1
|
Tang MH, Ligthart I, Varga S, Lebeer S, van Overveld FJ, Rijkers GT. Mutual Interactions Between Microbiota and the Human Immune System During the First 1000 Days of Life. BIOLOGY 2025; 14:299. [PMID: 40136555 PMCID: PMC11940030 DOI: 10.3390/biology14030299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 02/25/2025] [Accepted: 03/14/2025] [Indexed: 03/27/2025]
Abstract
The development of the human immune system starts during the fetal period in a largely, but probably not completely, sterile environment. During and after birth, the immune system is exposed to an increasingly complex microbiota. The first microbiota encountered during passage through the birth canal colonize the infant gut and induce the tolerance of the immune system. Transplacentally derived maternal IgG as well as IgA from breast milk protect the infant from infections during the first 100 days, during which the immune system further develops and immunological memory is formed. The Weaning and introduction of solid food expose the immune system to novel (food) antigens and allow for other microbiota to colonize. The cells and molecules involved in the mutual and intricate interactions between microbiota and the developing immune system are now beginning to be recognized. These include bacterial components such as polysaccharide A from Bacteroides fragilis, as well as bacterial metabolites such as the short-chain fatty acid butyrate, indole-3-aldehyde, and indole-3-propionic acid. All these, and probably more, bacterial metabolites have specific immunoregulatory functions which shape the development of the human immune system during the first 1000 days of life.
Collapse
Affiliation(s)
- Muy Heang Tang
- Department of Science and Engineering, University College Roosevelt, 4331 CB Middelburg, The Netherlands; (M.H.T.); (I.L.); (S.V.); (F.J.v.O.)
| | - Ishbel Ligthart
- Department of Science and Engineering, University College Roosevelt, 4331 CB Middelburg, The Netherlands; (M.H.T.); (I.L.); (S.V.); (F.J.v.O.)
| | - Samuel Varga
- Department of Science and Engineering, University College Roosevelt, 4331 CB Middelburg, The Netherlands; (M.H.T.); (I.L.); (S.V.); (F.J.v.O.)
| | - Sarah Lebeer
- Lab of Applied Microbiology and Biotechnology, Department of Bioscience Engineering, University of Antwerp, 2020 Antwerpen, Belgium;
| | - Frans J. van Overveld
- Department of Science and Engineering, University College Roosevelt, 4331 CB Middelburg, The Netherlands; (M.H.T.); (I.L.); (S.V.); (F.J.v.O.)
| | - Ger T. Rijkers
- Department of Science and Engineering, University College Roosevelt, 4331 CB Middelburg, The Netherlands; (M.H.T.); (I.L.); (S.V.); (F.J.v.O.)
| |
Collapse
|
2
|
Tarracchini C, Milani C, Lugli GA, Mancabelli L, Turroni F, van Sinderen D, Ventura M. The infant gut microbiota as the cornerstone for future gastrointestinal health. ADVANCES IN APPLIED MICROBIOLOGY 2024; 126:93-119. [PMID: 38637108 DOI: 10.1016/bs.aambs.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
The early postnatal period represents a critical window of time for the establishment and maturation of the human gut microbiota. The gut microbiota undergoes dramatic developmental changes during the first year of life, being influenced by a variety of external factors, with diet being a major player. Indeed, the introduction of complementary feeding provides novel nutritive substrates and triggers a shift from milk-adapted gut microbiota toward an adult-like bacterial composition, which is characterized by an enhancement in diversity and proportions of fiber-degrading bacterial genera like Ruminococcus, Prevotella, Eubacterium, and Bacteroides genera. Inadequate gut microbiota development in early life is frequently associated with concomitant and future adverse health conditions. Thus, understanding the processes that govern initial colonization and establishment of microbes in the gastrointestinal tract is of great importance. This review summarizes the actual understanding of the assembly and development of the microbial community associated with the infant gut, emphasizing the importance of mother-to-infant vertical transmission events as a fundamental arrival route for the first colonizers.
Collapse
Affiliation(s)
- Chiara Tarracchini
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Christian Milani
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy; Interdepartmental Research Centre "Microbiome Research Hub", University of Parma, Parma, Italy
| | - Gabriele Andrea Lugli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy; Interdepartmental Research Centre "Microbiome Research Hub", University of Parma, Parma, Italy
| | - Leonardo Mancabelli
- Interdepartmental Research Centre "Microbiome Research Hub", University of Parma, Parma, Italy; Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Francesca Turroni
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy; Interdepartmental Research Centre "Microbiome Research Hub", University of Parma, Parma, Italy
| | - Douwe van Sinderen
- APC Microbiome Institute and School of Microbiology, Bioscience Institute, National University of Ireland, Cork, Ireland
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy; Interdepartmental Research Centre "Microbiome Research Hub", University of Parma, Parma, Italy.
| |
Collapse
|
3
|
Klinhom S, Sriwichaiin S, Kerdphoo S, Khonmee J, Chattipakorn N, Chattipakorn SC, Thitaram C. Characteristics of gut microbiota in captive Asian elephants (Elephas maximus) from infant to elderly. Sci Rep 2023; 13:23027. [PMID: 38155244 PMCID: PMC10754835 DOI: 10.1038/s41598-023-50429-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 12/19/2023] [Indexed: 12/30/2023] Open
Abstract
Gut microbiota play an important role in the health and disease of Asian elephants, however, its characteristics at each stage of life have not been thoroughly investigated in maintaining and regulating health of elephants. This study, therefore, aimed to characterize the profiles of the gut microbiota of captive Asian elephants from infants to the elderly. Gut microbiota were identified by 16S rRNA sequencing from the feces of captive Asian elephants with varying age groups, including infant calves, suckling calves, weaned calves, subadult and adult elephants, and geriatric elephants. The diversity of the gut microbiota was lowest in infants, stable during adulthood, and slightly decreased in the geriatric period. The gut microbiota of the infant elephants was dominated by milk-fermenting taxa including genus Bifidobacterium of family Bifidobacteriaceae together with genus Akkermansia. The fiber-fermenting taxa such as Lachnospiraceae_NK3A20_group were found to be increased in suckling elephants in differential abundance analysis by Analysis of Compositions of Microbiomes with Bias Correction (ANCOM-BC). The gut microbiota profiles after weaning until the adult period has been uniform as indicated by no significant differences in beta diversity between groups. However, the composition of the gut microbiota was found to change again in geriatric elephants. Understanding of the composition of the gut microbiota of captive Asian elephants at various life stages could be beneficial for promoting good health throughout their lifespan, as well as ensuring the welfare of captive elephants.
Collapse
Affiliation(s)
- Sarisa Klinhom
- Center of Elephant and Wildlife Health, Animal Hospital, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, 50100, Thailand
| | - Sirawit Sriwichaiin
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Sasiwan Kerdphoo
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Jaruwan Khonmee
- Center of Elephant and Wildlife Health, Animal Hospital, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, 50100, Thailand
- Department of Veterinary Bioscience and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, 50100, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Siriporn C Chattipakorn
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, 50200, Thailand.
| | - Chatchote Thitaram
- Center of Elephant and Wildlife Health, Animal Hospital, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, 50100, Thailand.
- Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, 50100, Thailand.
- Elephant, Wildlife and Companion Animals Research Group, Chiang Mai University, Chiang Mai, 50100, Thailand.
| |
Collapse
|
4
|
Tarracchini C, Alessandri G, Fontana F, Rizzo SM, Lugli GA, Bianchi MG, Mancabelli L, Longhi G, Argentini C, Vergna LM, Anzalone R, Viappiani A, Turroni F, Taurino G, Chiu M, Arboleya S, Gueimonde M, Bussolati O, van Sinderen D, Milani C, Ventura M. Genetic strategies for sex-biased persistence of gut microbes across human life. Nat Commun 2023; 14:4220. [PMID: 37452041 PMCID: PMC10349097 DOI: 10.1038/s41467-023-39931-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 06/30/2023] [Indexed: 07/18/2023] Open
Abstract
Although compositional variation in the gut microbiome during human development has been extensively investigated, strain-resolved dynamic changes remain to be fully uncovered. In the current study, shotgun metagenomic sequencing data of 12,415 fecal microbiomes from healthy individuals are employed for strain-level tracking of gut microbiota members to elucidate its evolving biodiversity across the human life span. This detailed longitudinal meta-analysis reveals host sex-related persistence of strains belonging to common, maternally-inherited species, such as Bifidobacterium bifidum and Bifidobacterium longum subsp. longum. Comparative genome analyses, coupled with experiments including intimate interaction between microbes and human intestinal cells, show that specific bacterial glycosyl hydrolases related to host-glycan metabolism may contribute to more efficient colonization in females compared to males. These findings point to an intriguing ancient sex-specific host-microbe coevolution driving the selective persistence in women of key microbial taxa that may be vertically passed on to the next generation.
Collapse
Affiliation(s)
- Chiara Tarracchini
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Giulia Alessandri
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Federico Fontana
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
- GenProbio srl, Parma, Italy
| | - Sonia Mirjam Rizzo
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Gabriele Andrea Lugli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Massimiliano Giovanni Bianchi
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Interdepartmental Research Centre "Microbiome Research Hub", University of Parma, Parma, Italy
| | - Leonardo Mancabelli
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Interdepartmental Research Centre "Microbiome Research Hub", University of Parma, Parma, Italy
| | - Giulia Longhi
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Chiara Argentini
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Laura Maria Vergna
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | | | | | - Francesca Turroni
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
- Interdepartmental Research Centre "Microbiome Research Hub", University of Parma, Parma, Italy
| | - Giuseppe Taurino
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Interdepartmental Research Centre "Microbiome Research Hub", University of Parma, Parma, Italy
| | - Martina Chiu
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Silvia Arboleya
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias, CSIC, 33300, Villaviciosa, Spain
| | - Miguel Gueimonde
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias, CSIC, 33300, Villaviciosa, Spain
| | - Ovidio Bussolati
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Interdepartmental Research Centre "Microbiome Research Hub", University of Parma, Parma, Italy
| | - Douwe van Sinderen
- APC Microbiome Institute and School of Microbiology, Bioscience Institute, National University of Ireland, T12YT20, Cork, Ireland
| | - Christian Milani
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy.
- Interdepartmental Research Centre "Microbiome Research Hub", University of Parma, Parma, Italy.
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy.
- Interdepartmental Research Centre "Microbiome Research Hub", University of Parma, Parma, Italy.
| |
Collapse
|
5
|
De Sales-Millán A, Aguirre-Garrido JF, González-Cervantes RM, Velázquez-Aragón JA. Microbiome-Gut-Mucosal-Immune-Brain Axis and Autism Spectrum Disorder (ASD): A Novel Proposal of the Role of the Gut Microbiome in ASD Aetiology. Behav Sci (Basel) 2023; 13:548. [PMID: 37503995 PMCID: PMC10376175 DOI: 10.3390/bs13070548] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/29/2023] Open
Abstract
Autism Spectrum Disorder (ASD) is a complex neurodevelopmental disorder characterised by deficits in social interaction and communication, as well as restricted and stereotyped interests. Due of the high prevalence of gastrointestinal disorders in individuals with ASD, researchers have investigated the gut microbiota as a potential contributor to its aetiology. The relationship between the microbiome, gut, and brain (microbiome-gut-brain axis) has been acknowledged as a key factor in modulating brain function and social behaviour, but its connection to the aetiology of ASD is not well understood. Recently, there has been increasing attention on the relationship between the immune system, gastrointestinal disorders and neurological issues in ASD, particularly in relation to the loss of specific species or a decrease in microbial diversity. It focuses on how gut microbiota dysbiosis can affect gut permeability, immune function and microbiota metabolites in ASD. However, a very complete study suggests that dysbiosis is a consequence of the disease and that it has practically no effect on autistic manifestations. This is a review of the relationship between the immune system, microbial diversity and the microbiome-gut-brain axis in the development of autistic symptoms severity and a proposal of a novel role of gut microbiome in ASD, where dysbiosis is a consequence of ASD-related behaviour and where dysbiosis in turn accentuates the autistic manifestations of the patients via the microbiome-gut-brain axis in a feedback circuit.
Collapse
Affiliation(s)
- Amapola De Sales-Millán
- División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana-Lerma, Lerma 52006, Estado de Mexico, Mexico
| | - José Félix Aguirre-Garrido
- Departamento de Ciencias Ambientales, Universidad Autónoma Metropolitana-Lerma, Lerma 52006, Estado de Mexico, Mexico
| | - Rina María González-Cervantes
- Departamento de Ciencias Ambientales, Universidad Autónoma Metropolitana-Lerma, Lerma 52006, Estado de Mexico, Mexico
| | | |
Collapse
|
6
|
Medeiros MM, Ingham AC, Nanque LM, Correia C, Stegger M, Andersen PS, Fisker AB, Benn CS, Lanaspa M, Silveira H, Abrantes P. Oral polio revaccination is associated with changes in gut and upper respiratory microbiomes of infants. Front Microbiol 2022; 13:1016220. [PMID: 36386704 PMCID: PMC9649904 DOI: 10.3389/fmicb.2022.1016220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/03/2022] [Indexed: 11/13/2022] Open
Abstract
After the eradication of polio infection, the plan is to phase-out the live-attenuated oral polio vaccine (OPV). Considering the protective non-specific effects (NSE) of OPV on unrelated pathogens, the withdrawal may impact child health negatively. Within a cluster-randomized trial, we carried out 16S rRNA deep sequencing analysis of fecal and nasopharyngeal microbial content of Bissau–Guinean infants aged 4–8 months, before and after 2 months of OPV revaccination (revaccinated infants = 47) vs. no OPV revaccination (control infants = 47). The aim was to address changes in the gut and upper respiratory bacterial microbiotas due to revaccination. Alpha-diversity for both microbiotas increased similarly over time in OPV-revaccinated infants and controls, whereas greater changes over time in the bacterial composition of gut (padjusted < 0.001) and upper respiratory microbiotas (padjusted = 0.018) were observed in the former. Taxonomic analysis of gut bacterial microbiota revealed a decrease over time in the median proportion of Bifidobacterium longum for all infants (25–14.3%, p = 0.0006 in OPV-revaccinated infants and 25.3–11.6%, p = 0.01 in controls), compatible with the reported weaning. Also, it showed a restricted increase in the median proportion of Prevotella_9 genus in controls (1.4–7.1%, p = 0.02), whereas in OPV revaccinated infants an increase over time in Prevotellaceae family (7.2–17.4%, p = 0.005) together with a reduction in median proportion of potentially pathogenic/opportunistic genera such as Escherichia/Shigella (5.8–3.4%, p = 0.01) were observed. Taxonomic analysis of upper respiratory bacterial microbiota revealed an increase over time in median proportions of potentially pathogenic/opportunistic genera in controls, such as Streptococcus (2.9–11.8%, p = 0.001 and Hemophilus (11.3–20.5%, p = 0.03), not observed in OPV revaccinated infants. In conclusion, OPV revaccination was associated with a healthier microbiome composition 2 months after revaccination, based on a more abundant and diversified bacterial community of Prevotellaceae and fewer pathogenic/opportunistic organisms. Further information on species-level differentiation and functional analysis of microbiome content are warranted to elucidate the impact of OPV-associated changes in bacterial microbiota on child health.
Collapse
Affiliation(s)
- Márcia Melo Medeiros
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa (UNL), Lisboa, Portugal
- *Correspondence: Márcia Melo Medeiros,
| | - Anna Cäcilia Ingham
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Line Møller Nanque
- Bandim Health Project, Bissau, Guinea-Bissau
- Bandim Health Project, Odense Patient Data Explorative Network, Institute of Clinical Research, Odense University Hospital/University of Southern Denmark, Odense, Denmark
| | | | - Marc Stegger
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Paal Skyt Andersen
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Ane Baerent Fisker
- Bandim Health Project, Bissau, Guinea-Bissau
- Bandim Health Project, Odense Patient Data Explorative Network, Institute of Clinical Research, Odense University Hospital/University of Southern Denmark, Odense, Denmark
| | - Christine Stabell Benn
- Bandim Health Project, Bissau, Guinea-Bissau
- Bandim Health Project, Odense Patient Data Explorative Network, Institute of Clinical Research, Odense University Hospital/University of Southern Denmark, Odense, Denmark
- Danish Institute for Advanced Study, University of Southern Denmark, Odense, Denmark
| | - Miguel Lanaspa
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa (UNL), Lisboa, Portugal
| | - Henrique Silveira
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa (UNL), Lisboa, Portugal
| | - Patrícia Abrantes
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa (UNL), Lisboa, Portugal
| |
Collapse
|
7
|
Tarracchini C, Fontana F, Mancabelli L, Lugli GA, Alessandri G, Turroni F, Ventura M, Milani C. Gut microbe metabolism of small molecules supports human development across the early stages of life. Front Microbiol 2022; 13:1006721. [PMID: 36177457 PMCID: PMC9512645 DOI: 10.3389/fmicb.2022.1006721] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 08/26/2022] [Indexed: 11/13/2022] Open
Abstract
From birth to adulthood, the human gut-associated microbial communities experience profound changes in their structure. However, while the taxonomical composition has been extensively explored, temporal shifts in the microbial metabolic functionalities related to the metabolism of bioactive small molecules are still largely unexplored. Here, we collected a total of 6,617 publicly available human fecal shotgun metagenomes and 42 metatranscriptomes from infants and adults to explore the dynamic changes of the microbial-derived small molecule metabolisms according to the age-related development of the human gut microbiome. Moreover, by selecting metagenomic data from 250 breastfed and 217 formula-fed infants, we also investigated how feeding types can shape the metabolic functionality of the incipient gut microbiome. From the small molecule metabolism perspective, our findings suggested that the human gut microbial communities are genetically equipped and prepared to metabolically evolve toward the adult state as early as 1 month after birth, although at the age of 4 years, it still appeared functionally underdeveloped compared to adults. Furthermore, in respect of formula-fed newborns, breastfed infants showed enrichment in microbial metabolic functions related to specific amino acids present at low concentrations in human milk, highlighting that the infant gut microbiome has specifically evolved to synthesize bioactive molecules that can complement the human breast milk composition contributing to complete nutritional supply of infant.
Collapse
Affiliation(s)
- Chiara Tarracchini
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Federico Fontana
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
- GenProbio Srl, Parma, Italy
| | - Leonardo Mancabelli
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| | - Gabriele Andrea Lugli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Giulia Alessandri
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Francesca Turroni
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
- *Correspondence: Marco Ventura,
| | - Christian Milani
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
- Christian Milani,
| |
Collapse
|
8
|
de Franchis R, Bozza L, Canale P, Chiacchio M, Cortese P, D’Avino A, De Giovanni M, Iacovo MD, D’Onofrio A, Federico A, Gasparini N, Iaccarino F, Romano G, Spadaro R, Tedesco M, Vitiello G, Antignani A, Auricchio S, Valentino V, De Filippis F, Ercolini D, Bruzzese D. The Effect of Weaning with Adult Food Typical of the Mediterranean Diet on Taste Development and Eating Habits of Children: A Randomized Trial. Nutrients 2022; 14:nu14122486. [PMID: 35745216 PMCID: PMC9227033 DOI: 10.3390/nu14122486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/06/2022] [Accepted: 06/13/2022] [Indexed: 11/16/2022] Open
Abstract
Mediterranean Diet (Med Diet) is one of the healthiest dietary patterns. We aimed to verify the effects of weaning (i.e., the introduction of solid foods in infants previously fed only with milk) using adult foods typical of Med Diet on children eating habits, and on the microbiota composition. A randomized controlled clinical trial on 394 healthy infants randomized in a 1:1 ratio in a Med Diet group weaned with fresh; seasonal and tasty foods of Med Diet and control group predominantly weaned with industrial baby foods. The primary end point was the percentage of children showing a good adherence to Med Diet at 36 months. Secondary end points were mother’s changes in adherence to Med Diet and differences in children gut microbiota. At 36 months, children showing a good adherence to Med Diet were 59.3% in the Med Diet group and 34.3% in the control group (p < 0.001). An increase in adherence to the Med Diet was observed in the mothers of the Med Diet group children (p < 0.001). At 4 years of age children in the Med Diet group had a higher gut microbial diversity and a higher abundance of beneficial taxa. A Mediterranean weaning with adult food may become a strategy for early nutritional education, to develop a healthy microbiota, to prevent inflammatory chronic diseases and to ameliorate eating habits in children and their families.
Collapse
Affiliation(s)
- Raffaella de Franchis
- Italian Federation of Maedical Paediatrics (FIMP), 80142 Naples, Italy; (L.B.); (P.C.); (M.C.); (P.C.); (A.D.); (M.D.G.); (M.D.I.); (A.D.); (A.F.); (N.G.); (F.I.); (G.R.); (R.S.); (M.T.); (G.V.)
- Correspondence:
| | - Luigi Bozza
- Italian Federation of Maedical Paediatrics (FIMP), 80142 Naples, Italy; (L.B.); (P.C.); (M.C.); (P.C.); (A.D.); (M.D.G.); (M.D.I.); (A.D.); (A.F.); (N.G.); (F.I.); (G.R.); (R.S.); (M.T.); (G.V.)
| | - Pasquale Canale
- Italian Federation of Maedical Paediatrics (FIMP), 80142 Naples, Italy; (L.B.); (P.C.); (M.C.); (P.C.); (A.D.); (M.D.G.); (M.D.I.); (A.D.); (A.F.); (N.G.); (F.I.); (G.R.); (R.S.); (M.T.); (G.V.)
| | - Maria Chiacchio
- Italian Federation of Maedical Paediatrics (FIMP), 80142 Naples, Italy; (L.B.); (P.C.); (M.C.); (P.C.); (A.D.); (M.D.G.); (M.D.I.); (A.D.); (A.F.); (N.G.); (F.I.); (G.R.); (R.S.); (M.T.); (G.V.)
| | - Paolo Cortese
- Italian Federation of Maedical Paediatrics (FIMP), 80142 Naples, Italy; (L.B.); (P.C.); (M.C.); (P.C.); (A.D.); (M.D.G.); (M.D.I.); (A.D.); (A.F.); (N.G.); (F.I.); (G.R.); (R.S.); (M.T.); (G.V.)
| | - Antonio D’Avino
- Italian Federation of Maedical Paediatrics (FIMP), 80142 Naples, Italy; (L.B.); (P.C.); (M.C.); (P.C.); (A.D.); (M.D.G.); (M.D.I.); (A.D.); (A.F.); (N.G.); (F.I.); (G.R.); (R.S.); (M.T.); (G.V.)
| | - Maria De Giovanni
- Italian Federation of Maedical Paediatrics (FIMP), 80142 Naples, Italy; (L.B.); (P.C.); (M.C.); (P.C.); (A.D.); (M.D.G.); (M.D.I.); (A.D.); (A.F.); (N.G.); (F.I.); (G.R.); (R.S.); (M.T.); (G.V.)
| | - Mirella Dello Iacovo
- Italian Federation of Maedical Paediatrics (FIMP), 80142 Naples, Italy; (L.B.); (P.C.); (M.C.); (P.C.); (A.D.); (M.D.G.); (M.D.I.); (A.D.); (A.F.); (N.G.); (F.I.); (G.R.); (R.S.); (M.T.); (G.V.)
| | - Antonietta D’Onofrio
- Italian Federation of Maedical Paediatrics (FIMP), 80142 Naples, Italy; (L.B.); (P.C.); (M.C.); (P.C.); (A.D.); (M.D.G.); (M.D.I.); (A.D.); (A.F.); (N.G.); (F.I.); (G.R.); (R.S.); (M.T.); (G.V.)
| | - Aniello Federico
- Italian Federation of Maedical Paediatrics (FIMP), 80142 Naples, Italy; (L.B.); (P.C.); (M.C.); (P.C.); (A.D.); (M.D.G.); (M.D.I.); (A.D.); (A.F.); (N.G.); (F.I.); (G.R.); (R.S.); (M.T.); (G.V.)
| | - Nicoletta Gasparini
- Italian Federation of Maedical Paediatrics (FIMP), 80142 Naples, Italy; (L.B.); (P.C.); (M.C.); (P.C.); (A.D.); (M.D.G.); (M.D.I.); (A.D.); (A.F.); (N.G.); (F.I.); (G.R.); (R.S.); (M.T.); (G.V.)
| | - Felicia Iaccarino
- Italian Federation of Maedical Paediatrics (FIMP), 80142 Naples, Italy; (L.B.); (P.C.); (M.C.); (P.C.); (A.D.); (M.D.G.); (M.D.I.); (A.D.); (A.F.); (N.G.); (F.I.); (G.R.); (R.S.); (M.T.); (G.V.)
| | - Giuseppe Romano
- Italian Federation of Maedical Paediatrics (FIMP), 80142 Naples, Italy; (L.B.); (P.C.); (M.C.); (P.C.); (A.D.); (M.D.G.); (M.D.I.); (A.D.); (A.F.); (N.G.); (F.I.); (G.R.); (R.S.); (M.T.); (G.V.)
| | - Raffaella Spadaro
- Italian Federation of Maedical Paediatrics (FIMP), 80142 Naples, Italy; (L.B.); (P.C.); (M.C.); (P.C.); (A.D.); (M.D.G.); (M.D.I.); (A.D.); (A.F.); (N.G.); (F.I.); (G.R.); (R.S.); (M.T.); (G.V.)
| | - Mariangela Tedesco
- Italian Federation of Maedical Paediatrics (FIMP), 80142 Naples, Italy; (L.B.); (P.C.); (M.C.); (P.C.); (A.D.); (M.D.G.); (M.D.I.); (A.D.); (A.F.); (N.G.); (F.I.); (G.R.); (R.S.); (M.T.); (G.V.)
| | - Giuseppe Vitiello
- Italian Federation of Maedical Paediatrics (FIMP), 80142 Naples, Italy; (L.B.); (P.C.); (M.C.); (P.C.); (A.D.); (M.D.G.); (M.D.I.); (A.D.); (A.F.); (N.G.); (F.I.); (G.R.); (R.S.); (M.T.); (G.V.)
| | - Angelo Antignani
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy;
| | - Salvatore Auricchio
- European Laboratory for the Investigation of Food-Induced Diseases, Department of Medical Translational Sciences, University of Naples Federico II, 80131 Naples, Italy;
| | - Vincenzo Valentino
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (V.V.); (F.D.F.); (D.E.)
| | - Francesca De Filippis
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (V.V.); (F.D.F.); (D.E.)
- Task Force on Microbiome Studies, University of Naples Federico II, 80100 Naples, Italy
| | - Danilo Ercolini
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (V.V.); (F.D.F.); (D.E.)
- Task Force on Microbiome Studies, University of Naples Federico II, 80100 Naples, Italy
| | - Dario Bruzzese
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy;
| |
Collapse
|
9
|
de Cuevillas B, Milagro FI, Tur JA, Gil-Campos M, de Miguel-Etayo P, Martínez JA, Navas-Carretero S. Fecal microbiota relationships with childhood obesity: A scoping comprehensive review. Obes Rev 2022; 23 Suppl 1:e13394. [PMID: 34913242 DOI: 10.1111/obr.13394] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 12/18/2022]
Abstract
Childhood obesity is a costly burden in most regions with relevant and adverse long-term health consequences in adult life. Several studies have associated excessive body weight with a specific profile of gut microbiota. Different factors related to fecal microorganism abundance seem to contribute to childhood obesity, such as gestational weight gain, perinatal diet, antibiotic administration to the mother and/or child, birth delivery, and feeding patterns, among others. This review reports and discusses diverse factors that affect the infant intestinal microbiota with putative or possible implications on the increase of the obesity childhood rates as well as microbiota shifts associated with excessive body weight in children.
Collapse
Affiliation(s)
- Begoña de Cuevillas
- Center for Nutrition Research, Department of Nutrition, Food Sciences and Physiology. School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
| | - Fermín I Milagro
- Center for Nutrition Research, Department of Nutrition, Food Sciences and Physiology. School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
- IdiSNA, Health Research Institute of Navarra, Pamplona, Spain
| | - Josep A Tur
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
- Research Group on Community Nutrition and Oxidative Stress, University of Balearic Islands-IUNICS & IDISBA, Palma de Mallorca, Spain
| | - Mercedes Gil-Campos
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
- Metabolism and Investigation Unit, Reina Sofia University Hospital, Maimónides Institute of Biomedicine Research of Córdoba (IMIBIC), University of Córdoba, Córdoba, Spain
| | - Pilar de Miguel-Etayo
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
- Growth, Exercise, Nutrition and Development (GENUD) Research Group, Instituto Agroalimentario de Aragón (IA2), Universidad de Zaragoza. Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, Spain
| | - J Alfredo Martínez
- Center for Nutrition Research, Department of Nutrition, Food Sciences and Physiology. School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
- IdiSNA, Health Research Institute of Navarra, Pamplona, Spain
- Precision Nutrition Program, Research Institute on Food and Health Sciences IMDEA Food. CSIC-UAM, Madrid, Spain
| | - Santiago Navas-Carretero
- Center for Nutrition Research, Department of Nutrition, Food Sciences and Physiology. School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
- IdiSNA, Health Research Institute of Navarra, Pamplona, Spain
| |
Collapse
|
10
|
Homann CM, Rossel CAJ, Dizzell S, Bervoets L, Simioni J, Li J, Gunn E, Surette MG, de Souza RJ, Mommers M, Hutton EK, Morrison KM, Penders J, van Best N, Stearns JC. Infants' First Solid Foods: Impact on Gut Microbiota Development in Two Intercontinental Cohorts. Nutrients 2021; 13:2639. [PMID: 34444798 PMCID: PMC8400337 DOI: 10.3390/nu13082639] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 12/11/2022] Open
Abstract
The introduction of solid foods is an important dietary event during infancy that causes profound shifts in the gut microbial composition towards a more adult-like state. Infant gut bacterial dynamics, especially in relation to nutritional intake remain understudied. Over 2 weeks surrounding the time of solid food introduction, the day-to-day dynamics in the gut microbiomes of 24 healthy, full-term infants from the Baby, Food & Mi and LucKi-Gut cohort studies were investigated in relation to their dietary intake. Microbial richness (observed species) and diversity (Shannon index) increased over time and were positively associated with dietary diversity. Microbial community structure (Bray-Curtis dissimilarity) was determined predominantly by individual and age (days). The extent of change in community structure in the introductory period was negatively associated with daily dietary diversity. High daily dietary diversity stabilized the gut microbiome. Bifidobacterial taxa were positively associated, while taxa of the genus Veillonella, that may be the same species, were negatively associated with dietary diversity in both cohorts. This study furthers our understanding of the impact of solid food introduction on gut microbiome development in early life. Dietary diversity seems to have the greatest impact on the gut microbiome as solids are introduced.
Collapse
Affiliation(s)
- Chiara-Maria Homann
- Department of Medicine, McMaster University, Hamilton, ON L8N 3Z5, Canada; (C.-M.H.); (S.D.); (M.G.S.)
- Department of Pediatrics, McMaster University, Hamilton, ON L8S 4K1, Canada; (E.G.); (K.M.M.)
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Connor A. J. Rossel
- Department of Medical Microbiology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, 6229 ER Maastricht, The Netherlands; (C.A.J.R.); (L.B.); (J.P.)
| | - Sara Dizzell
- Department of Medicine, McMaster University, Hamilton, ON L8N 3Z5, Canada; (C.-M.H.); (S.D.); (M.G.S.)
| | - Liene Bervoets
- Department of Medical Microbiology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, 6229 ER Maastricht, The Netherlands; (C.A.J.R.); (L.B.); (J.P.)
| | - Julia Simioni
- Department of Obstetrics & Gynecology, McMaster University, Hamilton, ON L8S 4K1, Canada; (J.S.); (J.L.); (E.K.H.)
| | - Jenifer Li
- Department of Obstetrics & Gynecology, McMaster University, Hamilton, ON L8S 4K1, Canada; (J.S.); (J.L.); (E.K.H.)
- McMaster Midwifery Research Centre, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Elizabeth Gunn
- Department of Pediatrics, McMaster University, Hamilton, ON L8S 4K1, Canada; (E.G.); (K.M.M.)
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Michael G. Surette
- Department of Medicine, McMaster University, Hamilton, ON L8N 3Z5, Canada; (C.-M.H.); (S.D.); (M.G.S.)
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Russell J. de Souza
- Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, ON L8S 4K1, Canada;
- Population Health Research Institute, Hamilton Health Sciences Corporation, Hamilton, ON L8L 2X2, Canada
| | - Monique Mommers
- Department of Epidemiology, Care and Public Health Research Institute (CAPHRI), Maastricht University, 6229 ER Maastricht, The Netherlands;
| | - Eileen K. Hutton
- Department of Obstetrics & Gynecology, McMaster University, Hamilton, ON L8S 4K1, Canada; (J.S.); (J.L.); (E.K.H.)
- McMaster Midwifery Research Centre, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Katherine M. Morrison
- Department of Pediatrics, McMaster University, Hamilton, ON L8S 4K1, Canada; (E.G.); (K.M.M.)
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - John Penders
- Department of Medical Microbiology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, 6229 ER Maastricht, The Netherlands; (C.A.J.R.); (L.B.); (J.P.)
- InVivo Planetary Health: An Affiliate of the World Universities Network (WUN), West New York, NJ 10704, USA
- Department of Medical Microbiology, Care and Public Health Research Institute (CAPHRI), Maastricht University Medical Centre, 6229 ER Maastricht, The Netherlands
| | - Niels van Best
- Department of Medical Microbiology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, 6229 ER Maastricht, The Netherlands; (C.A.J.R.); (L.B.); (J.P.)
- InVivo Planetary Health: An Affiliate of the World Universities Network (WUN), West New York, NJ 10704, USA
- Institute of Medical Microbiology, RWTH University Hospital Aachen, RWTH University, 52074 Aachen, Germany
| | - Jennifer C. Stearns
- Department of Medicine, McMaster University, Hamilton, ON L8N 3Z5, Canada; (C.-M.H.); (S.D.); (M.G.S.)
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|