1
|
Jin Z, Wu D, Chen Y, Long Y, Liu Y, Zheng Z, Gui S, Huang Y, He N. Ketoconazole-loaded microspone film coating agent for superficial fungal infection: design, preparation and characterization. J Mycol Med 2025; 35:101551. [PMID: 40286591 DOI: 10.1016/j.mycmed.2025.101551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 04/10/2025] [Accepted: 04/16/2025] [Indexed: 04/29/2025]
Abstract
Ketoconazole (KCZ), an imidazole antifungal drug, is constrained by its low solubility and poor stability, restricting its effective absorption and bioavailability. This study introduces a KCZ-loaded microsponge based film coating agent (KCZ-MSF), designed to enhance the transdermal absorption and bioavailability of KCZ. The KCZ-MS was prepared by emulsion solvent evaporation method and the composition of the prescription was optimized by Box-Behnken design (BBD). Moreover, characterization of the optimized KCZ-MS was conducted using scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), and differential scanning calorimetry (DSC). The film coating agent's preparation was further optimized through orthogonal experiments, converting the optimized KCZ-MS into a film coating agent suitable for topical skin application. The KCZ-MS showed a spherical porous structure with a mean particle size of 22.42 ± 8.45 μm, a drug loading efficiency of 20.74 %, entrapment efficiency of 92.12 %, and good compatibility between the drug and excipients. The optimized KCZ-MSF displayed good physical properties. In vitro transdermal experiments revealed that the skin retention of KCZ-MSF surpassed that of commercially available KCZ cream at 6, 12, and 24 h. The pharmacokinetic experiment results indicate that the area under the curve (AUC0-24) of KCZ-MSF 420.71 ± 21.77 μg/(g·h) is 2.05 times that of KCZ film coating agent (KCZ-F) and 1.29 times that of commercially available ketoconazole cream. Therefore, KCZ-MSF presents a more promising platform for the treatment of superficial skin fungal infections.
Collapse
Affiliation(s)
- Zhaowei Jin
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, PR China
| | - Danqing Wu
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, PR China
| | - Yangnan Chen
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, PR China
| | - Yanqiu Long
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, PR China
| | - Yan Liu
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, PR China
| | - Zhiyun Zheng
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, PR China
| | - Shuangying Gui
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, PR China; Institute of Pharmaceutics, Anhui Academy of Chinese Medical Sciences, Hefei 230012, PR China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei 230012, PR China
| | - Yuzhe Huang
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, PR China; Institute of Pharmaceutics, Anhui Academy of Chinese Medical Sciences, Hefei 230012, PR China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei 230012, PR China.
| | - Ning He
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, PR China; Institute of Pharmaceutics, Anhui Academy of Chinese Medical Sciences, Hefei 230012, PR China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei 230012, PR China.
| |
Collapse
|
2
|
Sabbagh F, Deshmukh AR, Choi Y, Kim BS. Effect of Microsphere Concentration on Catechin Release from Microneedle Arrays. ACS APPLIED MATERIALS & INTERFACES 2024; 16:28276-28289. [PMID: 38788676 DOI: 10.1021/acsami.4c06064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
In this work, microspheres were developed by cross-linking glutaraldehyde in an aqueous gelatin solution with a surfactant and solvent. A poly(vinyl alcohol) (PVA) solution was produced and combined with catechin-loaded microspheres. Different microsphere concentrations (0%, 5%, 10%, and 15%) were applied to the PVA microneedles. The moisture content, particle size, swelling, and drug release percentage of microneedles were studied using various microsphere concentrations. Fourier transform infrared and scanning electron microscopy (SEM) investigations validated the structure of gelatin microspheres as well as their decoration in microneedles. The SEM scans revealed that spherical microspheres with a wrinkled and folded morphology were created, with no physical holes visible on the surface. The gelatin microspheres generated had a mean particle size of 20-30 μm. Ex vivo release analysis indicated that microneedles containing 10% microspheres released the most catechin, with 42.9% at 12 h and 84.4% at 24 h.
Collapse
Affiliation(s)
- Farzaneh Sabbagh
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Aarti R Deshmukh
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Yoseok Choi
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Beom Soo Kim
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| |
Collapse
|
3
|
Krishnaswami V, Sugumaran A, Perumal V, Manavalan M, Kondeti DP, Basha SK, Ahmed MA, Kumar M, Vijayaraghavalu S. Nanoformulations - Insights Towards Characterization Techniques. Curr Drug Targets 2022; 23:1330-1344. [PMID: 35996238 DOI: 10.2174/1389450123666220822094248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 02/28/2022] [Accepted: 05/12/2022] [Indexed: 01/25/2023]
Abstract
BACKGROUND Drug-loaded novel nanoformulations are gaining importance due to their versatile properties compared to conventional pharmaceutical formulations. Nanomaterials, apart from their multifactorial benefits, have a wider scope in the prevention, treatment, and diagnosis of cancer. Understanding the chemistry of drug-loaded nano-formulations to elicit its behaviour both at molecular and systemic levels is critical in the present scenario. Drug-loaded nanoformulations are controlled by their size, shape, surface chemistry, and release behavior. The major pharmaceutical drug loaded nanocarriers reported for anticancer drug delivery for the treatment of various forms of cancers such as lung cancer, liver cancer, breast cancer, colon cancer, etc include nanoparticles, nanospheres, nanodispersions, nanocapsules, nanomicelles, cubosomes, nanoemulsions, liposomes and niosomes. The major objectives in designing anticancer drug-loaded nanoformulations are to manage the particle size/morphology correlating with the drug release to fulfil the specific objectives. Hence, nano characterizations are very critical both at in vitro and in vivo levels. OBJECTIVE The main objective of this review paper is to summarise the major characterization techniques used for the characterization of drug-loaded nanoformulations. Even though information on characterization techniques of various nano-formulations is available in the literature, it is scattered. The proposed review will provide a comprehensive understanding of nanocharacterization techniques. CONCLUSION To conclude, the proposed review will provide insights towards the different nano characterization techniques along with their recent updates, such as particle size, zeta potential, entrapment efficiency, in vitro release studies (chromatographic HPLC, HPTLC, and LC-MS/MS analysis), EPR analysis, X-ray diffraction analysis, thermal analysis, rheometric, morphological analysis etc. Additionally, the challenges encountered by the nano characterization techniques will also be discussed.
Collapse
Affiliation(s)
- Venkateshwaran Krishnaswami
- Department of Pharmaceutical Technology, University College of Engineering, Anna University, BIT Campus, Tiruchirappalli, Tamil Nadu, India
| | - Abimanyu Sugumaran
- Department of Pharmaceutics, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamil Nadu, India
| | - Venkatesan Perumal
- Center for Injury Biomechanics, Materials and Medicine, Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Murugan Manavalan
- Department of Biomedical Engineering, Noorul Islam Center for Higher Education, Kumaracoil, Kanyakumari, Tamil Nadu, India
| | - Durga Prasad Kondeti
- Department of Pharmaceutical Chemistry, Narayana College of Pharmacy, Nellore 524003, Andhra Pradesh, India
| | - Shaik Kamil Basha
- Department of Pharmaceutical Chemistry, Narayana College of Pharmacy, Nellore 524003, Andhra Pradesh, India
| | - Mohammed Akmal Ahmed
- Department of Pharmaceutical Chemistry, Narayana College of Pharmacy, Nellore 524003, Andhra Pradesh, India
| | - Munish Kumar
- Department of Biochemistry, University of Allahabad, Prayagraj 211002, India
| | | |
Collapse
|
4
|
Sabbagh F, Kim BS. Microneedles for transdermal drug delivery using clay-based composites. Expert Opin Drug Deliv 2022; 19:1099-1113. [DOI: 10.1080/17425247.2022.2119220] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Farzaneh Sabbagh
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Beom Soo Kim
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| |
Collapse
|
5
|
Mejía-Giraldo JC, Scaiano JC, Gallardo-Cabrera C, Puertas-Mejía MA. Photoprotection and Photostability of a New Lignin-Gelatin- Baccharis antioquensis-Based Hybrid Biomaterial. Antioxidants (Basel) 2021; 10:1904. [PMID: 34943007 PMCID: PMC8750119 DOI: 10.3390/antiox10121904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/05/2021] [Accepted: 11/06/2021] [Indexed: 12/02/2022] Open
Abstract
The aim of this study was to develop a new hybrid biomaterial that could photo-stabilize and improve the photoprotective capacity of a Baccharis antioquensis extract. Different combinations of lignin/gelatin/natural extract were applied to prepare hybrid biomaterial nanoparticles (NPs), which were then incorporated into an emulsion. The in vitro photoprotection and photostability were evaluated. The methanolic extract showed high phenolic content (646.4 ± 9.5 mg GAE/g dry extract) and a DPPH radical assay revealed that the antiradical capacity of the extract (0.13 to 0.05 g extract/mmol DPPH) was even better than that of BHT. The particle size of the hybrid biomaterial ranged from 100 to 255 nm; a polydispersity index (PdI) between 0.416 and 0.788 is suitable for topical use in dermocosmetic products. The loading capacity of the extract ranged from 27.0 to 44.5%, and the nanoparticles (NPs) showed electrostatic stability in accordance with the zeta potential value. We found that the formulation based on lignin: extract (1:1 ratio) and gelatin: lignin: extract (0.5:0.5:1 ratio) demonstrated photoprotection qualities with a sun protection factor (SPF) ranging from 9.4 to 22.6. In addition, all the hybrid NP-formulations were time-stable with %SPFeff and %UVAPFeff greater than 80% after exposure to 2 h of radiation. These results suggest that the hybrid biopolymer-natural extract improved the photoprotection and photostability properties, as well as the antiradical capacity, of the B. antioquensis extract, and may be useful for trapping high polyphenol content from natural extracts, with potential application in cosmeceutical formulations.
Collapse
Affiliation(s)
- Juan C. Mejía-Giraldo
- Grupo de Investigación en Compuestos Funcionales, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín 050010, Colombia;
- Grupo de Estabilidad de Medicamentos, Cosméticos y Alimentos, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín 050010, Colombia;
| | - Juan C. Scaiano
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada;
| | - Cecilia Gallardo-Cabrera
- Grupo de Estabilidad de Medicamentos, Cosméticos y Alimentos, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín 050010, Colombia;
| | - Miguel A. Puertas-Mejía
- Grupo de Investigación en Compuestos Funcionales, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín 050010, Colombia;
| |
Collapse
|