1
|
Gulmez Karaca K, Bahtiyar S, van Dongen L, Wolf OT, Hermans EJ, Henckens MJAG, Roozendaal B. Posttraining noradrenergic stimulation maintains hippocampal engram reactivation and episodic-like specificity of remote memory. Neuropsychopharmacology 2025:10.1038/s41386-025-02122-2. [PMID: 40341755 DOI: 10.1038/s41386-025-02122-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 04/08/2025] [Accepted: 04/28/2025] [Indexed: 05/11/2025]
Abstract
Recent findings indicate that noradrenergic arousal maintains long-term episodic-like specificity of memory. However, the neural mechanism of how norepinephrine can alter the temporal dynamics of systems consolidation to maintain hippocampus dependency of remote memory is currently unknown. Memories are stored within ensembles of neurons that become activated during learning and display strengthened mutual plasticity and connectivity. This strengthened connectivity is believed to guide the coordinated reactivation of these neurons upon subsequent memory recall. Here, we used male transgenic FosTRAP2xtdTomato mice to investigate whether the noradrenergic stimulant yohimbine administered systemically immediately after an episodic-like object-in-context training experience maintained long-term memory specificity which was joined by an enhanced reactivation of training-activated cells within the hippocampus during remote retention testing. We found that saline-treated control mice time-dependently lost their episodic-like specificity of memory, which was associated with a shift in neuronal reactivation from the dorsal hippocampus to the prelimbic cortex at a 14-day retention test. Importantly, yohimbine-treated mice maintained episodic-like specificity of remote memory and retained high neuronal reactivation within the dorsal hippocampus, without a time-dependent increase in prelimbic cortex reactivation. These findings suggest that noradrenergic arousal shortly after training maintains episodic-like specificity of remote memory by strengthening the connectivity between training-activated hippocampal cells during consolidation, and provide a cellular model of how emotional memories remain vivid and detailed.
Collapse
Affiliation(s)
- Kubra Gulmez Karaca
- Department of Medical Neuroscience, Radboud university medical center, 6500 HB, Nijmegen, The Netherlands.
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 EN, Nijmegen, The Netherlands.
- UMC Brain Center, Department of Translational Neuroscience, University Medical Center Utrecht, Utrecht, Netherlands.
| | - Sevgi Bahtiyar
- Department of Medical Neuroscience, Radboud university medical center, 6500 HB, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 EN, Nijmegen, The Netherlands
| | - Linde van Dongen
- Department of Medical Neuroscience, Radboud university medical center, 6500 HB, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 EN, Nijmegen, The Netherlands
| | - Oliver T Wolf
- Department of Cognitive Psychology, Ruhr University Bochum, D-44780, Bochum, Germany
| | - Erno J Hermans
- Department of Medical Neuroscience, Radboud university medical center, 6500 HB, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 EN, Nijmegen, The Netherlands
| | - Marloes J A G Henckens
- Department of Medical Neuroscience, Radboud university medical center, 6500 HB, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 EN, Nijmegen, The Netherlands
| | - Benno Roozendaal
- Department of Medical Neuroscience, Radboud university medical center, 6500 HB, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 EN, Nijmegen, The Netherlands
| |
Collapse
|
2
|
Bahtiyar S, Karaca KG, Henckens MJAG, Roozendaal B. Exploring stress hormone effects on memory specificity and strength in mice using the dual-event inhibitory avoidance task. Learn Mem 2025; 32:a053956. [PMID: 39824646 PMCID: PMC11801482 DOI: 10.1101/lm.053956.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 11/17/2024] [Indexed: 01/20/2025]
Abstract
Stressful and emotionally arousing experiences induce the release of noradrenergic and glucocorticoid hormones that synergistically strengthen memories but differentially regulate qualitative aspects of memory. This highlights the need for sophisticated behavioral tasks that allow for the assessment of memory quality. The dual-event inhibitory avoidance task for rats is such a behavioral task designed to evaluate both the strength and specificity of memory. The noradrenergic stimulant yohimbine given systemically immediately after the training session was found to enhance both the strength and specificity of memory, whereas the glucocorticoid corticosterone induced a generalized strengthening of memory. As mice are the preferred species for targeted gene and neural circuit manipulations, we here aimed to set up the dual-event inhibitory avoidance task for mice, and to replicate the effects of systemic yohimbine and corticosterone administration on memory strength and specificity. Whereas noninjected control mice efficiently acquired the task and selectively avoided the test context previously associated with footshock, the introduction of posttraining intraperitoneal injections induced testing order effects and substantially increased variability both within groups and across experiments, precluding a thorough investigation of stress hormone effects on memory specificity. Thus, whereas the dual-event inhibitory avoidance task can be used to test the specificity of memory in mice, our findings indicate that intraperitoneal injections impact performance. Therefore, this task is less suitable to assess stress hormone effects on memory specificity in mice.
Collapse
Affiliation(s)
- Sevgi Bahtiyar
- Department of Cognitive Neuroscience, Radboud university medical center, 6500 HB Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 EN Nijmegen, The Netherlands
| | - Kubra Gulmez Karaca
- Department of Cognitive Neuroscience, Radboud university medical center, 6500 HB Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 EN Nijmegen, The Netherlands
| | - Marloes J A G Henckens
- Department of Cognitive Neuroscience, Radboud university medical center, 6500 HB Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 EN Nijmegen, The Netherlands
| | - Benno Roozendaal
- Department of Cognitive Neuroscience, Radboud university medical center, 6500 HB Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 EN Nijmegen, The Netherlands
| |
Collapse
|
3
|
Wise TB, Templer VL, Burwell RD. Information transfer from spatial to social distance in rats: implications for the role of the posterior parietal cortex in spatial-social integration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.14.618305. [PMID: 39463928 PMCID: PMC11507766 DOI: 10.1101/2024.10.14.618305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Humans and other social animals can represent and navigate complex networks of social relationships in ways that are suggestive of representation and navigation in space. There is some evidence that cortical regions initially required for processing space have been adapted to include processing of social information. One candidate region for supporting both spatial and social information processing is the posterior parietal cortex (PPC). We examined the hypothesis that rats can transfer or generalize distance information across spatial and social domains and that this phenomenon requires the PPC. In a novel apparatus, rats learned to discriminate two conspecifics positioned at different spatial distances (near vs. far) in a goal-driven paradigm. Following spatial learning, subjects were tested on probe trials in which spatial distance was replaced with social distance (cagemate vs. less familiar conspecific). The PPC was chemogenetically inactivated during a subset of probe sessions. We predicted that, in control probe trials, subjects would select conspecifics whose social distance matched the previously learned spatial distance. That is, if trained on the near distance, the rat would choose the highly familiar cagemate, and if trained on the far distance, the rat would choose the less familiar conspecific. Subjects learned to discriminate conspecifics based on spatial distance in our goal-driven paradigm. Moreover, choice for the appropriate social distance in the first probe session was significantly higher than chance. This result suggests that rats transferred learned spatial information to social contexts. Contrary to our predictions, PPC inactivation did not impair spatial to social information transfer. Possible reasons are discussed. To our knowledge, this is the first study to provide evidence that spatial and social distance are processed by shared cognitive mechanisms in the rat model.
Collapse
|
4
|
Ross TW, Poulter SL, Lever C, Easton A. Mice integrate conspecific and contextual information in forming social episodic-like memories under spontaneous recognition task conditions. Sci Rep 2024; 14:16159. [PMID: 38997341 PMCID: PMC11245605 DOI: 10.1038/s41598-024-66403-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 07/01/2024] [Indexed: 07/14/2024] Open
Abstract
The ability to remember unique past events (episodic memory) may be an evolutionarily conserved function, with accumulating evidence of episodic-(like) memory processing in rodents. In humans, it likely contributes to successful complex social networking. Rodents, arguably the most used laboratory models, are also rather social animals. However, many behavioural paradigms are devoid of sociality, and commonly-used social spontaneous recognition tasks (SRTs) are open to non-episodic strategies based upon familiarity. We address this gap by developing new SRT variants. Here, in object-in-context SRTs, we asked if context could be specified by the presence/absence of either a conspecific (experiment 1) or an additional local object (experiment 2). We show that mice readily used the conspecific as contextual information to distinguish unique episodes in memory. In contrast, no coherent behavioural response emerged when an additional object was used as a potential context specifier. Further, in a new social conspecific-in-context SRT (experiment 3) where environment-based change was the context specifier, mice preferably explored a more recently-seen familiar conspecific associated with contextual mismatch, over a less recently-seen familiar conspecific presented in the same context. The results argue that, in incidental SRT conditions, mice readily incorporate conspecific cue information into episodic-like memory. Thus, the tasks offer different ways to assess and further understand the mechanisms at work in social episodic-like memory processing.
Collapse
Affiliation(s)
- T W Ross
- Department of Psychology, Durham University, South Road, Durham, DH1 3LE, UK.
- Centre for Learning and Memory Processes, Durham University, Durham, UK.
| | - S L Poulter
- Department of Psychology, Durham University, South Road, Durham, DH1 3LE, UK
- Centre for Learning and Memory Processes, Durham University, Durham, UK
| | - C Lever
- Department of Psychology, Durham University, South Road, Durham, DH1 3LE, UK
- Centre for Learning and Memory Processes, Durham University, Durham, UK
| | - A Easton
- Department of Psychology, Durham University, South Road, Durham, DH1 3LE, UK
- Centre for Learning and Memory Processes, Durham University, Durham, UK
| |
Collapse
|
5
|
Franco-Pérez J. Mechanisms Underlying Memory Impairment Induced by Fructose. Neuroscience 2024; 548:27-38. [PMID: 38679409 DOI: 10.1016/j.neuroscience.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/04/2024] [Accepted: 04/03/2024] [Indexed: 05/01/2024]
Abstract
Fructose consumption has increased over the years, especially in adolescents living in urban areas. Growing evidence indicates that daily fructose consumption leads to some pathological conditions, including memory impairment. This review summarizes relevant data describing cognitive deficits after fructose intake and analyzes the underlying neurobiological mechanisms. Preclinical experiments show sex-related deficits in spatial memory; that is, while males exhibit significant imbalances in spatial processing, females seem unaffected by dietary supplementation with fructose. Recognition memory has also been evaluated; however, only female rodents show a significant decline in the novel object recognition test performance. According to mechanistic evidence, fructose intake induces neuroinflammation, mitochondrial dysfunction, and oxidative stress in the short term. Subsequently, these mechanisms can trigger other long-term effects, such as inhibition of neurogenesis, downregulation of trophic factors and receptors, weakening of synaptic plasticity, and long-term potentiation decay. Integrating all these neurobiological mechanisms will help us understand the cellular and molecular processes that trigger the memory impairment induced by fructose.
Collapse
Affiliation(s)
- Javier Franco-Pérez
- Laboratorio Patología Vascular Cerebral, Instituto Nacional de Neurología y Neurocirugía, Manuel Velasco Suárez, Insurgentes Sur 3877, Col. La Fama, C.P. 14269, CDMX, México, Mexico.
| |
Collapse
|
6
|
Sep MSC, Sarabdjitsingh RA, Geuze E, Joels M. Pre-trauma memory contextualization as predictor for PTSD-like behavior in male rats. J Psychiatr Res 2024; 171:84-94. [PMID: 38262164 DOI: 10.1016/j.jpsychires.2024.01.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/15/2024] [Indexed: 01/25/2024]
Abstract
While many people experience potentially threatening events during their life, only a minority develops posttraumatic stress disorder (PTSD). The identification of individuals at risk among those exposed to trauma is crucial for PTSD prevention in the future. Since re-experiencing trauma elements outside of the original trauma-context is a core feature of PTSD, we investigate if the ability to bind memories to their original encoding context (i.e. memory contextualization) predicts PTSD vulnerability. We hypothesize that pre-trauma neutral memory contextualization (under stress) negatively relates to PTSD-like behavior, in a prospective design using the cut-off behavioral criteria rat model for PTSD. 72 male Sprague Dawley rats were divided in two experimental groups to assess the predictive value of 1) memory contextualization without acute stress (NS-group) and 2) memory contextualization during the recovery phase of the acute stress-response (S-group) for susceptibility to PTSD-like behavior. A powerful extension to regression analysis -path analysis-was used to test this specific hypothesis, together with secondary research questions. Following traumatic predator scent stress, 19.4% of the rats displayed PTSD-like behavior. Results showed a negative relation between pre-trauma memory contextualization and PTSD-like behavior, but only in the NS-group. Pre-trauma memory contextualization was positively related to fear association in the trauma environment, again only in the NS group. If the predictive value of pre-trauma contextualization of neutral information under non-stressful conditions for PTSD susceptibility is replicated in prospective studies in humans, this factor would supplement already known vulnerability factors for PTSD and improve the identification of individuals at risk among the trauma exposed, especially those at high trauma risk such as soldiers deployed on a mission.
Collapse
Affiliation(s)
- Milou S C Sep
- Brain Research and Innovation Centre, Ministry of Defence, Utrecht, the Netherlands; Department of Translational Neuroscience, UMC Utrecht Brain Center, Utrecht University, the Netherlands; Department of Psychiatry, Amsterdam University Medical Center location Vrije Universiteit, Amsterdam, the Netherlands; GGZ inGeest Mental Health Care, Amsterdam, the Netherlands; Amsterdam Neuroscience, Mood Anxiety, Psychosis, Sleep & Stress Program, Amsterdam, the Netherlands; Amsterdam Public Health, Mental Health Program, Amsterdam, the Netherlands.
| | - R Angela Sarabdjitsingh
- Department of Translational Neuroscience, UMC Utrecht Brain Center, Utrecht University, the Netherlands
| | - Elbert Geuze
- Brain Research and Innovation Centre, Ministry of Defence, Utrecht, the Netherlands; Department of Psychiatry, UMC Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands
| | - Marian Joels
- Department of Translational Neuroscience, UMC Utrecht Brain Center, Utrecht University, the Netherlands; University of Groningen, University Medical Center Groningen, the Netherlands
| |
Collapse
|
7
|
Liaghat A, Konsman JP. Methodological advice for the young at heart investigator: Triangulation to build better foundations. Brain Behav Immun 2024; 115:737-746. [PMID: 37972881 DOI: 10.1016/j.bbi.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 10/02/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023] Open
Abstract
In medicine and science, one is typically taught the main theories in a discipline or field along with standard models before receiving more instructions on how to apply certain methods. The aim of this work is not to address one method, but rather methodology, the study and evaluation of methods, by taking a philosophy of science detour. In this, a critique of biomedicine will be used as a starting point to address some positions regarding reductionism, specifying notions such as systems and mechanisms, as well as regarding the mind-body problem discussing psychosomatic medicine and psychoneuroimmunology. Some recommendations to make science more pluralistic, robust and translationally-relevant will then be made as a way to foster constructive debates on reductionism and the mind-body problem and, in turn, favor more interdisciplinary research.
Collapse
Affiliation(s)
- Amirreza Liaghat
- IMMUNOlogy from CONcepts and ExPeriments to Translation, CNRS UMR 5164, University of Bordeaux, 33076 Bordeaux, France
| | - Jan Pieter Konsman
- IMMUNOlogy from CONcepts and ExPeriments to Translation, CNRS UMR 5164, University of Bordeaux, 33076 Bordeaux, France.
| |
Collapse
|
8
|
Sep MSC, Geuze E, Joëls M. Impaired learning, memory, and extinction in posttraumatic stress disorder: translational meta-analysis of clinical and preclinical studies. Transl Psychiatry 2023; 13:376. [PMID: 38062029 PMCID: PMC10703817 DOI: 10.1038/s41398-023-02660-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 10/28/2023] [Accepted: 11/09/2023] [Indexed: 12/18/2023] Open
Abstract
Current evidence-based treatments for post-traumatic stress disorder (PTSD) are efficacious in only part of PTSD patients. Therefore, novel neurobiologically informed approaches are urgently needed. Clinical and translational neuroscience point to altered learning and memory processes as key in (models of) PTSD psychopathology. We extended this notion by clarifying at a meta-level (i) the role of information valence, i.e. neutral versus emotional/fearful, and (ii) comparability, as far as applicable, between clinical and preclinical phenotypes. We hypothesized that cross-species, neutral versus emotional/fearful information processing is, respectively, impaired and enhanced in PTSD. This preregistered meta-analysis involved a literature search on PTSD+Learning/Memory+Behavior, performed in PubMed. First, the effect of information valence was estimated with a random-effects meta-regression. The sources of variation were explored with a random forest-based analysis. The analyses included 92 clinical (N = 6732 humans) and 182 preclinical (N = 6834 animals) studies. A general impairment of learning, memory and extinction processes was observed in PTSD patients, regardless of information valence. Impaired neutral learning/memory and fear extinction were also present in animal models of PTSD. Yet, PTSD models enhanced fear/trauma memory in preclinical studies and PTSD impaired emotional memory in patients. Clinical data on fear/trauma memory was limited. Mnemonic phase and valence explained most variation in rodents but not humans. Impaired neutral learning/memory and fear extinction show stable cross-species PTSD phenotypes. These could be targeted for novel PTSD treatments, using information gained from neurobiological animal studies. We argue that apparent cross-species discrepancies in emotional/fearful memory deserve further in-depth study; until then, animal models targeting this phenotype should be applied with utmost care.
Collapse
Affiliation(s)
- Milou S C Sep
- Brain Research and Innovation Centre, Ministry of Defence, Utrecht, the Netherlands.
- Department of Translational Neuroscience, UMC Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands.
- GGZ inGeest Mental Health Care, Amsterdam, The Netherlands.
- Amsterdam Neuroscience, Mood, Anxiety, Psychosis, Sleep & Stress Program, Amsterdam, The Netherlands.
- Amsterdam Public Health, Mental Health Program, Amsterdam, The Netherlands.
- Department of Psychiatry, Amsterdam University Medical Center location Vrije Universiteit, Amsterdam, The Netherlands.
| | - Elbert Geuze
- Brain Research and Innovation Centre, Ministry of Defence, Utrecht, the Netherlands
- Department of Psychiatry, UMC Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Marian Joëls
- Department of Translational Neuroscience, UMC Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
- University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
9
|
Ross TW, Easton A. Rats use strategies to make object choices in spontaneous object recognition tasks. Sci Rep 2022; 12:16973. [PMID: 36216920 PMCID: PMC9550825 DOI: 10.1038/s41598-022-21537-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/28/2022] [Indexed: 12/29/2022] Open
Abstract
Rodent spontaneous object recognition (SOR) paradigms are widely used to study the mechanisms of complex memory in many laboratories. Due to the absence of explicit reinforcement in these tasks, there is an underlying assumption that object exploratory behaviour is 'spontaneous'. However, rodents can strategise, readily adapting their behaviour depending on the current information available and prior predications formed from learning and memory. Here, using the object-place-context (episodic-like) recognition task and novel analytic methods relying on multiple trials within a single session, we demonstrate that rats use a context-based or recency-based object recognition strategy for the same types of trials, depending on task conditions. Exposure to occasional ambiguous conditions changed animals' responses towards a recency-based preference. However, more salient and predictable conditions led to animals exploring objects on the basis of episodic novelty reliant on contextual information. The results have important implications for future research using SOR tasks, especially in the way experimenters design, analyse and interpret object recognition experiments in non-human animals.
Collapse
Affiliation(s)
- T W Ross
- Department of Psychology, Durham University, South Road, Durham, DH1 3LE, UK.
- Centre for Learning and Memory Processes, Durham University, Durham, UK.
| | - A Easton
- Department of Psychology, Durham University, South Road, Durham, DH1 3LE, UK
- Centre for Learning and Memory Processes, Durham University, Durham, UK
| |
Collapse
|