1
|
Jahan I, Shuvo AUH, Alimullah M, Rahman ASMN, Siddiqua S, Rafia S, Khan F, Ahmed KS, Hossain H, Akramuddaula K, Alam MA, Subhan N. Purple potato extract modulates fat metabolizing genes expression, prevents oxidative stress, hepatic steatosis, and attenuates high-fat diet-induced obesity in male rats. PLoS One 2025; 20:e0318162. [PMID: 40168333 PMCID: PMC11960900 DOI: 10.1371/journal.pone.0318162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 01/03/2025] [Indexed: 04/03/2025] Open
Abstract
OBJECTIVE In this investigation, the significance of purple potato (Solanum tuberosum L.) extract treatment was assessed against oxidative stress and fat metabolizing transcription factors in the liver of high-fat (HF) diet-fed rats. METHODS Wistar (male) rats were arranged into several groups and provided with a control and HF diet along with the purple potato extract. Body weights, oral glucose tolerance test (OGTT), insulin, plasma lipids, and oxidative stress-related indicators were analyzed in plasma and tissue samples. Additionally, real-time PCR was performed to evaluate the gene expression for oxidative stress and fat metabolism in the liver. Histological staining was also performed on pancreatic and hepatic tissues. RESULTS Purple potato extract lowered body weights and improved glucose utilization in the OGTT test in HF diet-fed rats. Purple potato extract also suppressed HF-diet-induced oxidative stress in plasma and hepatic tissues. Purple potato extract also restored the Nrf-2 expression in the liver, followed by the improved expression of HO-1, HO-2, and other antioxidant genes in HF diet-fed rats. In addition, genes involved in lipid metabolism were also positively modulated due to purple potato extract treatment. Furthermore, histological examination revealed the reduction of lipid accumulation and amelioration of inflammation due to the consumption of purple potato extract. CONCLUSION This investigation revealed that antioxidant-rich purple potato extract can modulate the antioxidant and fat metabolizing genes expression, ameliorated oxidative stress and glucose intolerance as well as lowered blood lipids in male rats.
Collapse
Affiliation(s)
- Ishrat Jahan
- Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
| | - Asif Ul Haque Shuvo
- Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
| | - Mirza Alimullah
- Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
| | | | | | - Shatil Rafia
- Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
| | - Ferdous Khan
- Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
| | - Khondoker Shahin Ahmed
- Chemical Research Division, BCSIR Laboratories, Dhaka, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, Bangladesh
| | - Hemayet Hossain
- Chemical Research Division, BCSIR Laboratories, Dhaka, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, Bangladesh
| | | | - Md Ashraful Alam
- Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
| | - Nusrat Subhan
- Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
| |
Collapse
|
2
|
Svobodová G, Horní M, Velecká E, Boušová I. Metabolic dysfunction-associated steatotic liver disease-induced changes in the antioxidant system: a review. Arch Toxicol 2025; 99:1-22. [PMID: 39443317 PMCID: PMC11748479 DOI: 10.1007/s00204-024-03889-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/09/2024] [Indexed: 10/25/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a heterogeneous condition characterized by liver steatosis, inflammation, consequent fibrosis, and cirrhosis. Chronic impairment of lipid metabolism is closely related to oxidative stress, leading to cellular lipotoxicity, mitochondrial dysfunction, and endoplasmic reticulum stress. The detrimental effect of oxidative stress is usually accompanied by changes in antioxidant defense mechanisms, with the alterations in antioxidant enzymes expression/activities during MASLD development and progression reported in many clinical and experimental studies. This review will provide a comprehensive overview of the present research on MASLD-induced changes in the catalytic activity and expression of the main antioxidant enzymes (superoxide dismutases, catalase, glutathione peroxidases, glutathione S-transferases, glutathione reductase, NAD(P)H:quinone oxidoreductase) and in the level of non-enzymatic antioxidant glutathione. Furthermore, an overview of the therapeutic effects of vitamin E on antioxidant enzymes during the progression of MASLD will be presented. Generally, at the beginning of MASLD development, the expression/activity of antioxidant enzymes usually increases to protect organisms against the increased production of reactive oxygen species. However, in advanced stage of MASLD, the expression/activity of several antioxidants generally decreases due to damage to hepatic and extrahepatic cells, which further exacerbates the damage. Although the results obtained in patients, in various experimental animal or cell models have been inconsistent, taken together the importance of antioxidant enzymes in MASLD development and progression has been clearly shown.
Collapse
Affiliation(s)
- Gabriela Svobodová
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, 500 05, Hradec Králové, Czech Republic
| | - Martin Horní
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, 500 05, Hradec Králové, Czech Republic
| | - Eva Velecká
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, 500 05, Hradec Králové, Czech Republic
| | - Iva Boušová
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, 500 05, Hradec Králové, Czech Republic.
| |
Collapse
|
3
|
Kitphati W, Sato VH, Peungvicha P, Saengklub N, Chewchinda S, Kongkiatpaiboon S, Goli AS, Sangfuang M, Nontakham J, Chatsumpun N, Mangmool S, Sato H. Antihyperglycemic activity of a novel polyherbal formula (HF344), a mixture of fifteen herb extracts, for the management of type 2 diabetes: Evidence from in vitro, ex vivo, and in vivo studies. Heliyon 2024; 10:e38703. [PMID: 39421370 PMCID: PMC11483321 DOI: 10.1016/j.heliyon.2024.e38703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/03/2024] [Accepted: 09/27/2024] [Indexed: 10/19/2024] Open
Abstract
Antihyperglycemic effects of a novel polyherbal formula (HF344), comprising fifteen Thai herbal extracts, were elucidated for pharmacological mechanisms and potential for managing type 2 diabetes mellitus, by employing in vitro, ex vivo, and in vivo approaches. LC/MS analysis of HF344 extract revealed several phytoconstituents, with piperine identified as the major active compound. HF344 extract significantly enhanced insulin secretion in RINm5F cells in vitro and inhibited glucose uptake into the everted sacs of the mouse small intestine ex vivo in a concentration-dependent manner compared to the control (p < 0.05). It exhibited potent α-glucosidase inhibition in vitro, with an IC50 of 96.74 μg/mL. Moreover, HF344 extract upregulated mRNA levels of GLUT1 in L6 skeletal myoblasts, suggesting increased glucose uptake into skeletal muscle. In addition, in vivo antihyperglycemic effects were assessed in streptozotocin (STZ)-nicotinamide (NA)-induced diabetic mice. Acute oral toxicity testing confirmed the HF344 extract's safety, with an LD50 exceeding 2000 mg/kg. Oral administration of HF344 extract (500 and 1000 mg/kg) in STZ-NA-induced diabetic mice significantly reduced the area under the fasting blood glucose (FBG)-time curve (AUC) in the oral glucose tolerance test (OGTT) model and treatment for 28-day reduced the FBG levels as compared with control (p < 0.05). This was accompanied by increased serum insulin levels and improved insulin resistance. HF344 extract also demonstrated a concentration-dependent inhibitory effect on malondialdehyde (MDA) production in vitro, with an IC50 of 7.24 μg/mL. Oral treatment with HF344 extract decreased MDA production in the homogenized muscle ex vivo collected from STZ-NA-induced mice. Furthermore, pretreatment with HF344 extract effectively restored the survival of RINm5F cells from STZ-induced damage. These findings suggest that HF344 is a promising polyherbal formula for managing blood glucose levels, enhancing insulin production, and providing antioxidant benefits in T2DM. Further research is required to evaluate the clinical efficacy and safety profiles of HF344.
Collapse
Affiliation(s)
- Worawan Kitphati
- Department of Physiology, Faculty of Pharmacy, Mahidol University, Bangkok, 10400, Thailand
| | | | - Penchom Peungvicha
- Department of Physiology, Faculty of Pharmacy, Mahidol University, Bangkok, 10400, Thailand
| | - Nakkawee Saengklub
- Department of Physiology, Faculty of Pharmacy, Mahidol University, Bangkok, 10400, Thailand
| | - Savita Chewchinda
- Department of Food Chemistry, Faculty of Pharmacy, Mahidol University, Bangkok, 10400, Thailand
| | - Sumet Kongkiatpaiboon
- Drug Discovery and Development Center, Office of Advanced Science and Technology, Thammasat University (Rangsit Campus), Pathum Thani, 12121, Thailand
| | - Arman Syah Goli
- Department of Pharmacology, Faculty of Pharmacy, Mahidol University, Bangkok, 10400, Thailand
| | - Manaw Sangfuang
- Department of Pharmacology, Faculty of Pharmacy, Mahidol University, Bangkok, 10400, Thailand
| | - Jannarin Nontakham
- Clinical Research Section, Division of Research and Academic Support, National Cancer Institute, Bangkok, 10400, Thailand
| | - Nutputsorn Chatsumpun
- Department of Pharmacognosy, Faculty of Pharmacy, Mahidol University, Bangkok, 10400, Thailand
| | - Supachoke Mangmool
- Department of Pharmaceutical Care, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Hitoshi Sato
- Division of Pharmacokinetics and Pharmacodynamics, Department of Pharmacology, Toxicology and Therapeutics, School of Pharmacy, Showa University, Tokyo, 142-855, Japan
| |
Collapse
|
4
|
Chenna H, Khelef Y, Halimi I, Yilmaz MA, Çakir O, Djouder C, Tarhan A, Idoughi K, Boumendjel M, Boumendjel A, Messarah M. Potential Hepatoprotective Effect of Matricaria Pubescens on High-Fat Diet-Induced Non-Alcoholic Fatty Liver Disease in Rats. Chem Biodivers 2024; 21:e202302005. [PMID: 38451246 DOI: 10.1002/cbdv.202302005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/19/2024] [Indexed: 03/08/2024]
Abstract
This study aimed to identify the phytochemical compounds of Matricaria pubescens by LC-MS/MS and evaluate the potential protective effect of its supplementation in high-fat diet (HFD)-induced non-alcoholic fatty liver disease (NAFLD) in adult rats through modulation of oxidative stress and histopathological changes. Twenty-four male rats were randomly divided into four groups. The first group served as control and received the standard diet. The second group (HFD) received a high-fat diet only (30 % of sheep fat). The third group's (control+MP) animals received a standard diet supplemented with 5 % M. pubescens (w/w). The fourth group (HFD+MP) received a high-fat diet supplemented with 5 % M. pubescens for 16 weeks. LC-MS/MS analysis showed that M. pubescens contains many phytochemical compounds. It was observed that the ethanolic extract of M. pubescens has a higher phenolic content than the aqueous extract. The supplementation of M. pubescens (5 % w/w) to HFD rats decreased significantly (p<0.01) body weight, liver and epididymal adipose tissue relative weights, glycemia, triglycerides (TG), insulin resistance, liver markers, TNF-α, malondialdehyde (MDA), protein carbonyl (PCO), advanced oxidation protein products (AOPP) level, and increased reduced glutathione (GSH) level, glutathione peroxidase (GPx), glutathione-S-transferase (GST), superoxide dismutase (SOD), and catalase activities as well as ameliorated histological alterations through the reduction hepatic lipid deposition and adipocytes hypertrophy compared to the HFD group. We conclude that M. pubescens powder may be effective for correcting hyperglycemia, hypertriglyceridemia, insulin resistance, and liver markers while decreasing inflammation and oxidative stress in the liver of high-fat diet-fed rats.
Collapse
Affiliation(s)
- Houssem Chenna
- Laboratory of Biochemistry and Environmental Toxicology, Department of Biochemistry, Faculty of Sciences, University of Badji Mokhtar, BP 12, Sidi Amar, Annaba, Algeria
| | - Yahia Khelef
- Laboratory of Biology, Environment and Health, Department of Cellular and Molecular Biology, Faculty of Natural Science and Life, El Oued University, El Oued, Algeria
| | - Imen Halimi
- Laboratory of Biochemistry and Environmental Toxicology, Department of Biochemistry, Faculty of Sciences, University of Badji Mokhtar, BP 12, Sidi Amar, Annaba, Algeria
| | - Mustafa Abdullah Yilmaz
- Dicle University Science and Technology Research and Application Center, 21280, Diyarbakir, Turkey
| | - Oğuz Çakir
- Dicle University, Faculty of Health Sciences, Department of Nutrition and Dietetics, 21280, Diyarbakir, Turkey
| | - Chaouki Djouder
- Laboratory of Biochemistry and Environmental Toxicology, Department of Biochemistry, Faculty of Sciences, University of Badji Mokhtar, BP 12, Sidi Amar, Annaba, Algeria
| | - Abbas Tarhan
- Dicle University Science and Technology Research and Application Center, 21280, Diyarbakir, Turkey
| | - Khouloud Idoughi
- Laboratory of Biochemistry and Environmental Toxicology, Department of Biochemistry, Faculty of Sciences, University of Badji Mokhtar, BP 12, Sidi Amar, Annaba, Algeria
| | - Mahieddine Boumendjel
- Laboratory of Biochemistry and Environmental Toxicology, Department of Biochemistry, Faculty of Sciences, University of Badji Mokhtar, BP 12, Sidi Amar, Annaba, Algeria
| | - Amel Boumendjel
- Laboratory of Biochemistry and Environmental Toxicology, Department of Biochemistry, Faculty of Sciences, University of Badji Mokhtar, BP 12, Sidi Amar, Annaba, Algeria
| | - Mahfoud Messarah
- Laboratory of Biochemistry and Environmental Toxicology, Department of Biochemistry, Faculty of Sciences, University of Badji Mokhtar, BP 12, Sidi Amar, Annaba, Algeria
| |
Collapse
|
5
|
Yu W, Zhang F, Meng D, Zhang X, Feng Y, Yin G, Liang P, Chen S, Liu H. Mechanism of Action and Related Natural Regulators of Nrf2 in Nonalcoholic Fatty Liver Disease. Curr Drug Deliv 2024; 21:1300-1319. [PMID: 39034715 DOI: 10.2174/0115672018260113231023064614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/19/2023] [Accepted: 09/01/2023] [Indexed: 07/23/2024]
Abstract
With the acceleration of people's pace of life, non-alcoholic fatty liver disease (NAFLD) has become the most common chronic liver disease in the world, which greatly threatens people's health and safety. Therefore, there is still an urgent need for higher-quality research and treatment in this area. Nuclear factor Red-2-related factor 2 (Nrf2), as a key transcription factor in the regulation of oxidative stress, plays an important role in inducing the body's antioxidant response. Although there are no approved drugs targeting Nrf2 to treat NAFLD so far, it is still of great significance to target Nrf2 to alleviate NAFLD. In recent years, studies have reported that many natural products treat NAFLD by acting on Nrf2 or Nrf2 pathways. This article reviews the role of Nrf2 in the pathogenesis of NAFLD and summarizes the currently reported natural products targeting Nrf2 or Nrf2 pathway for the treatment of NAFLD, which provides new ideas for the development of new NAFLD-related drugs.
Collapse
Affiliation(s)
- Wenfei Yu
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250000, People's Republic of China
| | - Fengxia Zhang
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250011, People's Republic of China
| | - Decheng Meng
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250000, People's Republic of China
| | - Xin Zhang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250000, People's Republic of China
| | - Yanan Feng
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250000, People's Republic of China
| | - Guoliang Yin
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250000, People's Republic of China
| | - Pengpeng Liang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250000, People's Republic of China
| | - Suwen Chen
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250000, People's Republic of China
| | - Hongshuai Liu
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250000, People's Republic of China
| |
Collapse
|
6
|
Xia W, Li S, Li L, Zhang S, Wang X, Ding W, Ding L, Zhang X, Wang Z. Role of anthraquinones in combating insulin resistance. Front Pharmacol 2023; 14:1275430. [PMID: 38053837 PMCID: PMC10694622 DOI: 10.3389/fphar.2023.1275430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/06/2023] [Indexed: 12/07/2023] Open
Abstract
Insulin resistance presents a formidable public health challenge that is intricately linked to the onset and progression of various chronic ailments, including diabetes, cardiovascular disease, hypertension, metabolic syndrome, nonalcoholic fatty liver disease, and cancer. Effectively addressing insulin resistance is paramount in preventing and managing these metabolic disorders. Natural herbal remedies show promise in combating insulin resistance, with anthraquinone extracts garnering attention for their role in enhancing insulin sensitivity and treating diabetes. Anthraquinones are believed to ameliorate insulin resistance through diverse pathways, encompassing activation of the AMP-activated protein kinase (AMPK) signaling pathway, restoration of insulin signal transduction, attenuation of inflammatory pathways, and modulation of gut microbiota. This comprehensive review aims to consolidate the potential anthraquinone compounds that exert beneficial effects on insulin resistance, elucidating the underlying mechanisms responsible for their therapeutic impact. The evidence discussed in this review points toward the potential utilization of anthraquinones as a promising therapeutic strategy to combat insulin resistance and its associated metabolic diseases.
Collapse
Affiliation(s)
- Wanru Xia
- Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Shuqian Li
- Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - LinZehao Li
- Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Shibo Zhang
- Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Xiaolei Wang
- Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Wenyu Ding
- Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Lina Ding
- Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Xiandang Zhang
- Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Zhibin Wang
- Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|