1
|
Doherty ML, Johnson JV, Goodbody-Gringley G. Widespread coral bleaching and mass mortality during the 2023-2024 marine heatwave in Little Cayman. PLoS One 2025; 20:e0322636. [PMID: 40315251 PMCID: PMC12047782 DOI: 10.1371/journal.pone.0322636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 03/25/2025] [Indexed: 05/04/2025] Open
Abstract
The increased frequency and intensity of marine heatwaves (MHWs) induced by continued global warming are the greatest threat to tropical coral reefs, causing mass bleaching events and widespread mortality of reef building corals. In 2023, the isolated and well-protected reefs around Little Cayman experienced a MHW of > 17 Degree Heating Weeks (DHW), far exceeding any DHW measure previously captured. During the peak of the heatwave, ~ 80% of all corals were either bleached or showing signs of mortality. On the final survey date ~54% of all corals surveyed were recorded as dead. However, we identified significant differences in bleaching susceptibility and mortality across taxonomic groups, related to different life history strategies. Notably, weedy coral taxa such as Agaricia spp., Porites astreoides, and Porites porites, experienced high bleaching and suffered extensive mortality. Meanwhile, stress-tolerant reef building taxa such as Orbicella spp., experienced bleaching, but suffered low mortality. Given Little Cayman reefs have not been exposed to previous thermal stress events, the highly sensitive weedy taxa disproportionately contributed to coral abundance. Thus, the occurrence of a high magnitude - long duration heatwave resulted in catastrophic mortality of corals in Little Cayman, despite ~57% of the coastal environment being classified as no-take Marine Protected Areas. These findings underscore that the global stressor of global climate change, which drives MHWs, cannot be mitigated by local protection and isolation, thus highlighting the need to directly tackle the cause of coral decline (i.e., global climate change).
Collapse
Affiliation(s)
- Matthew L. Doherty
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, United Kingdom
| | - Jack V. Johnson
- Reef Ecology and Evolution Lab, Central Caribbean Marine Institute, Little Cayman Island, Cayman Islands
| | - Gretchen Goodbody-Gringley
- Reef Ecology and Evolution Lab, Central Caribbean Marine Institute, Little Cayman Island, Cayman Islands
| |
Collapse
|
2
|
Díaz-López AM, Hernández-Arana HA, Vega-Zepeda A, Ruiz-Zárate MÁ, Victoria-Salazar I. Changes in the community structure of stony corals in the southern Mexican Caribbean. MARINE ENVIRONMENTAL RESEARCH 2023; 191:106154. [PMID: 37678100 DOI: 10.1016/j.marenvres.2023.106154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 06/29/2023] [Accepted: 08/25/2023] [Indexed: 09/09/2023]
Abstract
The Mexican Caribbean coral reef ecosystem has endured the effects of global and regional stressors and, recently, the massive arrivals of the free-living, floating brown algae Sargassum spp. This study aimed to evaluate spatiotemporal changes in the stony coral community structure in the southern Mexican Caribbean by a temporal comparison of live coral cover and colony density using a data set collected in 2008-2009 and a recent survey in 2021 within a Protected Natural Area. A multivariate analysis approach was used to reveal spatiotemporal changes in coral cover and colony densities. Coral cover ranged from 6.9 to 8.9% in 2008-2009 to 6.5% in 2021, the lowest values recorded for the area. Coral colony density ranged from 0.68 to 0.78 colonies m-1 in 2008-2009 to 0.68 colonies m-1 in 2021. The present results appear to represent subtle changes during the last decade.
Collapse
Affiliation(s)
- Alan Mauri Díaz-López
- El Colegio de la Frontera Sur, Unidad Chetumal. Departamento de Sistemática y Ecología Acuática. Av. Centenario km 5.5, CP. 77014. Chetumal, Quintana Roo, Mexico
| | - Héctor Abuid Hernández-Arana
- El Colegio de la Frontera Sur, Unidad Chetumal. Departamento de Sistemática y Ecología Acuática. Av. Centenario km 5.5, CP. 77014. Chetumal, Quintana Roo, Mexico.
| | - Alejandro Vega-Zepeda
- El Colegio de la Frontera Sur, Unidad Chetumal. Departamento de Sistemática y Ecología Acuática. Av. Centenario km 5.5, CP. 77014. Chetumal, Quintana Roo, Mexico
| | - Miguel Ángel Ruiz-Zárate
- El Colegio de la Frontera Sur, Unidad Chetumal. Departamento de Sistemática y Ecología Acuática. Av. Centenario km 5.5, CP. 77014. Chetumal, Quintana Roo, Mexico
| | - Isael Victoria-Salazar
- El Colegio de la Frontera Sur, Unidad Chetumal. Departamento de Sistemática y Ecología Acuática. Av. Centenario km 5.5, CP. 77014. Chetumal, Quintana Roo, Mexico
| |
Collapse
|
3
|
Randrianarivo M, Botosoamananto RL, Guilhaumon F, Penin L, Todinanahary G, Adjeroud M. Effects of Madagascar marine reserves on juvenile and adult coral abundance, and the implication for population regulation. MARINE ENVIRONMENTAL RESEARCH 2023; 190:106080. [PMID: 37422994 DOI: 10.1016/j.marenvres.2023.106080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 06/30/2023] [Accepted: 07/05/2023] [Indexed: 07/11/2023]
Abstract
Recruitment is a critical component in the dynamics of coral assemblages, and a key question is to determine the degree to which spatial heterogeneity of adults is influenced by pre-vs. post-settlement processes. We analyzed the density of juvenile and adult corals among 18 stations located at three regions around Madagascar, and examined the effects of Marine Protected Areas (MPAs). Our survey did not detect a positive effect of MPAs on juveniles, except for Porites at the study scale. The MPA effect was more pronounced for adults, notably for Acropora, Montipora, Seriatopora, and Porites at the regional scale. For most dominant genera, densities of juveniles and adults were positively correlated at the study scale, and at least at one of the three regions. These outcomes suggest recruitment-limitation relationships for several coral taxa, although differences in post-settlement events may be sufficiently strong to distort the pattern established at settlement for other populations. The modest benefits of MPAs on the density of juvenile corals demonstrated here argue in favor of strengthening conservation measures more specifically focused to protect recruitment processes.
Collapse
Affiliation(s)
- Mahery Randrianarivo
- Institut Halieutique et des Sciences Marines, Université de Toliara, Toliara, Madagascar; ENTROPIE, Université de La Réunion, IRD, CNRS, IFREMER, Université de la Nouvelle-Calédonie, La Réunion, France
| | - Radonirina Lebely Botosoamananto
- Institut Halieutique et des Sciences Marines, Université de Toliara, Toliara, Madagascar; ENTROPIE, Université de La Réunion, IRD, CNRS, IFREMER, Université de la Nouvelle-Calédonie, La Réunion, France
| | - François Guilhaumon
- ENTROPIE, Université de La Réunion, IRD, CNRS, IFREMER, Université de la Nouvelle-Calédonie, La Réunion, France
| | - Lucie Penin
- ENTROPIE, Université de La Réunion, IRD, CNRS, IFREMER, Université de la Nouvelle-Calédonie, La Réunion, France; Laboratoire d'Excellence "CORAIL", Paris, France
| | - Gildas Todinanahary
- Institut Halieutique et des Sciences Marines, Université de Toliara, Toliara, Madagascar
| | - Mehdi Adjeroud
- ENTROPIE, IRD, Université de la Réunion, CNRS, IFREMER, Université de la Nouvelle-Calédonie, Perpignan, France; Laboratoire d'Excellence "CORAIL", Paris, France; PSL Université Paris, UAR 3278, CRIOBE EPHE-UPVD-CNRS, Perpignan, France.
| |
Collapse
|
4
|
Mudge L, Bruno JF. Disturbance intensification is altering the trait composition of Caribbean reefs, locking them into a low functioning state. Sci Rep 2023; 13:14022. [PMID: 37640770 PMCID: PMC10462730 DOI: 10.1038/s41598-023-40672-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 08/16/2023] [Indexed: 08/31/2023] Open
Abstract
Anthropogenic climate change is intensifying natural disturbance regimes, which negatively affects some species, while benefiting others. This could alter the trait composition of ecological communities and influence resilience to disturbance. We investigated how the frequency and intensification of the regional storm regime (and likely other disturbances) is altering coral species composition and in turn resistance and recovery. We developed regional databases of coral cover and composition (3144 reef locations from 1970 to 2017) and of the path and strength of cyclonic storms in the region (including 10,058 unique storm-reef intersections). We found that total living coral cover declined steadily through 2017 (the median annual loss rate was ~ 0.25% per year). Our results also indicate that despite the observed increase in the intensity of Atlantic cyclonic storms, their effect on coral cover has decreased markedly. This could be due in part to selection for disturbance-resistant taxa in response to the intensifying disturbance regime. We found that storms accelerated the loss of threatened acroporid corals but had no measurable effect on the cover of more resilient "weedy" corals, thereby increasing their relative cover. Although resistance to disturbance has increased, recovery rates have slowed due to the dominance of small, slow-growing species. This feedback loop is locking coral communities into a low-functioning state dominated by weedy species with limited ecological or societal value.
Collapse
Affiliation(s)
- Laura Mudge
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Barefoot Ocean, LLC., Houston, Texas, USA.
| | - John F Bruno
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
5
|
Fulton S. Institutional amnesia pushes fish spawning aggregations towards extirpation. PEOPLE AND NATURE 2023. [DOI: 10.1002/pan3.10462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
|
6
|
Global change differentially modulates Caribbean coral physiology. PLoS One 2022; 17:e0273897. [PMID: 36054126 PMCID: PMC9439252 DOI: 10.1371/journal.pone.0273897] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 08/17/2022] [Indexed: 11/19/2022] Open
Abstract
Global change driven by anthropogenic carbon emissions is altering ecosystems at unprecedented rates, especially coral reefs, whose symbiosis with algal symbionts is particularly vulnerable to increasing ocean temperatures and altered carbonate chemistry. Here, we assess the physiological responses of three Caribbean coral (animal host + algal symbiont) species from an inshore and offshore reef environment after exposure to simulated ocean warming (28, 31°C), acidification (300–3290 μatm), and the combination of stressors for 93 days. We used multidimensional analyses to assess how a variety of coral physiological parameters respond to ocean acidification and warming. Our results demonstrate reductions in coral health in Siderastrea siderea and Porites astreoides in response to projected ocean acidification, while future warming elicited severe declines in Pseudodiploria strigosa. Offshore S. siderea fragments exhibited higher physiological plasticity than inshore counterparts, suggesting that this offshore population was more susceptible to changing conditions. There were no plasticity differences in P. strigosa and P. astreoides between natal reef environments, however, temperature evoked stronger responses in both species. Interestingly, while each species exhibited unique physiological responses to ocean acidification and warming, when data from all three species are modelled together, convergent stress responses to these conditions are observed, highlighting the overall sensitivities of tropical corals to these stressors. Our results demonstrate that while ocean warming is a severe acute stressor that will have dire consequences for coral reefs globally, chronic exposure to acidification may also impact coral physiology to a greater extent in some species than previously assumed. Further, our study identifies S. siderea and P. astreoides as potential ‘winners’ on future Caribbean coral reefs due to their resilience under projected global change stressors, while P. strigosa will likely be a ‘loser’ due to their sensitivity to thermal stress events. Together, these species-specific responses to global change we observe will likely manifest in altered Caribbean reef assemblages in the future.
Collapse
|
7
|
Alvarez-Filip L, González-Barrios FJ, Pérez-Cervantes E, Molina-Hernández A, Estrada-Saldívar N. Stony coral tissue loss disease decimated Caribbean coral populations and reshaped reef functionality. Commun Biol 2022; 5:440. [PMID: 35681037 PMCID: PMC9184636 DOI: 10.1038/s42003-022-03398-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 04/22/2022] [Indexed: 11/08/2022] Open
Abstract
Diseases are major drivers of the deterioration of coral reefs and are linked to major declines in coral abundance, reef functionality, and reef-related ecosystems services. An outbreak of a new disease is currently rampaging through the populations of the remaining reef-building corals across the Caribbean region. The outbreak was first reported in Florida in 2014 and reached the northern Mesoamerican Reef by summer 2018, where it spread across the ~450-km reef system in only a few months. Rapid spread was generalized across all sites and mortality rates ranged from 94% to <10% among the 21 afflicted coral species. Most species of the family Meandrinadae (maze corals) and subfamily Faviinae (brain corals) sustained losses >50%. This single event further modified the coral communities across the region by increasing the relative dominance of weedy corals and reducing reef functionality, both in terms of functional diversity and calcium carbonate production. This emergent disease is likely to become the most lethal disturbance ever recorded in the Caribbean, and it will likely result in the onset of a new functional regime where key reef-building and complex branching acroporids, an apparently unaffected genus that underwent severe population declines decades ago and retained low population levels, will once again become conspicuous structural features in reef systems with yet even lower levels of physical functionality.
Collapse
Affiliation(s)
- Lorenzo Alvarez-Filip
- Biodiversity and Reef Conservation Laboratory, Unidad Académica de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Puerto Morelos, Quintana Roo, México.
| | - F Javier González-Barrios
- Biodiversity and Reef Conservation Laboratory, Unidad Académica de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Puerto Morelos, Quintana Roo, México
| | - Esmeralda Pérez-Cervantes
- Biodiversity and Reef Conservation Laboratory, Unidad Académica de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Puerto Morelos, Quintana Roo, México
| | - Ana Molina-Hernández
- Biodiversity and Reef Conservation Laboratory, Unidad Académica de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Puerto Morelos, Quintana Roo, México
| | - Nuria Estrada-Saldívar
- Biodiversity and Reef Conservation Laboratory, Unidad Académica de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Puerto Morelos, Quintana Roo, México
| |
Collapse
|