1
|
Chong B, Kumar V, Nguyen D, Hopkins M, Ferry F, Spera L, Paul E, Hutson A, Tabuchi M. Neuropeptide-Dependent Spike Time Precision and Plasticity in Circadian Output Neurons. Eur J Neurosci 2025; 61:e70037. [PMID: 40080910 PMCID: PMC11906214 DOI: 10.1111/ejn.70037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 01/30/2025] [Accepted: 02/16/2025] [Indexed: 03/15/2025]
Abstract
Circadian rhythms influence various physiological and behavioral processes such as sleep-wake cycles, hormone secretion, and metabolism. In Drosophila, an important set of circadian output neurons is called pars intercerebralis (PI) neurons, which receive input from specific clock neurons called DN1. These DN1 neurons can further be subdivided into functionally and anatomically distinctive anterior (DN1a) and posterior (DN1p) clusters. The neuropeptide diuretic hormones 31 (Dh31) and 44 (Dh44) are the insect neuropeptides known to activate PI neurons to control activity rhythms. However, the neurophysiological basis of how Dh31 and Dh44 affect circadian clock neural coding mechanisms underlying sleep in Drosophila is not well understood. Here, we identify Dh31/Dh44-dependent spike time precision and plasticity in PI neurons. We first find that a mixture of Dh31 and Dh44 enhanced the firing of PI neurons, compared to the application of Dh31 alone and Dh44 alone. We next find that the application of synthesized Dh31 and Dh44 affects membrane potential dynamics of PI neurons in the precise timing of the neuronal firing through their synergistic interaction, possibly mediated by calcium-activated potassium channel conductance. Further, we characterize that Dh31/Dh44 enhances postsynaptic potentials in PI neurons. Together, these results suggest multiplexed neuropeptide-dependent spike time precision and plasticity as circadian clock neural coding mechanisms underlying sleep in Drosophila.
Collapse
Affiliation(s)
- Bryan Chong
- Department of NeurosciencesCase Western Reserve University School of MedicineClevelandOhioUSA
| | - Vipin Kumar
- Department of NeurosciencesCase Western Reserve University School of MedicineClevelandOhioUSA
| | - Dieu Linh Nguyen
- Department of NeurosciencesCase Western Reserve University School of MedicineClevelandOhioUSA
| | - Makenzie A. Hopkins
- Department of NeurosciencesCase Western Reserve University School of MedicineClevelandOhioUSA
| | - Faith S. Ferry
- Department of NeurosciencesCase Western Reserve University School of MedicineClevelandOhioUSA
| | - Lucia K. Spera
- Department of NeurosciencesCase Western Reserve University School of MedicineClevelandOhioUSA
| | - Elizabeth M. Paul
- Department of NeurosciencesCase Western Reserve University School of MedicineClevelandOhioUSA
| | - Anelise N. Hutson
- Department of NeurosciencesCase Western Reserve University School of MedicineClevelandOhioUSA
| | - Masashi Tabuchi
- Department of NeurosciencesCase Western Reserve University School of MedicineClevelandOhioUSA
| |
Collapse
|
2
|
Chong B, Kumar V, Nguyen DL, Hopkins MA, Ferry FS, Spera LK, Paul EM, Hutson AN, Tabuchi M. Neuropeptide-dependent spike time precision and plasticity in circadian output neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.06.616871. [PMID: 39411164 PMCID: PMC11476009 DOI: 10.1101/2024.10.06.616871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Circadian rhythms influence various physiological and behavioral processes such as sleep-wake cycles, hormone secretion, and metabolism. In Drosophila, an important set of circadian output neurons are called pars intercerebralis (PI) neurons, which receive input from specific clock neurons called DN1. These DN1 neurons can further be subdivided into functionally and anatomically distinctive anterior (DN1a) and posterior (DN1p) clusters. The neuropeptide diuretic hormones 31 (Dh31) and 44 (Dh44) are the insect neuropeptides known to activate PI neurons to control activity rhythms. However, the neurophysiological basis of how Dh31 and Dh44 affect circadian clock neural coding mechanisms underlying sleep in Drosophila is not well understood. Here, we identify Dh31/Dh44-dependent spike time precision and plasticity in PI neurons. We first find that a mixture of Dh31 and Dh44 enhanced the firing of PI neurons, compared to the application of Dh31 alone and Dh44 alone. We next find that the application of synthesized Dh31 and Dh44 affects membrane potential dynamics of PI neurons in the precise timing of the neuronal firing through their synergistic interaction, possibly mediated by calcium-activated potassium channel conductance. Further, we characterize that Dh31/Dh44 enhances postsynaptic potentials in PI neurons. Together, these results suggest multiplexed neuropeptide-dependent spike time precision and plasticity as circadian clock neural coding mechanisms underlying sleep in Drosophila.
Collapse
Affiliation(s)
- Bryan Chong
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Vipin Kumar
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Dieu Linh Nguyen
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Makenzie A. Hopkins
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Faith S. Ferry
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Lucia K. Spera
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Elizabeth M. Paul
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Anelise N. Hutson
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Masashi Tabuchi
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| |
Collapse
|
3
|
Devilliers J, Marshall H, Warren B, Kyriacou CP, Araripe LO, Bruno RV, Rosato E, Feuda R. Molecular correlates of swarming behaviour in Aedes aegypti males. Biol Lett 2024; 20:20240245. [PMID: 39471837 PMCID: PMC11521606 DOI: 10.1098/rsbl.2024.0245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/28/2024] [Accepted: 09/25/2024] [Indexed: 11/01/2024] Open
Abstract
Mosquitoes are the deadliest vectors of diseases. They impose a huge health burden on human populations spreading parasites as disparate as protozoans (malaria), viruses (yellow fever and more) and nematodes (filariasis) that cause life-threatening conditions. In recent years, mating has been proposed as a putative target for population control. Mosquitoes mate mid-air, in swarms initiated by males and triggered by a combination of internal and external stimuli. As the number of females in a swarm is limited, there is intense competition among males, and they 'retune' their physiology for this demanding behaviour. There is limited knowledge on the 'genetic reprogramming' required to enable swarming. Interestingly, recent evidence indicates that the upregulation of circadian clock genes may be involved in the swarming of malaria mosquitoes of the genus Anopheles. Here, we use whole-head RNA-seq to identify gene expression changes in Aedes aegypti males that are engaged in swarming in a laboratory setting. Our results suggest that in preparation to swarming, males tend to lower some housekeeping functions while increasing remodelling of the cytoskeleton and neuronal connectivity; the transcription of circadian clock genes is unaffected.
Collapse
Affiliation(s)
- Julien Devilliers
- Neurogenetics Group,University of Leicester, Leicester, UK
- Department of Genetics,Genomics & Cancer Sciences, College of Life Sciences, University of Leicester, Leicester, UK
| | - Hollie Marshall
- Neurogenetics Group,University of Leicester, Leicester, UK
- Department of Genetics,Genomics & Cancer Sciences, College of Life Sciences, University of Leicester, Leicester, UK
| | - Ben Warren
- Neurogenetics Group,University of Leicester, Leicester, UK
- Department of Genetics,Genomics & Cancer Sciences, College of Life Sciences, University of Leicester, Leicester, UK
| | - Charalambos P. Kyriacou
- Neurogenetics Group,University of Leicester, Leicester, UK
- Department of Genetics,Genomics & Cancer Sciences, College of Life Sciences, University of Leicester, Leicester, UK
| | - Luciana O. Araripe
- Laboratório de Biologia Molecular de Insetos, Instituto Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Rafaela V. Bruno
- Laboratório de Biologia Molecular de Insetos, Instituto Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Ezio Rosato
- Neurogenetics Group,University of Leicester, Leicester, UK
- Department of Genetics,Genomics & Cancer Sciences, College of Life Sciences, University of Leicester, Leicester, UK
| | - Roberto Feuda
- Neurogenetics Group,University of Leicester, Leicester, UK
- Department of Genetics,Genomics & Cancer Sciences, College of Life Sciences, University of Leicester, Leicester, UK
| |
Collapse
|
4
|
Gururaja Rao S, Lam A, Seeley S, Park J, Aruva S, Singh H. The BK Ca (slo) channel regulates the cardiac function of Drosophila. Physiol Rep 2024; 12:e15996. [PMID: 38561252 PMCID: PMC10984821 DOI: 10.14814/phy2.15996] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/21/2024] [Accepted: 03/21/2024] [Indexed: 04/04/2024] Open
Abstract
The large conductance, calcium, and voltage-active potassium channels (BKCa) were originally discovered in Drosophila melanogaster as slowpoke (slo). They are extensively characterized in fly models as ion channels for their roles in neurological and muscular function, as well as aging. BKCa is known to modulate cardiac rhythm and is localized to the mitochondria. Activation of mitochondrial BKCa causes cardioprotection from ischemia-reperfusion injury, possibly via modulating mitochondrial function in adult animal models. However, the role of BKCa in cardiac function is not well-characterized, partially due to its localization to the plasma membrane as well as intracellular membranes and the wide array of cells present in mammalian hearts. Here we demonstrate for the first time a direct role for BKCa in cardiac function and cardioprotection from IR injury using the Drosophila model system. We have also discovered that the BKCa channel plays a role in the functioning of aging hearts. Our study establishes the presence of BKCa in the fly heart and ascertains its role in aging heart function.
Collapse
Affiliation(s)
- Shubha Gururaja Rao
- Department of Pharmaceutical and Biomedical SciencesThe Raabe College of Pharmacy, Ohio Northern UniversityAdaOhioUSA
- Department of Physiology and Cell BiologyThe Ohio State UniversityColumbusOhioUSA
| | - Alexander Lam
- Department of Physiology and Cell BiologyThe Ohio State UniversityColumbusOhioUSA
| | - Sarah Seeley
- Department of Pharmaceutical and Biomedical SciencesThe Raabe College of Pharmacy, Ohio Northern UniversityAdaOhioUSA
| | - Jeniffer Park
- Department of Physiology and Cell BiologyThe Ohio State UniversityColumbusOhioUSA
| | - Shriya Aruva
- Department of Physiology and Cell BiologyThe Ohio State UniversityColumbusOhioUSA
| | - Harpreet Singh
- Department of Physiology and Cell BiologyThe Ohio State UniversityColumbusOhioUSA
| |
Collapse
|
5
|
Huo X, Wang Y, Liu Z, Liu J, Zhu H, Zhou Y, Man Y, Zhou X, Ma H. Electrophysiological and pharmacological properties of the slowpoke channel in the diamondback moth, Plutella xylostella. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 200:105824. [PMID: 38582588 DOI: 10.1016/j.pestbp.2024.105824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/07/2024] [Accepted: 02/07/2024] [Indexed: 04/08/2024]
Abstract
The slowpoke channel responds to the intracellular calcium concentration and the depolarization of the cell membrane. It plays an important role in maintaining the resting potential and regulating the homeostasis of neurons, but it can also regulate circadian rhythm, sperm capacitation, ethanol tolerance, and other physiological processes in insects. This renders it a potentially useful target for the development of pest control strategies. There are relatively few studies on the slowpoke channels in lepidopteran pests, and their pharmacological properties are still unclear. So, in this study, the slowpoke gene of Plutella xylostella (Pxslo) was heterologous expressed in HEK293T cells, and the I-V curve of the slowpoke channel was measured by whole cell patch clamp recordings. Results showed that the slowpoke channel could be activated at -20 mV with 150 μM Ca2+. The subsequent comparison of the electrophysiological characteristics of the alternative splicing site E and G deletions showed that the deletion of the E site enhances the response of the slowpoke channel to depolarization, while the deletion of the G site weakens the response of the slowpoke channel to depolarization. Meanwhile, the nonspecific inhibitors TEA and 4-AP of the Kv channels, and four pesticides were tested and all showed an inhibition effect on the PxSlo channel at 10 or 100 μM, suggesting that these pesticides also target the slowpoke channel. This study enriches our understanding of the slowpoke channel in Lepidopteran insects and can aid in the development of relevant pest management strategies.
Collapse
Affiliation(s)
- Xiaoyi Huo
- Institute of Agricultural Biotechnology, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Longping Branch, College of Biology, Hunan University, Changsha 410125, China
| | - Yinna Wang
- Institute of Agricultural Biotechnology, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Longping Branch, College of Biology, Hunan University, Changsha 410125, China
| | - Zheming Liu
- Institute of Agricultural Biotechnology, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Hunan Provincial Key Laboratory of Pesticide Biology and Precise Use Technology, Changsha 410125, China; Key Laboratory of Pesticide Assessment, Ministry of Agriculture and Rural Affairs, Changsha 410125, China
| | - Jia Liu
- Institute of Agricultural Biotechnology, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Hunan Provincial Key Laboratory of Pesticide Biology and Precise Use Technology, Changsha 410125, China; Key Laboratory of Pesticide Assessment, Ministry of Agriculture and Rural Affairs, Changsha 410125, China
| | - Hang Zhu
- Institute of Agricultural Biotechnology, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Hunan Provincial Key Laboratory of Pesticide Biology and Precise Use Technology, Changsha 410125, China; Key Laboratory of Pesticide Assessment, Ministry of Agriculture and Rural Affairs, Changsha 410125, China
| | - Yong Zhou
- Institute of Agricultural Biotechnology, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Hunan Provincial Key Laboratory of Pesticide Biology and Precise Use Technology, Changsha 410125, China; Key Laboratory of Pesticide Assessment, Ministry of Agriculture and Rural Affairs, Changsha 410125, China
| | - Yilong Man
- Institute of Agricultural Biotechnology, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Hunan Provincial Key Laboratory of Pesticide Biology and Precise Use Technology, Changsha 410125, China; Key Laboratory of Pesticide Assessment, Ministry of Agriculture and Rural Affairs, Changsha 410125, China
| | - Xiaomao Zhou
- Institute of Agricultural Biotechnology, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Provincial Key Laboratory of Pesticide Biology and Precise Use Technology, Changsha 410125, China; Key Laboratory of Pesticide Assessment, Ministry of Agriculture and Rural Affairs, Changsha 410125, China
| | - Haihao Ma
- Institute of Agricultural Biotechnology, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Provincial Key Laboratory of Pesticide Biology and Precise Use Technology, Changsha 410125, China; Key Laboratory of Pesticide Assessment, Ministry of Agriculture and Rural Affairs, Changsha 410125, China.
| |
Collapse
|
6
|
Jiang Y, Qi M, Zhang J, Wen Y, Sun J, Liu Q. Metabolomic Profiling Analysis of Physiological Responses to Acute Hypoxia and Reoxygenation in Juvenile Qingtian Paddy Field Carp Cyprinus Carpio Var Qingtianensis. Front Physiol 2022; 13:853850. [PMID: 35669576 PMCID: PMC9163826 DOI: 10.3389/fphys.2022.853850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/01/2022] [Indexed: 11/13/2022] Open
Abstract
The Qingtian paddy field carp (Cyprinus carpio var qingtianensis) is a local carp cultivated in the rice field of Qingtian county, Zhejiang province, China. The paddy field environment is distinct from the pond environment. Due to the inability to artificially increase oxygen, the dissolved oxygen greatly changes during the day. Therefore, investigating the physiological regulation to the changes of acute dissolved oxygen in Qingtian paddy field carp (PF-carp) will dramatically clarify how it adapts to the paddy breeding environment. The high tolerance of Qingtian paddy field carp to hypoxia makes it an ideal organism for studying molecular regulatory mechanisms during hypoxia process and reoxygenation following hypoxia in fish. In this study, we compared the changes of metabolites in the hepatopancreas during hypoxia stress and the following reoxygenation through comparative metabolomics. The results showed 131 differentially expressed metabolites between the hypoxic groups and control groups. Among them, 95 were up-regulated, and 36 were down-regulated. KEGG Pathway enrichment analysis showed that these differential metabolites were mainly involved in regulating lipid, protein, and purine metabolism PF-carps could require energy during hypoxia by enhancing the gluconeogenesis pathway with core glutamic acid and glutamine metabolism. A total of 63 differentially expressed metabolites were screened by a comparison between the reoxygenated groups and the hypoxic groups. Specifically, 15 were up-regulated, and 48 were down-regulated. The KEGG Pathway enrichment analysis supported that PF-carp could continue to gain energy by consuming glutamic acid and the glutamine accumulated during hypoxia and simultaneously weaken the ammonia-transferring effect of amino acids and the toxicity of ammonia. By consuming glycerophospholipids and maintaining the Prostaglandin E content, cell damage was improved, sphingosinol synthesis was reduced, and apoptosis was inhibited. Additionally, it could enhance the salvage synthesis and de novo synthesis of purine, reduce purine accumulation, promote the synthesis of nucleotide and energy carriers, and assist in recovering physiological metabolism. Overall, results explained the physiological regulation mechanism of PF-carp adapting to the acute changes of dissolved oxygen at the metabolic level and also provided novel evidence for physiological regulation of other fish in an environment with acute changes in dissolved oxygen levels.
Collapse
Affiliation(s)
- Yuhan Jiang
- Centre for Research on Environmental Ecology and Fish Nutrition of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, China.,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.,Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Ming Qi
- Zhejiang Fisheries Technical Extension Center, Hangzhou, China
| | - Jinpeng Zhang
- Huzhou Academy of Agricultural Sciences, Huzhou, China
| | - Yuanlin Wen
- Centre for Research on Environmental Ecology and Fish Nutrition of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, China.,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.,Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Jiamin Sun
- Centre for Research on Environmental Ecology and Fish Nutrition of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, China.,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.,Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Qigen Liu
- Centre for Research on Environmental Ecology and Fish Nutrition of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, China.,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.,Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
7
|
Perception of Daily Time: Insights from the Fruit Flies. INSECTS 2021; 13:insects13010003. [PMID: 35055846 PMCID: PMC8780729 DOI: 10.3390/insects13010003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/21/2021] [Accepted: 12/07/2021] [Indexed: 11/17/2022]
Abstract
We create mental maps of the space that surrounds us; our brains also compute time—in particular, the time of day. Visual, thermal, social, and other cues tune the clock-like timekeeper. Consequently, the internal clock synchronizes with the external day-night cycles. In fact, daylength itself varies, causing the change of seasons and forcing our brain clock to accommodate layers of plasticity. However, the core of the clock, i.e., its molecular underpinnings, are highly resistant to perturbations, while the way animals adapt to the daily and annual time shows tremendous biological diversity. How can this be achieved? In this review, we will focus on 75 pairs of clock neurons in the Drosophila brain to understand how a small neural network perceives and responds to the time of the day, and the time of the year.
Collapse
|
8
|
Correction: Slowpoke functions in circadian output cells to regulate rest:activity rhythms. PLoS One 2021; 16:e0251678. [PMID: 33979416 PMCID: PMC8115836 DOI: 10.1371/journal.pone.0251678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|