Induction of IFN-induced genes were potentiated but NF-ĸB-driven genes were slightly suppressed by caspase inhibition. CONCLUSIONS The results demonstrate that LCL-161 and TRAIL can irreversibly alter the MCF-7 breast cancer cell phenotype. However, the changes in morphology and global gene expression are mediated via separate pathways.
Collapse
Affiliation(s)
- Victoria Granqvist
- Lund University, Translational Cancer Research, Medicon Village, Lund, Sweden
| | - Christian Holmgren
- Lund University, Translational Cancer Research, Medicon Village, Lund, Sweden
| | - Christer Larsson
- Lund University, Translational Cancer Research, Medicon Village, Lund, Sweden.
| |
Collapse
|
6
|
Tamura Y, Tsutsumi S, Miyazono K, Koinuma D. PolyI:C attenuates transforming growth factor-β signaling to induce cytostasis of surrounding cells by secreted factors in triple-negative breast cancer. Cancer Sci 2021; 113:940-949. [PMID: 34897916 PMCID: PMC8898727 DOI: 10.1111/cas.15241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 12/04/2021] [Accepted: 12/07/2021] [Indexed: 12/11/2022] Open
Abstract
The activation of RIG‐I‐like receptor (RLR) signaling in cancer cells is widely recognized as a critical cancer therapy method. The expected mechanism of RLR ligand‐mediated cancer therapy involves the promotion of cancer cell death and strong induction of interferon (IFN)‐β that affects the tumor microenvironment. We have recently shown that activation of RLR signaling in triple‐negative breast cancer cells (TNBC) attenuates transforming growth factor‐β (TGF‐β) signaling, which partly contributes to the promotion of cancer cell pyroptosis. However, the consequences of suppression of TGF‐β signaling by RLR ligands with respect to IFN‐β‐mediated tumor suppression are not well characterized. This study showed that transfection of a typical RLR ligand polyI:C in cancer cells produces significant levels of IFN‐β, which inhibits the growth of the surrounding cancer cells. In addition, IFN‐β‐induced cell cycle arrest in surrounding cancer cells was inhibited by the expression of constitutively active Smad3. Constitutively active Smad3 suppresses IFN‐β expression through the alleviation of IFN regulatory factor 3 binding to the canonical target genes, as suggested by ChIP sequencing analysis. Based on these findings, a new facet of the protumorigenic function of TGF‐β that suppresses IFN‐β expression is suggested when RLR‐mediated cancer treatment is used in TNBC.
Collapse
Affiliation(s)
- Yusuke Tamura
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shuichi Tsutsumi
- Genome Science Division, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Kohei Miyazono
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Daizo Koinuma
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|