1
|
Willett JLE, Dunny GM. Insights into ecology, pathogenesis, and biofilm formation of Enterococcus faecalis from functional genomics. Microbiol Mol Biol Rev 2025; 89:e0008123. [PMID: 39714182 PMCID: PMC11948497 DOI: 10.1128/mmbr.00081-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024] Open
Abstract
SUMMARYEnterococcus faecalis is a significant resident of the gastrointestinal tract of most animals, including humans. Although generally non-pathogenic in healthy hosts, this microbe is adept at the exploitation of compromises in host immune functions, resulting in life-threatening opportunistic infections whose treatments are complicated by a high degree of intrinsic and acquired resistance to antimicrobial chemotherapy. Historically, progress in enterococcal research was limited by a lack of experimental models that replicate natural infection pathways and the relevance of in vitro studies to the natural biology of the organism. In this review, we summarize the history of enterococcal research during the 20th and early 21st centuries and describe more recent genetic and genomic tools and screens developed to address challenges in the field. We also describe how the results of recent studies reveal the importance of previously uncharacterized enterococcal genes, and we provide examples of interesting determinants that have emerged as important contributors to enterococcal biology. These factors may also serve as targets for future vaccines and chemotherapeutic agents to combat life-threatening hospital infections.
Collapse
Affiliation(s)
- Julia L. E. Willett
- Department of Microbiology & Immunology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Gary M. Dunny
- Department of Microbiology & Immunology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| |
Collapse
|
2
|
Amer AM, Naqvi M, Charnock C. Genomics of Staphylococcus aureus and Enterococcus faecalis isolated from the ocular surface of dry eye disease sufferers. Exp Eye Res 2024; 248:110071. [PMID: 39241861 DOI: 10.1016/j.exer.2024.110071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/09/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
Ocular surface inflammatory disorders, such as dry eye, are becoming increasingly prevalent. Developing new treatment strategies targeting harmful bacteria could provide significant therapeutic benefits. The purpose of this study was to characterize the common ocular pathogen Staphylococcus aureus and the rarer endophthalmitis-associated species Enterococcus faecalis isolated from the ocular surface of dry eye disease patients in Norway. Together the 7 isolates (5 S. aureus and 2 E. faecalis) comprise the complete set of members of each species isolated in our previous study of the ocular microbiome of 61 dry eye sufferers. We aimed to investigate the pathogenic potential of these isolates in relation to ocular surface health. To this end, we used whole genome sequencing, multiplex PCR directed at virulence genes and antibiotic susceptibility tests encompassing clinically relevant agents. The E. faecalis isolates showed resistance to only gentamicin. S. aureus isolates displayed susceptibility to most of the tested antibiotics, except for two isolates which showed resistance to trimethoprim/sulfamethoxazole and three isolates which were resistant to ampicillin. Susceptibilities included sensitivity to several first-line antibiotics for treatment of ocular infections by these species. Thus, treatment options would be available if required. However, spontaneous resistance development to gentamicin and rifampicin occurred in some S. aureus which could be a cause for concern. Whole genome sequencing of the isolates showed genome sizes ranging from 2.74 to 2.83 Mbp for S. aureus and 2.86 Mbp for E. faecalis, which is typical for these species. Multilocus sequence typing and phylogenetic comparisons with previously published genomes, did not suggest the presence of eye-specific clusters for either species. Genomic analysis indicated a high probability of pathogenicity among all isolates included in the study. Resistome analysis revealed the presence of the beta-lactamase blaZ gene in all S. aureus isolates and the dfrG gene in two of them; while E. faecalis isolates carried the lsa(A) gene which confers intrinsic resistance to lincosamides and streptogramin A in this species. Screening for virulence factors revealed the presence of various pathogenicity associated genes in both S. aureus and E. faecalis isolates. These included genes coding for toxin production and factors associated with evading the host immune system. Some of the identified genes (tst, hylA & hylB) are suggested to be linked to the pathophysiology of dry eye disease. Lastly, the presence of specific S. aureus virulence genes was confirmed through multiplex PCR analysis.
Collapse
Affiliation(s)
- Ahmed M Amer
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway; Department of Life Sciences and Health, Oslo Metropolitan University (OsloMet), Oslo, Norway.
| | - Maria Naqvi
- Department of Life Sciences and Health, Oslo Metropolitan University (OsloMet), Oslo, Norway
| | - Colin Charnock
- Department of Life Sciences and Health, Oslo Metropolitan University (OsloMet), Oslo, Norway
| |
Collapse
|
3
|
Szczuka E, Rolnicka D, Wesołowska M. Cytotoxic Activity of Vancomycin-Resistant Enterococci Isolated from Hospitalised Patients. Pathogens 2024; 13:827. [PMID: 39452699 PMCID: PMC11509928 DOI: 10.3390/pathogens13100827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/12/2024] [Accepted: 09/19/2024] [Indexed: 10/26/2024] Open
Abstract
Vancomycin-resistant enterococci (VRE) are considered one of the main nosocomial pathogens due to their increasing antibiotic resistance and ability to cause life-threatening infections in humans. This study included VRE isolates obtained from various specimens including urine, blood, faeces, wounds, sputum, and oral cavity wash. Of the 37 strains, 30 (81.1%) and 7 (18.9%) were identified by MALDI TOF as Enterococcus faecium and Enterococcus faecalis, respectively. The clinical vancomycin-resistant enterococci exhibited multi-drug resistance (MDR). Apart from vancomycin, the enterococci exhibited resistance to penicillins (89.1 to 100%), fluoroquinolones (100%), rifampicin (86.5%), tetracycline (27%), aminoglycosides (56.8 to 86.5%), quinupristin-dalfopristin (35.1%), and chloramphenicol (10.8%). Moreover, resistance to linezolid and tigecycline emerged among the tested vancomycin-resistant enterococci. The analysis of aminoglycoside modifying enzyme (AME) genes showed the presence of bifunctional aac(6')-Ie-aph(2″)-Ia genes contributed to high-level aminoglycoside resistance (HLAR) in the E. faecalis and E. faecium isolates. The other AME gene, i.e., aph(3')-IIIa, was also found in the VRE isolates. All strains carried the vanA gene. Enterococci from colonised gastrointestinal tracts (1/2.7%) and from infection (6/16.2%) showed cytotoxic activity against the human epithelial cell line HEp-2.
Collapse
Affiliation(s)
- Ewa Szczuka
- Department of Microbiology, Faculty of Biology, Institute of Experimental Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland; (D.R.); (M.W.)
| | - Dominika Rolnicka
- Department of Microbiology, Faculty of Biology, Institute of Experimental Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland; (D.R.); (M.W.)
| | - Maria Wesołowska
- Department of Microbiology, Faculty of Biology, Institute of Experimental Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland; (D.R.); (M.W.)
- Microbiology Laboratory, University Clinical Hospital in Poznań, ul. Przybyszewskiego 49, 60-355 Poznań, Poland
| |
Collapse
|
4
|
Haeberle AL, Greenwood-Quaintance KE, Zar S, Johnson S, Patel R, Willett JLE. Genotypic and phenotypic characterization of Enterococcus faecalis isolates from periprosthetic joint infections. Microbiol Spectr 2024; 12:e0056524. [PMID: 38912797 PMCID: PMC11302728 DOI: 10.1128/spectrum.00565-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/09/2024] [Indexed: 06/25/2024] Open
Abstract
Over 2.5 million prosthetic joint implantation surgeries occur annually in the United States. Periprosthetic joint infections (PJIs), though occurring in only 1-2% of patients receiving replacement joints, are challenging to diagnose and treat and are associated with significant morbidity. The Gram-positive bacterium Enterococcus faecalis, which can be highly antibiotic-resistant and is a robust biofilm producer on indwelling medical devices, accounts for 2-11% of PJIs. E. faecalis PJIs are understudied compared to those caused by other pathogens, such as Staphylococcus aureus. This motivates the need to generate a comprehensive understanding of E. faecalis PJIs to guide future treatments for these infections. To address this, we describe a panel of E. faecalis strains isolated from the surface of prosthetic joints in a cohort of individuals treated at the Mayo Clinic in Rochester, MN. Here, we present the first complete genome assemblage of E. faecalis PJI isolates. Comparative genomics shows differences in genome size, virulence factors, antimicrobial resistance genes, plasmids, and prophages, underscoring the genetic diversity of these strains. These isolates have strain-specific differences in in vitro biofilm biomass, biofilm burden, and biofilm morphology. We measured robust changes in biofilm architecture and aggregation for all isolates when grown in simulated synovial fluid (SSF). Finally, we evaluated the antibiotic efficacy of these isolates and found strain-specific changes across all strains when grown in SSF. Results of this study highlight the existence of genetic and phenotypic heterogeneity among E. faecalis PJI isolates which will provide valuable insight and resources for future E. faecalis PJI research. IMPORTANCE Periprosthetic joint infections (PJIs) affect ~1-2% of those who undergo joint replacement surgery. Enterococcus faecalis is a Gram-positive opportunistic pathogen that causes ~10% of PJIs in the United States each year, but our understanding of how and why E. faecalis causes PJIs is limited. E. faecalis infections are typically biofilm-associated and can be difficult to clear with antibiotic therapy. Here, we provide complete genomes for four E. faecalis PJI isolates from the Mayo Clinic. These isolates have strain-specific differences in biofilm formation, aggregation, and antibiotic susceptibility in simulated synovial fluid. These results provide important insight into the genomic and phenotypic features of E. faecalis isolates from PJI.
Collapse
Affiliation(s)
- Amanda L. Haeberle
- Department of Microbiology & Immunology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Kerryl E. Greenwood-Quaintance
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Sarah Zar
- Department of Microbiology & Immunology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Stephen Johnson
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, USA
| | - Robin Patel
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
- Division of Public Health, Infectious Diseases, and Occupational Medicine, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Julia L. E. Willett
- Department of Microbiology & Immunology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| |
Collapse
|
5
|
Bain W, Ahn B, Peñaloza HF, McElheny CL, Tolman N, van der Geest R, Gonzalez-Ferrer S, Chen N, An X, Hosuru R, Tabary M, Papke E, Kohli N, Farooq N, Bachman W, Olonisakin TF, Xiong Z, Griffith MP, Sullivan M, Franks J, Mustapha MM, Iovleva A, Suber T, Shanks RQ, Ferreira VP, Stolz DB, Van Tyne D, Doi Y, Lee JS. In Vivo Evolution of a Klebsiella pneumoniae Capsule Defect With wcaJ Mutation Promotes Complement-Mediated Opsonophagocytosis During Recurrent Infection. J Infect Dis 2024; 230:209-220. [PMID: 39052750 PMCID: PMC11272070 DOI: 10.1093/infdis/jiae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/17/2023] [Accepted: 01/03/2024] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND Klebsiella pneumoniae carbapenemase-producing K pneumoniae (KPC-Kp) bloodstream infections are associated with high mortality. We studied clinical bloodstream KPC-Kp isolates to investigate mechanisms of resistance to complement, a key host defense against bloodstream infection. METHODS We tested growth of KPC-Kp isolates in human serum. In serial isolates from a single patient, we performed whole genome sequencing and tested for complement resistance and binding by mixing study, direct enzyme-linked immunosorbent assay, flow cytometry, and electron microscopy. We utilized an isogenic deletion mutant in phagocytosis assays and an acute lung infection model. RESULTS We found serum resistance in 16 of 59 (27%) KPC-Kp clinical bloodstream isolates. In 5 genetically related bloodstream isolates from a single patient, we noted a loss-of-function mutation in the capsule biosynthesis gene, wcaJ. Disruption of wcaJ was associated with decreased polysaccharide capsule, resistance to complement-mediated killing, and surprisingly, increased binding of complement proteins. Furthermore, an isogenic wcaJ deletion mutant exhibited increased opsonophagocytosis in vitro and impaired in vivo control in the lung after airspace macrophage depletion in mice. CONCLUSIONS Loss of function in wcaJ led to increased complement resistance, complement binding, and opsonophagocytosis, which may promote KPC-Kp persistence by enabling coexistence of increased bloodstream fitness and reduced tissue virulence.
Collapse
Affiliation(s)
- William Bain
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh
- Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania
| | - Brian Ahn
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus School of Medicine, Denver
| | - Hernán F Peñaloza
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh
| | | | - Nathanial Tolman
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh
| | - Rick van der Geest
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh
| | - Shekina Gonzalez-Ferrer
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh
| | - Nathalie Chen
- Division of Infectious Diseases, Department of Medicine
| | - Xiaojing An
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh
| | - Ria Hosuru
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh
| | - Mohammadreza Tabary
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh
| | - Erin Papke
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh
| | - Naina Kohli
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh
| | | | | | - Tolani F Olonisakin
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh
| | - Zeyu Xiong
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh
| | | | - Mara Sullivan
- Center for Biologic Imaging, Department of Cell Biology
| | | | | | - Alina Iovleva
- Division of Infectious Diseases, Department of Medicine
| | - Tomeka Suber
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh
| | - Robert Q Shanks
- Department of Ophthalmology, University of Pittsburgh, Pennsylvania
| | - Viviana P Ferreira
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Ohio
| | - Donna B Stolz
- Center for Biologic Imaging, Department of Cell Biology
| | | | - Yohei Doi
- Division of Infectious Diseases, Department of Medicine
| | - Janet S Lee
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh
- Division of Pulmonary and Critical Care Medicine, Washington University in St Louis, Missouri
| |
Collapse
|
6
|
Al Rubaye M, Janice J, Bjørnholt JV, Löhr IH, Sundsfjord A, Hegstad K. The first vanE-type vancomycin resistant Enterococcus faecalis isolates in Norway - phenotypic and molecular characteristics. J Glob Antimicrob Resist 2024; 36:193-199. [PMID: 38154751 DOI: 10.1016/j.jgar.2023.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/12/2023] [Accepted: 12/19/2023] [Indexed: 12/30/2023] Open
Abstract
OBJECTIVES We aimed to characterize the vanE cluster and its genetic support in the first Norwegian vanE-type isolates and assess genetic relatedness to other vanE isolates. METHODS Two vanE-type vancomycin resistant Enterococcus faecalis (vanE-VREfs) isolates (E1 and E2) recovered from the same patient 30 months apart were examined for antimicrobial susceptibility, genome sequence, vancomycin resistance induction, vanE transferability, genome mutation rate, and phylogenetic relationship to E. faecalis closed genomes and two vanE-VREfs from North America. RESULTS The ST34 E1 and E2 strains expressed low-level vancomycin resistance and susceptibility to teicoplanin. Their vanE gene clusters were part of a non-transferable Tn6202. The histidine kinase part of vanSE was expressed although a premature stop codon (E1) and insertion of a transposase (E2) truncated their vanSE gene. The vancomycin resistance phenotype in E1 was inducible while constitutive in E2. E1 showed a 125-fold higher mutation rate than E2. Variant calling showed 60 variants but nearly identical chromosomal gene content and synteny between the isolates. Their genomes also showed high similarity to another ST34 vanE-VREfs from Canada. CONCLUSION In-depth genomic analyses of the first two vanE-VREfs found in Europe identified a single chromosomal insertion site of two variants of vanE-conferring Tn6202. Single nucleotide polymorphism (SNP) and core genome multilocus sequence type (cgMLST) analyses show the genomes are different. This can be explained by the high mutation rate of E1 and acquisition of different mobile genetic elements; thus, we believe the two isolates from the same patient are genetically related. Genome similarities also suggest relatedness between the Canadian and Norwegian vanE-VREfs.
Collapse
Affiliation(s)
- Mushtaq Al Rubaye
- Research group for Host-Microbe Interactions, Department of Medical Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Jessin Janice
- Research group for Host-Microbe Interactions, Department of Medical Biology, UiT The Arctic University of Norway, Tromsø, Norway; Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
| | - Jørgen Vildershøj Bjørnholt
- Department of Clinical Microbiology, Oslo University Hospital, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Iren H Löhr
- Department of Medical Microbiology, Stavanger University Hospital, Stavanger, Norway; Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Arnfinn Sundsfjord
- Research group for Host-Microbe Interactions, Department of Medical Biology, UiT The Arctic University of Norway, Tromsø, Norway; Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
| | - Kristin Hegstad
- Research group for Host-Microbe Interactions, Department of Medical Biology, UiT The Arctic University of Norway, Tromsø, Norway; Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway.
| |
Collapse
|
7
|
Barbosa-Ribeiro M, Gomes BPFA, Arruda-Vasconcelos R, Monteiro IDA, Costa MJF, Sette-de-Souza PH. Antibiotic Resistance Profile of Clinical Strains of Enterococci from Secondary/Persistent Endodontic Infections: What do We Know? A Systematic Review of Clinical Studies. J Endod 2024; 50:299-309. [PMID: 38171449 DOI: 10.1016/j.joen.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/30/2023] [Accepted: 12/22/2023] [Indexed: 01/05/2024]
Abstract
INTRODUCTION Enterococcus faecalis is the most common enterococcal species associated with infective endocarditis and 1 of the most commonly detected bacteria in cases of secondary/persistent endodontic infection (SPEI). Antimicrobial resistance is a global public health concern. This review aimed to answer the following research question: "Is there a change in the antibiotic resistance profile in clinical strains of E. faecalis over the years?". P (population) - patients with SPEI, I (intervention) -endodontic retreatment, C (comparison) -not included, O (outcome) - profile of Enterococci resistance and susceptibility to systemic antibiotics used. METHODS Two authors independently performed study selection, data extraction, and risk of bias assessment. The literature search was conducted using the following electronic databases: PubMed, Scopus, EMBASE, Web of Science, and Medline. Clinical studies in which Enterococci strains were isolated to assess their antimicrobial resistance were included. RESULTS Eleven clinical trials were included. Overall, E. faecalis isolated from teeth with SPEI presented an intermediate resistance to 16 antibiotics. In recent years, E. faecalis showed a little resistance to amoxicillin (without clavulanate) and benzylpenicillin. Erythromycin and rifampicin presented an increase in the intermediate-resistance status between the first and the last studies. E. faecium presented intermediate-resistance results. CONCLUSION The most effective drugs remain the combination of amoxicillin and clavulanate, followed by amoxicillin and benzylpenicillin. In patients allergic to penicillin derivatives, moxifloxacin and azithromycin may be indicated with caution. The antibiotics with the highest pattern of resistance against E. faecalis are clindamycin, gentamicin, metronidazole, and rifampicin and are therefore, contraindicated in cases of SPEI. Very few clinical studies using a microbiological approach in teeth with endodontic failure have been carried out to improve the efficacy of prophylactic regimens. However, as bacteria periodically develop resistance to the main drugs used, regular studies should be carried out on the action of these drugs in infection control.
Collapse
Affiliation(s)
| | - Brenda P F A Gomes
- Division of Endodontics, Department of Restorative Dentistry, Piracicaba Dental School, Universidade Estadual de Campinas - Piracicaba, São Paulo, Brazil
| | - Rodrigo Arruda-Vasconcelos
- Division of Endodontics, Department of Restorative Dentistry, Piracicaba Dental School, Universidade Estadual de Campinas - Piracicaba, São Paulo, Brazil; São Leopoldo Mandic School of Dentistry, Campinas, São Paulo, Brazil; School of Dentistry, Nossa Senhora do Patrocínio University Center, Itu, São Paulo, Brazil
| | | | | | - Pedro Henrique Sette-de-Souza
- School of Dentistry, Universidade de Pernambuco - Arcoverde, Pernambuco, Brazil; Graduate Program in Health and Socioambiental Development, Universidade de Pernambuco - Garanhuns, Pernambuco, Brazil
| |
Collapse
|
8
|
Chilambi GS, Wang YH, Wallace NR, Obiwuma C, Evans KM, Li Y, Shalaby MAW, Flaherty DP, Shields RK, Doi Y, Van Tyne D. Carbonic Anhydrase Inhibition as a Target for Antibiotic Synergy in Enterococci. Microbiol Spectr 2023; 11:e0396322. [PMID: 37260400 PMCID: PMC10434275 DOI: 10.1128/spectrum.03963-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 05/19/2023] [Indexed: 06/02/2023] Open
Abstract
Enterococcus faecalis is a hospital-associated opportunistic pathogen that can cause infections with high mortality, such as infective endocarditis. With an increasing occurrence of multidrug-resistant enterococci, there is a need for alternative strategies to treat enterococcal infections. We isolated a gentamicin-hypersusceptible E. faecalis strain from a patient with infective endocarditis that carried a mutation in the alpha-carbonic anhydrase (α-CA) and investigated how disruption of α-CA sensitized E. faecalis to killing with gentamicin. The gentamicin-hypersusceptible α-CA mutant strain showed increased intracellular gentamicin uptake in comparison to an isogenic strain encoding full-length, wild-type α-CA. We hypothesized that increased gentamicin uptake could be due to increased proton motive force (PMF), increased membrane permeability, or both. We observed increased intracellular ATP production in the α-CA mutant strain, suggesting increased PMF-driven gentamicin uptake contributed to the strain's gentamicin susceptibility. We also analyzed the membrane permeability and fatty acid composition of isogenic wild-type and α-CA mutant strains and found that the mutant displayed a membrane composition that was consistent with increased membrane permeability. Finally, we observed that exposure to the FDA-approved α-CA inhibitor acetazolamide lowered the gentamicin MIC of eight genetically diverse E. faecalis strains with intact α-CA but did not change the MIC of the α-CA mutant strain. These results suggest that α-CA mutation or inhibition increases PMF and alters membrane permeability, leading to increased uptake of gentamicin into E. faecalis. This connection could be exploited clinically to provide new combination therapies for patients with enterococcal infections. IMPORTANCE Enterococcal infections can be difficult to treat, and new therapeutic approaches are needed. In studying an E. faecalis clinical strain from an infected patient, we found that the bacteria were rendered hypersusceptible to aminoglycoside antibiotics through a mutation that disrupted the α-CA. Our follow-on work suggested two different ways that α-CA disruption causes increased gentamicin accumulation in E. faecalis: increased proton motive force-powered uptake and increased membrane permeability. We also found that a mammalian CA inhibitor could sensitize a variety of E. faecalis strains to killing with gentamicin. Given that mammalian CA inhibitors are frequently used to treat conditions such as glaucoma, hypertension, and epilepsy, our findings suggest that these "off-the-shelf" inhibitors could also be useful partner antibiotics for the treatment of E. faecalis infections.
Collapse
Affiliation(s)
- Gayatri Shankar Chilambi
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Yu-Hao Wang
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Nathan R. Wallace
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Chetachukwu Obiwuma
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Kirsten M. Evans
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Yanhong Li
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Tsinghua University School of Medicine, Beijing, China
| | - Menna-Allah W. Shalaby
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana, USA
| | - Daniel P. Flaherty
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana, USA
| | - Ryan K. Shields
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Yohei Doi
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Daria Van Tyne
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
9
|
Li XS, Qi Y, Li PH, Xue JZ, Li XY, Muhammad I, Li YZ, Zhu DM, Ma Y, Kong LC, Ma HX. Genetic characterization of MDR genomic elements carrying two aac(6')- aph(2″) genes in feline-derived clinical Enterococcus faecalis isolate. Front Microbiol 2023; 14:1191837. [PMID: 37577435 PMCID: PMC10413266 DOI: 10.3389/fmicb.2023.1191837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 07/10/2023] [Indexed: 08/15/2023] Open
Abstract
Multidrug-resistant Enterococcus faecalis (E. faecalis) often cause intestinal infections in cats. The aim of this study was to investigate a multidrug-resistant E. faecalis isolate for plasmidic and chromosomal antimicrobial resistance and their genetic environment. E. faecalis strain ESC1 was obtained from the feces of a cat. Antimicrobial susceptibility testing was carried out using the broth microdilution method. Conjugation experiments were performed using Escherichia coli and Staphylococcus aureus as receptors. Complete sequences of chromosomal DNA and plasmids were generated by whole genome sequencing (WGS) and bioinformatics analysis for the presence of drug resistance genes and mobile elements. Multidrug-resistant E. faecalis ESC1 contained a chromosome and three plasmids. The amino acid at position 80 of the parC gene on the chromosome was mutated from serine to isoleucine, and hence the amino acid mutation at this site led to the resistance of ESC1 strain to fluoroquinolones. Eleven antibiotic resistance genes were located on two plasmids. We identified a novel composite transposon carrying two aminoglycoside resistance genes aac(6')-aph(2″). This study reported the coexistence of a novel 5.4 kb composite transposon and a resistance plasmid with multiple homologous recombination in an isolate of E. faecalis ESC1. This data provides a basis for understanding the genomic signature and antimicrobial resistance mechanisms of this pathogen.
Collapse
Affiliation(s)
- Xue-Song Li
- Department of Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- The Key Laboratory of New Veterinary Drug Research and Development of Jilin Province, Jilin Agricultural University, Changchun, China
| | - Yu Qi
- Department of Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- The Key Laboratory of New Veterinary Drug Research and Development of Jilin Province, Jilin Agricultural University, Changchun, China
| | - Peng-hui Li
- Department of Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- The Key Laboratory of New Veterinary Drug Research and Development of Jilin Province, Jilin Agricultural University, Changchun, China
| | - Jun-ze Xue
- Department of Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- The Key Laboratory of New Veterinary Drug Research and Development of Jilin Province, Jilin Agricultural University, Changchun, China
| | - Xuan-yu Li
- Department of Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- The Key Laboratory of New Veterinary Drug Research and Development of Jilin Province, Jilin Agricultural University, Changchun, China
| | - Inam Muhammad
- Department of Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- The Key Laboratory of New Veterinary Drug Research and Development of Jilin Province, Jilin Agricultural University, Changchun, China
- Department of Zoology, Shaheed Benazir Bhutto University, Sheringal, Pakistan
| | - Ya-zhuo Li
- Department of Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- The Key Laboratory of New Veterinary Drug Research and Development of Jilin Province, Jilin Agricultural University, Changchun, China
| | - Dao-mi Zhu
- Department of Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- The Key Laboratory of New Veterinary Drug Research and Development of Jilin Province, Jilin Agricultural University, Changchun, China
| | - Ying Ma
- Liaoyuan Animal Disease Prevention and Control Center, Liaoyuan, China
| | - Ling-Cong Kong
- Department of Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- The Key Laboratory of New Veterinary Drug Research and Development of Jilin Province, Jilin Agricultural University, Changchun, China
| | - Hong-Xia Ma
- Department of Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- The Key Laboratory of New Veterinary Drug Research and Development of Jilin Province, Jilin Agricultural University, Changchun, China
- The Engineering Research Center of Bioreactor and Drug Development, Ministry of Education, Jilin Agricultural University, Changchun, China
| |
Collapse
|
10
|
Cabal A, Rab G, Daza-Prieto B, Stöger A, Peischl N, Chakeri A, Mo SS, Bock H, Fuchs K, Sucher J, Rathammer K, Hasenberger P, Stadtbauer S, Caniça M, Strauß P, Allerberger F, Wögerbauer M, Ruppitsch W. Characterizing Antimicrobial Resistance in Clinically Relevant Bacteria Isolated at the Human/Animal/Environment Interface Using Whole-Genome Sequencing in Austria. Int J Mol Sci 2022; 23:ijms231911276. [PMID: 36232576 PMCID: PMC9570485 DOI: 10.3390/ijms231911276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Antimicrobial resistance (AMR) is a public health issue attributed to the misuse of antibiotics in human and veterinary medicine. Since AMR surveillance requires a One Health approach, we sampled nine interconnected compartments at a hydrological open-air lab (HOAL) in Austria to obtain six bacterial species included in the WHO priority list of antibiotic-resistant bacteria (ARB). Whole genome sequencing-based typing included core genome multilocus sequence typing (cgMLST). Genetic and phenotypic characterization of AMR was performed for all isolates. Eighty-nine clinically-relevant bacteria were obtained from eight compartments including 49 E. coli, 27 E. faecalis, 7 K. pneumoniae and 6 E. faecium. Clusters of isolates from the same species obtained in different sample collection dates were detected. Of the isolates, 29.2% were resistant to at least one antimicrobial. E. coli and E. faecalis isolates from different compartments had acquired antimicrobial resistance genes (ARGs) associated with veterinary drugs such as aminoglycosides and tetracyclines, some of which were carried in conjugative and mobilizable plasmids. Three multidrug resistant (MDR) E. coli isolates were found in samples from field drainage and wastewater. Early detection of ARGs and ARB in natural and farm-related environments can identify hotspots of AMR and help prevent its emergence and dissemination along the food/feed chain.
Collapse
Affiliation(s)
- Adriana Cabal
- Austrian Agency for Health and Food Safety, 1096 Vienna, Austria
- Correspondence:
| | - Gerhard Rab
- Institute of Hydraulic Engineering and Water Resources Management, Technical University of Vienna, 1040 Vienna, Austria
- Institute for Land and Water Management Research, Federal Agency for Water Management, 3252 Petzenkirchen, Austria
| | - Beatriz Daza-Prieto
- Austrian Agency for Health and Food Safety, 1096 Vienna, Austria
- Institute of Chemical, Environmental and Bioscience Engineering, 1060 Vienna, Austria
| | - Anna Stöger
- Austrian Agency for Health and Food Safety, 1096 Vienna, Austria
| | - Nadine Peischl
- Austrian Agency for Health and Food Safety, 1096 Vienna, Austria
| | - Ali Chakeri
- Austrian Agency for Health and Food Safety, 1096 Vienna, Austria
- Center for Public Health, Medical University Vienna, 1090 Vienna, Austria
| | - Solveig Sølverød Mo
- Section for Food Safety and Animal Health Research, Department of Animal Health, Welfare and Food Safety, Norwegian Veterinary Institute, 1433 Ås, Norway
| | - Harald Bock
- Austrian Agency for Health and Food Safety, 1096 Vienna, Austria
| | - Klemens Fuchs
- Austrian Agency for Health and Food Safety, 1096 Vienna, Austria
| | - Jasmin Sucher
- Austrian Agency for Health and Food Safety, 1096 Vienna, Austria
| | - Krista Rathammer
- Austrian Agency for Health and Food Safety, 1096 Vienna, Austria
| | | | - Silke Stadtbauer
- Austrian Agency for Health and Food Safety, 1096 Vienna, Austria
| | - Manuela Caniça
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge, 1600-609 Lisbon, Portugal
| | - Peter Strauß
- Institute for Land and Water Management Research, Federal Agency for Water Management, 3252 Petzenkirchen, Austria
| | | | | | - Werner Ruppitsch
- Austrian Agency for Health and Food Safety, 1096 Vienna, Austria
- Department of Biotechnology, University of Natural Resources and Life Sciences, 1180 Vienna, Austria
| |
Collapse
|
11
|
Enterococcus Virulence and Resistant Traits Associated with Its Permanence in the Hospital Environment. Antibiotics (Basel) 2022; 11:antibiotics11070857. [PMID: 35884110 PMCID: PMC9311936 DOI: 10.3390/antibiotics11070857] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 11/17/2022] Open
Abstract
Enterococcus are opportunistic pathogens that have been gaining importance in the clinical setting, especially in terms of hospital-acquired infections. This problem has mainly been associated with the fact that these bacteria are able to present intrinsic and extrinsic resistance to different classes of antibiotics, with a great deal of importance being attributed to vancomycin-resistant enterococci. However, other aspects, such as the expression of different virulence factors including biofilm-forming ability, and its capacity of trading genetic information, makes this bacterial genus more capable of surviving harsh environmental conditions. All these characteristics, associated with some reports of decreased susceptibility to some biocides, all described in this literary review, allow enterococci to present a longer survival ability in the hospital environment, consequently giving them more opportunities to disseminate in these settings and be responsible for difficult-to-treat infections.
Collapse
|
12
|
Mutators Enhance Adaptive Micro-Evolution in Pathogenic Microbes. Microorganisms 2022; 10:microorganisms10020442. [PMID: 35208897 PMCID: PMC8875331 DOI: 10.3390/microorganisms10020442] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/07/2022] [Accepted: 02/10/2022] [Indexed: 02/04/2023] Open
Abstract
Adaptation to the changing environmental conditions experienced within a host requires genetic diversity within a microbial population. Genetic diversity arises from mutations which occur due to DNA damage from exposure to exogenous environmental stresses or generated endogenously through respiration or DNA replication errors. As mutations can be deleterious, a delicate balance must be obtained between generating enough mutations for micro-evolution to occur while maintaining fitness and genomic integrity. Pathogenic microorganisms can actively modify their mutation rate to enhance adaptive micro-evolution by increasing expression of error-prone DNA polymerases or by mutating or decreasing expression of genes required for DNA repair. Strains which exhibit an elevated mutation rate are termed mutators. Mutators are found in varying prevalence in clinical populations where large-effect beneficial mutations enhance survival and are predominately caused by defects in the DNA mismatch repair (MMR) pathway. Mutators can facilitate the emergence of antibiotic resistance, allow phenotypic modifications to prevent recognition and destruction by the host immune system and enable switching to metabolic and cellular morphologies better able to survive in the given environment. This review will focus on recent advances in understanding the phenotypic and genotypic changes occurring in MMR mutators in both prokaryotic and eukaryotic pathogens.
Collapse
|