1
|
Cantón GJ, Marron YM, Fiorentino MA, Morrell EL, García JA, Marfil MJ, Urtizbiria F, Morsella C, Cirone KM, Scioli MV, Zumárraga MJ, Paolicchi F. Vestibular syndrome in dairy heifers associated with Mycobacterium bovis: two case reports and strain characterization. Vet Res Commun 2025; 49:124. [PMID: 40029436 DOI: 10.1007/s11259-025-10696-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 02/24/2025] [Indexed: 03/05/2025]
Abstract
Bovine tuberculosis is a chronic disease caused by Mycobacterium bovis which rarely causes a neurologic clinical presentation. Tuberculous meningitis is a common clinical finding in young calves in dairy herds where tuberculosis is endemic, associated with the early consumption of milk from infected cows. We report two simultaneous cases of vestibular syndrome, including loss of balance, circling, tilted head, and strabismus in 12- and 16-month-old Holstein heifers on a dairy farm in Tandil, Buenos Aires province, Argentina, with low tuberculosis prevalence (< 1.0%). Several widespread granulomatous lesions including large intracranial granulomas, characterized by a fibrous capsule containing pale yellow granular caseous material, with were observed during postmortem examination of both heifers. Microscopically, granulomas were characterized by the presence of a central caseous necrosis with mineralization, surrounded by an abundant macrophages, lymphocytes, and plasma cells infiltrate, with the presence of multiple Langhans-type giant cells, epithelioid macrophages, and connective tissue proliferation in the outer circumference. Mycobacterium bovis was isolated from different granulomas and associated lymph nodes and was typed by spoligotyping. This uncommon clinical presentation of bovine tuberculosis should be considered by veterinary practitioners, particularly in dairy herds where tuberculosis is endemic.
Collapse
Affiliation(s)
- Germán J Cantón
- Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible (IPADS) (INTA Balcarce- CONICET), RN 226 km 73.5, Balcarce, 7620, Argentina.
| | - Yolanda M Marron
- Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible (IPADS) (INTA Balcarce- CONICET), RN 226 km 73.5, Balcarce, 7620, Argentina
| | - María A Fiorentino
- Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible (IPADS) (INTA Balcarce- CONICET), RN 226 km 73.5, Balcarce, 7620, Argentina
| | - Eleonora L Morrell
- Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible (IPADS) (INTA Balcarce- CONICET), RN 226 km 73.5, Balcarce, 7620, Argentina
| | - Juan A García
- Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible (IPADS) (INTA Balcarce- CONICET), RN 226 km 73.5, Balcarce, 7620, Argentina
| | - María J Marfil
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO) (CONICET-INTA), CICVyA, N. Repetto y De Los Reseros s/n, Hurlingham, B1686IGC, Argentina
- Department of Large Animal Clinical Science, College of Veterinary Medicine, Michigan State University, Michigan State University, MI, USA
| | - Facundo Urtizbiria
- Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible (IPADS) (INTA Balcarce- CONICET), RN 226 km 73.5, Balcarce, 7620, Argentina
| | - Claudia Morsella
- Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible (IPADS) (INTA Balcarce- CONICET), RN 226 km 73.5, Balcarce, 7620, Argentina
| | - Karina M Cirone
- Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible (IPADS) (INTA Balcarce- CONICET), RN 226 km 73.5, Balcarce, 7620, Argentina
| | - María V Scioli
- Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible (IPADS) (INTA Balcarce- CONICET), RN 226 km 73.5, Balcarce, 7620, Argentina
| | - Martín J Zumárraga
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO) (CONICET-INTA), CICVyA, N. Repetto y De Los Reseros s/n, Hurlingham, B1686IGC, Argentina
| | - Fernando Paolicchi
- Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible (IPADS) (INTA Balcarce- CONICET), RN 226 km 73.5, Balcarce, 7620, Argentina
| |
Collapse
|
2
|
Qu Y, Liu M, Sun X, Liu Y, Liu J, Hu L, Jiang Z, Qi F, Nan W, Yan X, Sun M, Shao W, Li J, Sun S, Zhang H, Fan X. Development and evaluation of a triplex droplet digital PCR method for differentiation of M. tuberculosis, M. bovis and BCG. Front Microbiol 2024; 15:1397792. [PMID: 38946908 PMCID: PMC11211260 DOI: 10.3389/fmicb.2024.1397792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/31/2024] [Indexed: 07/02/2024] Open
Abstract
INTRODUCTION Tuberculosis, caused by Mycobacterium tuberculosis complex (MTBC), remains a global health concern in both human and animals. However, the absence of rapid, accurate, and highly sensitive detection methods to differentiate the major pathogens of MTBC, including M. tuberculosis, M. bovis, and BCG, poses a potential challenge. METHODS In this study, we have established a triplex droplet digital polymerase chain reaction (ddPCR) method employing three types of probe fluorophores, with targets M. tuberculosis (targeting CFP-10-ESAT-6 gene of RD1 and Rv0222 genes of RD4), M. bovis (targeting CFP-10-ESATs-6 gene of RD1), and BCG (targeting Rv3871 and Rv3879c genes of ΔRD1), respectively. RESULTS Based on optimization of annealing temperature, sensitivity and repeatability, this method demonstrates a lower limit of detection (LOD) as 3.08 copies/reaction for M. tuberculosis, 4.47 copies/reaction for M. bovis and 3.59 copies/reaction for BCG, without cross-reaction to Mannheimia haemolytica, Mycoplasma bovis, Haemophilus parasuis, Escherichia coli, Pasteurella multocida, Ochrobactrum anthropi, Salmonella choleraesuis, Brucella melitensis, and Staphylococcus aureus, and showed repeatability with coefficients of variation (CV) lower than 10%. The method exhibits strong milk sample tolerance, the LOD of detecting in spike milk was 5 × 103 CFU/mL, which sensitivity is ten times higher than the triplex qPCR. 60 clinical DNA samples, including 20 milk, 20 tissue and 20 swab samples, were kept in China Animal Health and Epidemiology Center were tested by the triplex ddPCR and triplex qPCR. The triplex ddPCR presented a higher sensitivity (11.67%, 7/60) than that of the triplex qPCR method (8.33%, 5/60). The positive rates of M. tuberculosis, M. bovis, and BCG were 1.67, 10, and 0% by triplex ddPCR, and 1.67, 6.67, and 0% by triplex qPCR, with coincidence rates of 100, 96.7, and 100%, respectively. DISCUSSION Our data demonstrate that the established triplex ddPCR method is a sensitive, specific and rapid method for differentiation and identification of M. tuberculosis, M. bovis, and BCG.
Collapse
Affiliation(s)
- Yao Qu
- National Animal Tuberculosis Reference Laboratory, Division of Zoonoses Surveillance, China Animal Health and Epidemiology Center, Qingdao, Shandong, China
- College of Animal Technology, Shandong Agricultural University, Taian, Shandong, China
| | - Mengda Liu
- National Animal Tuberculosis Reference Laboratory, Division of Zoonoses Surveillance, China Animal Health and Epidemiology Center, Qingdao, Shandong, China
- Key Laboratory of Major Ruminant Infectious Disease Prevention and Control (East) of Ministry, Agriculture and Rural Affairs, Qingdao, Shandong, China
| | - Xiangxiang Sun
- National Animal Tuberculosis Reference Laboratory, Division of Zoonoses Surveillance, China Animal Health and Epidemiology Center, Qingdao, Shandong, China
- Key Laboratory of Major Ruminant Infectious Disease Prevention and Control (East) of Ministry, Agriculture and Rural Affairs, Qingdao, Shandong, China
- Key Laboratory of Animal Biosafety Risk Warning Prevention and Control (South) of Ministry, Agriculture and Rural Affairs, Qingdao, Shandong, China
| | - Yongxia Liu
- College of Animal Technology, Shandong Agricultural University, Taian, Shandong, China
| | - Jianzhu Liu
- College of Animal Technology, Shandong Agricultural University, Taian, Shandong, China
| | - Liping Hu
- Shandong Center for Animal Disease Prevention and Control, Jinan, Shandong, China
| | - Zhiqiang Jiang
- National Animal Tuberculosis Reference Laboratory, Division of Zoonoses Surveillance, China Animal Health and Epidemiology Center, Qingdao, Shandong, China
| | - Fei Qi
- National Animal Tuberculosis Reference Laboratory, Division of Zoonoses Surveillance, China Animal Health and Epidemiology Center, Qingdao, Shandong, China
| | - Wenlong Nan
- National Animal Tuberculosis Reference Laboratory, Division of Zoonoses Surveillance, China Animal Health and Epidemiology Center, Qingdao, Shandong, China
- Key Laboratory of Major Ruminant Infectious Disease Prevention and Control (East) of Ministry, Agriculture and Rural Affairs, Qingdao, Shandong, China
| | - Xin Yan
- National Animal Tuberculosis Reference Laboratory, Division of Zoonoses Surveillance, China Animal Health and Epidemiology Center, Qingdao, Shandong, China
- Key Laboratory of Animal Biosafety Risk Warning Prevention and Control (South) of Ministry, Agriculture and Rural Affairs, Qingdao, Shandong, China
| | - Mingjun Sun
- National Animal Tuberculosis Reference Laboratory, Division of Zoonoses Surveillance, China Animal Health and Epidemiology Center, Qingdao, Shandong, China
| | - Weixing Shao
- National Animal Tuberculosis Reference Laboratory, Division of Zoonoses Surveillance, China Animal Health and Epidemiology Center, Qingdao, Shandong, China
| | - Jiaqi Li
- National Animal Tuberculosis Reference Laboratory, Division of Zoonoses Surveillance, China Animal Health and Epidemiology Center, Qingdao, Shandong, China
| | - Shufang Sun
- National Animal Tuberculosis Reference Laboratory, Division of Zoonoses Surveillance, China Animal Health and Epidemiology Center, Qingdao, Shandong, China
- Key Laboratory of Major Ruminant Infectious Disease Prevention and Control (East) of Ministry, Agriculture and Rural Affairs, Qingdao, Shandong, China
| | - Haobo Zhang
- National Animal Tuberculosis Reference Laboratory, Division of Zoonoses Surveillance, China Animal Health and Epidemiology Center, Qingdao, Shandong, China
- Key Laboratory of Major Ruminant Infectious Disease Prevention and Control (East) of Ministry, Agriculture and Rural Affairs, Qingdao, Shandong, China
| | - Xiaoxu Fan
- National Animal Tuberculosis Reference Laboratory, Division of Zoonoses Surveillance, China Animal Health and Epidemiology Center, Qingdao, Shandong, China
- Key Laboratory of Major Ruminant Infectious Disease Prevention and Control (East) of Ministry, Agriculture and Rural Affairs, Qingdao, Shandong, China
| |
Collapse
|
3
|
Fareed Z, Rana A, Hadi SA, Geluk A, Hope JC, Khalid H. A one health-focused literature review on bovine and zoonotic tuberculosis in Pakistan from the past two decades: challenges and way forward for control. One Health 2024; 18:100763. [PMID: 38846704 PMCID: PMC11153871 DOI: 10.1016/j.onehlt.2024.100763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 05/22/2024] [Indexed: 06/09/2024] Open
Abstract
Bovine tuberculosis (bTB), caused by Mycobacterium bovis (M. bovis), is a globally prevalent zoonotic infectious disease. World Organization for Animal Health (WOAH) estimates indicate that up to 10% of the total human TB cases in developing countries are attributed to M. bovis. Pakistan ranks 4th in global milk production with a livestock population of over 212 million animals. Over 8 million families are involved in raising these animals as a means of livelihood. To date, there is an absence of national-level data on the prevalence of bTB and an effective control program is still lacking. The multifaceted impacts and substantial economic losses render addressing bTB a daunting, but highly important challenge. In this review, we summarise all the freely available literature on M. bovis infection from Pakistan using Google scholar and PubMed databases. A total of 40 animal studies were identified using search terms: "bovine tuberculosis in Pakistan, bTB, Pakistan, Mycobacterium bovis in Pakistan, M. bovis in Pakistan"; while seven human studies were identified using the terms: zoonotic tuberculosis in Pakistan', 'M. bovis in humans Pakistan', 'zTB in TB patients in Pakistan". We have summarized all these studies to identify critical risk factors involved in transmission of bTB among animals and humans. Despite lack of comprehensive and geographically representative studies, the literature suggests a varying prevalence of bTB in animals, ranging from as low as 2% to as high as 19%. Regarding zTB prevalence in humans, estimates range from 1.5% to 13% in high-risk group of farm and abattoir workers, with notably higher percentages in extra-pulmonary TB cases. The review also addresses the challenges that Pakistan faces in formulating an effective policy for the control and eradication of bTB. We conclude with one-health based recommendations as a way forward for controlling TB caused by M. bovis in cattle and humans.
Collapse
Affiliation(s)
- Zahid Fareed
- Veterinary Research Institute, Lahore, Punjab, Pakistan
| | - Aysha Rana
- Veterinary Research Institute, Lahore, Punjab, Pakistan
| | - Syeda Anum Hadi
- Consultant-Technical Coordinator, Health Security Partners, Islamabad, Pakistan
| | - Annemieke Geluk
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
| | - Jayne C. Hope
- Division of Immunology, The Roslin Institute, University of Edinburgh, EH25 9RG, UK
| | - Hamza Khalid
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
- Division of Immunology, The Roslin Institute, University of Edinburgh, EH25 9RG, UK
- Center for Inflammation Research, The Queen's Medical Research Institute, Edinburgh BioQuarter, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| |
Collapse
|
4
|
Vicenzi JM, Cerva C, Rodrigues RO, Bertagnolli AC, Mayer FQ. Condemnation of bovine carcasses due to tuberculosis-gross lesions in Rio Grande do Sul, Brazil: Associated risk factors. Comp Immunol Microbiol Infect Dis 2023; 102:102063. [PMID: 37757627 DOI: 10.1016/j.cimid.2023.102063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/01/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023]
Abstract
Surveillance of bovine tuberculosis (bTB) lesions in animals at slaughterhouses is useful for controlling and eradicating the disease, besides providing epidemiological information. This study aimed to identify risk factors for bovine tuberculosis (bTB) condemnation in cattle at slaughterhouses in Rio Grande do Sul, Brazil. A logistic regression analysis was conducted using data on bTB-related condemnations. Variables examined included animal origin, number of slaughtered animals, season, inspection level (state or municipality), animal sex, and slaughterhouse location. A total of 297,817 Animal Transport Guides were evaluated, representing the transportation of 3497,521 animals. Among these, 6097 (2.05%) had at least one animal condemned due to bTB lesions. Risk factors for condemnation included larger batch sizes, female animals, slaughterhouses, and animal origin. The higher condemnation frequency in females and regions with dairy farms suggests links to milk production. Variation in condemnation rates by inspection level and slaughterhouse highlights the need for standardized procedures in identifying bTB lesions. Identifying these risk factors enables targeted interventions to enhance disease control and eradication efforts.
Collapse
Affiliation(s)
- Jerônimo Miguel Vicenzi
- Centro de Pesquisa em Saúde Animal, Instituto de Pesquisas Veterinárias Desidério Finamor, Departamento de Diagnóstico e Pesquisa Agropecuária, Secretaria da Agricultura, Pecuária e Desenvolvimento Rural, Eldorado do Sul, RS, Postal code: 92990-000, Brazil
| | - Cristine Cerva
- Centro de Pesquisa em Saúde Animal, Instituto de Pesquisas Veterinárias Desidério Finamor, Departamento de Diagnóstico e Pesquisa Agropecuária, Secretaria da Agricultura, Pecuária e Desenvolvimento Rural, Eldorado do Sul, RS, Postal code: 92990-000, Brazil
| | - Rogério Oliveira Rodrigues
- Centro de Pesquisa em Saúde Animal, Instituto de Pesquisas Veterinárias Desidério Finamor, Departamento de Diagnóstico e Pesquisa Agropecuária, Secretaria da Agricultura, Pecuária e Desenvolvimento Rural, Eldorado do Sul, RS, Postal code: 92990-000, Brazil
| | - Angélica Cavalheiro Bertagnolli
- Centro de Pesquisa em Saúde Animal, Instituto de Pesquisas Veterinárias Desidério Finamor, Departamento de Diagnóstico e Pesquisa Agropecuária, Secretaria da Agricultura, Pecuária e Desenvolvimento Rural, Eldorado do Sul, RS, Postal code: 92990-000, Brazil
| | - Fabiana Quoos Mayer
- Centro de Pesquisa em Saúde Animal, Instituto de Pesquisas Veterinárias Desidério Finamor, Departamento de Diagnóstico e Pesquisa Agropecuária, Secretaria da Agricultura, Pecuária e Desenvolvimento Rural, Eldorado do Sul, RS, Postal code: 92990-000, Brazil; Departamento de Biologia Molecular e Biotecnologia, Instituto de Biociências, Universidade Federal do Rio Grande do Sul., Av. Bento Gonçalves, 9500, Agronomia, Porto Alegre, RS, 91501-970, Brazil.
| |
Collapse
|
5
|
Gortázar C, de la Fuente J, Perelló A, Domínguez L. Will we ever eradicate animal tuberculosis? Ir Vet J 2023; 76:24. [PMID: 37737206 PMCID: PMC10515422 DOI: 10.1186/s13620-023-00254-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 09/13/2023] [Indexed: 09/23/2023] Open
Abstract
Two characteristics of the Mycobacterium tuberculosis complex (MTC) are particularly relevant for tuberculosis (TB) epidemiology and control, namely the ability of this group of pathogens to survive in the environment and thereby facilitate indirect transmission via water or feed, and the capacity to infect multiple host species including human beings, cattle, wildlife, and domestic animals other than cattle. As a consequence, rather than keeping the focus on certain animal species regarded as maintenance hosts, we postulate that it is time to think of complex and dynamic multi-host MTC maintenance communities where several wild and domestic species and the environment contribute to pathogen maintenance. Regarding the global situation of animal TB, many industrialized countries have reached the Officially Tuberculosis Free status. However, infection of cattle with M. bovis still occurs in most countries around the world. In low- and middle-income countries, human and animal TB infection is endemic and bovine TB control programs are often not implemented because standard TB control through testing and culling, movement control and slaughterhouse inspection is too expensive or ethically unacceptable. In facing increasingly complex epidemiological scenarios, modern integrated disease control should rely on three main pillars: (1) a close involvement of farmers including collaborative decision making, (2) expanding the surveillance and control targets to all three host categories, the environment, and their interactions, and (3) setting up new control schemes or upgrading established ones switching from single tool test and cull approaches to integrated ones including farm biosafety and vaccination.
Collapse
Affiliation(s)
- Christian Gortázar
- SaBio Instituto de Investigación en Recursos Cinegéticos IREC (UCLM & CSIC), Ciudad Real, Spain
| | - José de la Fuente
- SaBio Instituto de Investigación en Recursos Cinegéticos IREC (UCLM & CSIC), Ciudad Real, Spain
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK USA
| | - Alberto Perelló
- SaBio Instituto de Investigación en Recursos Cinegéticos IREC (UCLM & CSIC), Ciudad Real, Spain
- Sabiotec, Camino de Moledores s/n. 13003, Ciudad Real, 13071 Spain
| | - Lucas Domínguez
- VISAVET and Department of Animal Health-Faculty of Veterinary Medicine, Universidad Complutense Madrid, Madrid, Spain
| |
Collapse
|
6
|
Escobar-Chavarría O, Benitez-Guzman A, Jiménez-Vázquez I, Carrisoza-Urbina J, Arriaga-Pizano L, Huerta-Yépez S, Baay-Guzmán G, Gutiérrez-Pabello JA. Necrotic Cell Death and Inflammasome NLRP3 Activity in Mycobacterium bovis-Infected Bovine Macrophages. Cells 2023; 12:2079. [PMID: 37626889 PMCID: PMC10453650 DOI: 10.3390/cells12162079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/05/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Mycobacterium bovis is a facultative intracellular bacterium that produces cellular necrosis in granulomatous lesions in bovines. Although M. bovis-induced inflammation actively participates in granuloma development, its role in necrotic cell death and in bovine macrophages has not been fully explored. In this study, we evaluate the effect of M. bovis AN5 and its culture filtrate protein extract (CFPE) on inflammasome activation in bovine macrophages and its consequences on cell death. Our results show that both stimuli induce necrotic cell death starting 4 h after incubation. CFPE treatment and M. bovis infection also induce the maturation of IL-1β (>3000 pg/mL), oligomerization of ASC (apoptosis-associated speck-like protein containing CARD), and activation of caspase-1, following the canonical activation pathway of the NLRP3 inflammasome. Inhibiting the oligomerization of NLRP3 and caspase-1 decreases necrosis among the infected or CFPE-stimulated macrophages. Furthermore, histological lymph node sections of bovines naturally infected with M. bovis contained cleaved gasdermin D, mainly in macrophages and giant cells within the granulomas. Finally, the induction of cell death (apoptosis and pyroptosis) decreased the intracellular bacteria count in the infected bovine macrophages, suggesting that cell death helps to control the intracellular growth of the mycobacteria. Our results indicate that M. bovis induces pyroptosis-like cell death that is partially related to the NLRP3 inflammasome activation and that the cell death process could control bacterial growth.
Collapse
Affiliation(s)
- Omar Escobar-Chavarría
- Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (O.E.-C.); (A.B.-G.); (I.J.-V.); (J.C.-U.)
| | - Alejandro Benitez-Guzman
- Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (O.E.-C.); (A.B.-G.); (I.J.-V.); (J.C.-U.)
| | - Itzel Jiménez-Vázquez
- Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (O.E.-C.); (A.B.-G.); (I.J.-V.); (J.C.-U.)
| | - Jacobo Carrisoza-Urbina
- Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (O.E.-C.); (A.B.-G.); (I.J.-V.); (J.C.-U.)
| | - Lourdes Arriaga-Pizano
- Unidad de Investigación Médica en Inmunoquímica, Hospital de Especialidades del Centro Médico Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico;
| | - Sara Huerta-Yépez
- Unidad de Investigación en Enfermedades Oncológicas, Hospital Infantil de México, Federico Gómez, Mexico City 06720, Mexico; (S.H.-Y.); (G.B.-G.)
| | - Guillermina Baay-Guzmán
- Unidad de Investigación en Enfermedades Oncológicas, Hospital Infantil de México, Federico Gómez, Mexico City 06720, Mexico; (S.H.-Y.); (G.B.-G.)
| | - José A. Gutiérrez-Pabello
- Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (O.E.-C.); (A.B.-G.); (I.J.-V.); (J.C.-U.)
| |
Collapse
|
7
|
Milián-Suazo F, González-Ruiz S, Contreras-Magallanes YG, Sosa-Gallegos SL, Bárcenas-Reyes I, Cantó-Alarcón GJ, Rodríguez-Hernández E. Vaccination Strategies in a Potential Use of the Vaccine against Bovine Tuberculosis in Infected Herds. Animals (Basel) 2022; 12:ani12233377. [PMID: 36496897 PMCID: PMC9735741 DOI: 10.3390/ani12233377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/11/2022] [Accepted: 11/29/2022] [Indexed: 12/04/2022] Open
Abstract
Bovine tuberculosis (bTB) is a disease of cattle that represents a risk to public health and causes severe economic losses to the livestock industry. Recently, one of the strategies recommended for reducing the prevalence of the disease in animals is the use of the BCG vaccine, alone or in combination with proteins. It has been shown that the vaccine elicits a strong immune response, downsizes the number of animals with visible lesions, and reduces the rate of infection as well as the bacillary count. This paper, based on scientific evidence, makes suggestions about some practical vaccination alternatives that can be used in infected herds to reduce bTB prevalence, considering BCG strains, vaccine doses, routes of application, and age of the animals. Our conclusion is that vaccination is a promising alternative to be included in current control programs in underdeveloped countries to reduce the disease burden.
Collapse
Affiliation(s)
- Feliciano Milián-Suazo
- Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Santiago de Querétaro 76010, Mexico
| | - Sara González-Ruiz
- Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Santiago de Querétaro 76010, Mexico
- Correspondence:
| | | | | | - Isabel Bárcenas-Reyes
- Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Santiago de Querétaro 76010, Mexico
| | | | - Elba Rodríguez-Hernández
- Centro Nacional de Investigación Disciplinaria en Fisiología y Mejoramiento Animal, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Ajuchitlán 76280, Mexico
| |
Collapse
|