1
|
Thompson AW, Black AC, Huang Y, Shi Q, Furness AI, Braasch I, Hoffmann FG, Ortí G. Transcriptomic data support phylogenetic congruence and reveal genomic changes associated with the repeated evolution of annualism in aplocheiloid killifishes (Cyprinodontiformes). Mol Phylogenet Evol 2024; 201:108209. [PMID: 39366593 DOI: 10.1016/j.ympev.2024.108209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 08/21/2024] [Accepted: 09/27/2024] [Indexed: 10/06/2024]
Abstract
Repeated evolution of novel life histories that are correlated with ecological variables offers opportunities to study convergence in genetic, developmental, and metabolic features. Nearly half of the 800 species of Aplocheiloid killifishes, a clade of teleost fishes with a circumtropical distribution, are "annual" or seasonal species that survive in ephemeral bodies of water that desiccate and are unfeasible for growth, reproduction, or survival for weeks to months every year. But the repeated evolution of adaptations that are key features of the annual life history among these fishes remains poorly known without a robust phylogenetic framework. We present a large-scale phylogenomic reconstruction of aplocheiloid killifishes evolution using newly sequenced transcriptomes obtained from a diversity of killifish lineages representing putative independent origins of annualism. Ancestral state estimation shows that developmental dormancy (diapause), a key trait of the killifish annual life cycle, may have originated up to seven times independently among African and South American lineages. To further explore the genetic basis of this unique trait, we measure changes in evolutionary rates among orthologous genes across the killifish tree of life by quantifying codon evolution using dN/dS ratios. We show that some genes have higher dN/dS ratios in lineages leading to species with annual life history. Many of them constitute key developmental genes or nuclear-encoded metabolic genes that control oxidative phosphorylation. Lastly, we compare these genes with higher ω to genes previously associated to developmental dormancy and metabolic shifts in killifishes and other vertebrates, and thereby identify molecular evolutionary signatures of repeated transitions to extreme environments.
Collapse
Affiliation(s)
- Andrew W Thompson
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, USA; Department of Integrative Biology, Michigan State University, East Lansing, MI, USA; Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, MI, USA.
| | | | - Yu Huang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Qiong Shi
- Shenzhen Key Lab of Marine Genomics, BGI Academy of Marine Sciences, BGI Marine, Shenzhen, China; Laboratory of Aquatic Genomics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, College of Life Science, Neijiang Normal University, Neijiang, China
| | - Andrew I Furness
- Maryland Fish and Wildlife Conservation Office U.S. Fish and Wildlife Service Annapolis, MD, USA
| | - Ingo Braasch
- Department of Integrative Biology, Michigan State University, East Lansing, MI, USA; Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, MI, USA
| | - Federico G Hoffmann
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, MS, USA; Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, MS, USA
| | - Guillermo Ortí
- Department of Biological Sciences, The George Washington University, Washington, DC, USA
| |
Collapse
|
2
|
Earhart ML, Thapar M, Blanchard TS, Bugg WS, Schulte PM. Persistent interactive effects of developmental salinity and temperature in Atlantic killifish (Fundulus heteroclitus). Comp Biochem Physiol A Mol Integr Physiol 2024; 297:111732. [PMID: 39209059 DOI: 10.1016/j.cbpa.2024.111732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/23/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Climate change alters multiple abiotic environmental factors in aquatic environments but relatively little is known about their interacting impacts, particularly in developing organisms where these exposures have the potential to cause long-lasting effects. To explore these issues, we exposed developing killifish embryos (Fundulus heteroclitus) to 26 °C or 20 °C and 20 ppt or 3 ppt salinity in a fully-factorial design. After hatching, fish were transferred to common conditions of 20 °C and 20 ppt to assess the potential for persistent developmental plasticity. Warm temperature increased hatching success and decreased hatch time, whereas low salinity negatively affected hatching success, but this was only significant in fish developed at 20 °C. Temperature, salinity, or their interaction affected mRNA levels of genes typically associated with thermal and hypoxia tolerance (hif1a, hsp90b, hsp90a, hsc70, and hsp70.2) across multiple developmental timepoints. These differences were persistent into the juvenile stage, where the fish that developed at 26 °C had higher expression of hif1a, hsp90b, hsp90a, and hsp70.2 than fish developed at 20 °C, and this was particularly evident for the group developed at both high temperature and salinity. There were also long-lasting effects of developmental treatments on body size after four months of rearing under common conditions. Fish developed at low salinity or temperature were larger than fish developed at high temperature or salinity, but there was no interaction between the two factors. These data highlight the complex nature of the developmental effects of interacting stressors which has important implications for predicting the resilience of fishes in the context of climate change.
Collapse
Affiliation(s)
- Madison L Earhart
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada.
| | - Myra Thapar
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada; Department of Biology, Carleton University, Ottawa, ON, Canada
| | - Tessa S Blanchard
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - William S Bugg
- Pacific Salmon Foundation, Vancouver, BC, Canada; Department of Forestry and Conservation Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Patricia M Schulte
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
3
|
Pagano AD, Nunes LS, Domingues WB, da Silveira TLR, Kütter MT, Schneider A, Kremer FS, Junior ASV, Amaral MG, Gonçalves NM, Bellido-Quispe DK, Volcan MV, Costa PG, Bianchini A, Pinhal D, Campos VF, Remião MH. Assessing reproductive effects and epigenetic responses in Austrolebias charrua exposed to Roundup Transorb®: Insights from miRNA profiling and molecular interaction analysis. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 110:104539. [PMID: 39173985 DOI: 10.1016/j.etap.2024.104539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/30/2024] [Accepted: 08/15/2024] [Indexed: 08/24/2024]
Abstract
This study examines the effects of Roundup Transorb® (RDT) exposure on reproductive functions and ovarian miRNA expression in Austrolebias charrua. Exposure to RDT (at 0.065 or 5 mg. L-1 for 96 h) significantly disrupts fertility, evidenced by changes in fertilization rates and egg diameter. Profiling of ovarian miRNAs identified a total 205 miRNAs in A. charrua. Among these, three miRNAs were upregulated (miR-10b-5p, miR-132-3p, miR-100-5p), while ten miRNAs were downregulated (miR-499-5p, miR-375, miR-205-5p, miR-206-3p, miR-203a-3p, miR-133b-3p, miR-203b-5p, miR-184, miR-133a-3p, miR-2188-5p) compared to non-exposed fish. This study reveals that differentially expressed miRNAs are linked to molecular pathways such as steroid hormone biosynthesis, lipid and carbohydrate metabolism, bioenergetics, and antioxidant defense. It also analyzes molecular interactions between miRNAs and target genes during RDT exposure in annual killifish, providing insights into biomarkers in ecotoxicology. Moreover, it provides scope for developing environmental health assessment models based on epigenomic endpoints, supporting the protection of biodiversity and ecosystem services through the quantification of stress responses in living organisms exposed to pesticides.
Collapse
Affiliation(s)
- Antônio D Pagano
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Leandro S Nunes
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Brazil
| | - William B Domingues
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Tony L R da Silveira
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Mateus T Kütter
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, Brazil
| | - Augusto Schneider
- Faculdade de Nutrição, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Frederico S Kremer
- Laboratório de Bioinformática, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Antonio S V Junior
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, Brazil
| | - Marta G Amaral
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Natiéli M Gonçalves
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Dionet K Bellido-Quispe
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Matheus V Volcan
- Instituto Pró-Pampa (IPPampa), Laboratório de Ictiologia, Pelotas, Brazil
| | - Patrícia G Costa
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, Brazil
| | - Adalto Bianchini
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, Brazil
| | - Danillo Pinhal
- Laboratório Genômica e Evolução Molecular, Departamento de Ciências Químicas e Biológicas, Instituto de Biociências, UNESP, Botucatu, SP, Brazil
| | - Vinicius F Campos
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Mariana H Remião
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Brazil.
| |
Collapse
|
4
|
Borisov V, Shkil F, Seleznev D, Smirnov S. Is African non-annual killifish Fundulopanchax gardneri (Teleostei; Cyprinodontiformes; Nothobranchiidae) true non-annual? Dev Dyn 2024; 253:490-507. [PMID: 37855428 DOI: 10.1002/dvdy.668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/31/2023] [Accepted: 09/21/2023] [Indexed: 10/20/2023] Open
Abstract
BACKGROUND Annual or seasonal killifishes (Cyprinodontiformes: Nothobranchiidae) are unique among fish in their ability to enter into developmental arrests (diapauses: DI, DII, and DIII). They have a short lifespan and their embryos are exceptionally tolerant to a variety of environmental stresses. These traits make them a popular model for studying vertebrate diapause, aging, stress tolerance, genome adaptation, and evolution. In such issues, in a comparative evolutionary framework, Fundulopanchax gardneri, a popular aquarium fish from Africa, is commonly used as a representative non-annual model though its development is not studied in detail and whether it includes diapauses remains uncertain. RESULTS We described in detail for the first time embryonic development of F. gardneri and revealed it to resemble that in the undoubtedly annual Austrofundulus limnaeus killifish in displaying two developmental depressions. However, if compared with A. limnaeus, these developmental states look like "less intense" versions of DII and DIII rather than true diapauses. CONCLUSIONS To determine whether developmental depressions in F. gardneri represent "true" diapauses or only their functional equivalents, detailed studies of embryonic development of different killifish both annual and non-annual are needed. Before that, acceptance of F. gardneri as a representative non-annual fish seems premature.
Collapse
Affiliation(s)
- Vasily Borisov
- Laboratory of Evolutionary Morphology, A.N. Severtsov Institute of Ecology and Evolution of Russian Academy of Sciences, Moscow, Russia
| | - Fedor Shkil
- Laboratory of Evolutionary Morphology, A.N. Severtsov Institute of Ecology and Evolution of Russian Academy of Sciences, Moscow, Russia
- Laboratory of Postnatal Ontogeny, N.K. Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow, Russia
| | - Dmitry Seleznev
- Laboratory of Evolutionary Morphology, A.N. Severtsov Institute of Ecology and Evolution of Russian Academy of Sciences, Moscow, Russia
- Laboratory of Ecology of Aquatic Invertebrates, I.D. Papanin Institute for Biology of Inland Waters of Russian Academy of Sciences, Borok, Russia
| | - Sergei Smirnov
- Laboratory of Evolutionary Morphology, A.N. Severtsov Institute of Ecology and Evolution of Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
5
|
Pagano AD, Gonçalves NM, Domingues WB, da Silveira TLR, Kütter MT, Junior ASV, Corcini CD, Nascimento MC, Dos Reis LFV, Costa PG, Bianchini A, Volcan MV, Remião MH, Campos VF. Assessment of oxidative stress biomarkers in the threatened annual killifish Austrolebias charrua exposed to Roundup. Comp Biochem Physiol C Toxicol Pharmacol 2024; 276:109787. [PMID: 37977240 DOI: 10.1016/j.cbpc.2023.109787] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/01/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023]
Abstract
This study aimed to analyze the toxic effects of Roundup Transorb® on the endangered Neotropical annual killifish Austrolebias charrua through the assessment of molecular and biochemical biomarkers. The fish were collected in temporary ponds and exposed to environmentally realistic concentrations of the herbicide (5 mg.L-1 for 96 h). The production of ROS, lipid peroxidation, DNA damage, and membrane fluidity were evaluated in the blood cells by flow cytometry. The mRNA expression of the antioxidant-related genes sod2, cat, gstα, atp1a1, gclc, and ucp1 across the brain, liver, and gills was quantified. The acute exposure of annual killifish to Roundup significantly increased ROS production, lipid peroxidation, and DNA damage in their erythrocytes. Likewise, Roundup Transorb® decreased membrane fluidity in the blood cells of the exposed fish. Gene expression analysis revealed that Roundup exposure alters the relative expression of genes associated with oxidative stress and antioxidant defense. Our results give rise to new insights into adaptive mechanisms of A. charrua in response to Roundup. Since Brazilian annual killifishes strongly risk extinction, this study paves the way for developing novel biotechnologies applied to environmental monitoring and aquatic toxicology assessment.
Collapse
Affiliation(s)
- Antônio Duarte Pagano
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Brasil
| | - Natiéli Machado Gonçalves
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Brasil
| | - William Borges Domingues
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Brasil
| | | | - Mateus Tavares Kütter
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, Brasil
| | | | | | - Mariana Cavalcanti Nascimento
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Brasil
| | - Luana Ferreira Viana Dos Reis
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Brasil
| | - Patrícia Gomes Costa
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, Brasil
| | - Adalto Bianchini
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, Brasil
| | | | - Mariana Härter Remião
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Brasil
| | - Vinicius Farias Campos
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Brasil.
| |
Collapse
|