1
|
Hedley J, Hornby JM. Reptile and Amphibian Gastroenterology. Vet Clin North Am Exot Anim Pract 2025; 28:295-313. [PMID: 39730213 DOI: 10.1016/j.cvex.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2024]
Abstract
Reptile and amphibian veterinarians are frequently presented with patients exhibiting clinical signs suggestive of gastrointestinal (GI) disease. Understanding the normal structure and function of the GI tract is essential to aid appropriate diagnosis. This article will concentrate on the approach to a patient with GI signs and the problems affecting the GI tract from the esophagus to the colon.
Collapse
Affiliation(s)
- Joanna Hedley
- Exotic Species and Small Mammal Medicine and Surgery, Beaumont Sainsbury Animal Hospital, Royal Veterinary College, 4 Royal College Street, London, UK.
| | - Jessica M Hornby
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Leicestershire, UK
| |
Collapse
|
2
|
Duque-Correa MJ, Clauss M, Meloro C, Abraham AJ. Does intestine length explain digesta retention times in birds and mammals? Comp Biochem Physiol A Mol Integr Physiol 2025; 300:111789. [PMID: 39653272 DOI: 10.1016/j.cbpa.2024.111789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/02/2024] [Accepted: 12/04/2024] [Indexed: 12/13/2024]
Abstract
Previous studies have indicated that across birds and mammals, body mass is a comparatively poor predictor of the time digesta is retained in the digestive tract (mean retention time, MRT). Rather, MRT might be determined by gastrointestinal anatomy, which can differ considerably within and between trophic guilds. Here, we used two recent literature compilations on the intestine length and the MRT in birds (n = 33 species) and mammals (n = 149) and applied comparative statistical approaches to assess whether intestine length is more closely correlated with MRT than body mass. Regardless of the statistical model used, whether small species (< 120 g and any larger bats) were included or not, or whether birds and mammals were assessed together or separately, intestinal length generally yielded a better model fit to MRT than body mass, supporting the general concept. Nevertheless, data scatter was substantial, indicating that intestine length, though better than body mass, is still a limited explanatory factor for MRT. The intestine length-MRT relationship is an example of the direct statistical assessment of a generally presumed form-function relationship that is typically represented as a narrative. In the comparative literature, such assessments are rare.
Collapse
Affiliation(s)
- María J Duque-Correa
- Clinic for Zoo Animals, Exotic Pets and Wildlife, Vetsuisse Faculty, University of Zurich, Winterthurerstr. 260, 8057 Zurich, Switzerland.
| | - Marcus Clauss
- Clinic for Zoo Animals, Exotic Pets and Wildlife, Vetsuisse Faculty, University of Zurich, Winterthurerstr. 260, 8057 Zurich, Switzerland.
| | - Carlo Meloro
- Research Center in Evolutionary Anthropology and Palaeoecology, School of Biological & Environmental Sciences, Liverpool John Moores University, Byrom Street, L3 3AF Liverpool, United Kingdom.
| | - Andrew J Abraham
- Centre for Ecological Dynamics in a Novel Biosphere (ECONOVO), Section of EcoInformatics and Biodiversity, Department of Biology, Aarhus University, Denmark.
| |
Collapse
|
3
|
Duque-Correa MJ, Clements KD, Meloro C, Ronco F, Boila A, Indermaur A, Salzburger W, Clauss M. Diet and habitat as determinants of intestine length in fishes. REVIEWS IN FISH BIOLOGY AND FISHERIES 2024; 34:1017-1034. [PMID: 39104557 PMCID: PMC11297901 DOI: 10.1007/s11160-024-09853-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 03/19/2024] [Indexed: 08/07/2024]
Abstract
Fish biologists have long assumed a link between intestinal length and diet, and relative gut length or Zihler's index are often used to classify species into trophic groups. This has been done for specific fish taxa or specific ecosystems, but not for a global fish dataset. Here, we assess these relationships across a dataset of 468 fish species (254 marine, 191 freshwater, and 23 that occupy both habitats) in relation to body mass and fish length. Herbivores had significantly relatively stouter bodies and longer intestines than omni- and faunivores. Among faunivores, corallivores had longer intestines than invertivores, with piscivores having the shortest. There were no detectable differences between herbivore groups, possibly due to insufficient understanding of herbivorous fish diets. We propose that reasons for long intestines in fish include (i) difficult-to-digest items that require a symbiotic microbiome, and (ii) the dilution of easily digestible compounds with indigestible material (e.g., sand, wood, exoskeleton). Intestinal indices differed significantly between dietary groups, but there was substantial group overlap. Counter-intuitively, in the largest dataset, marine species had significantly shorter intestines than freshwater fish. These results put fish together with mammals as vertebrate taxa with clear convergence in intestine length in association with trophic level, in contrast to reptiles and birds, even if the peculiar feeding ecology of herbivorous fish is probably more varied than that of mammalian herbivores. Supplementary Information The online version contains supplementary material available at 10.1007/s11160-024-09853-3.
Collapse
Affiliation(s)
- Maria J. Duque-Correa
- Clinic for Zoo Animals, Exotic Pets and Wildlife, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse, 260, 8057 Zurich, Switzerland
| | - Kendall D. Clements
- School of Biological Sciences, University of Auckland, Private Bag, 92019 Auckland, New Zealand
| | - Carlo Meloro
- Research Center in Evolutionary Anthropology and Palaeoecology, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF UK
| | - Fabrizia Ronco
- Department of Environmental Sciences, Zoological Institute, University of Basel, 4051 Basel, Switzerland
- Natural History Museum Oslo, 0562 Oslo, Norway
| | - Anna Boila
- Department of Environmental Sciences, Zoological Institute, University of Basel, 4051 Basel, Switzerland
| | - Adrian Indermaur
- Department of Environmental Sciences, Zoological Institute, University of Basel, 4051 Basel, Switzerland
| | - Walter Salzburger
- Department of Environmental Sciences, Zoological Institute, University of Basel, 4051 Basel, Switzerland
| | - Marcus Clauss
- Clinic for Zoo Animals, Exotic Pets and Wildlife, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse, 260, 8057 Zurich, Switzerland
| |
Collapse
|
4
|
Jesus ADS, El Bizri HR, Fa JE, Valsecchi J, Rabelo RM, Mayor P. Comparative gastrointestinal organ lengths among Amazonian primates (Primates: Platyrrhini). AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2023. [PMID: 37092603 DOI: 10.1002/ajpa.24751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 04/11/2023] [Accepted: 04/16/2023] [Indexed: 04/25/2023]
Abstract
OBJECTIVES The morphological features of the gastrointestinal tract (GIT) in mammals reflect a species' food niche breadth and dietary adaptations. For many wild mammals, the relationship between the structure of the GIT and diet is still poorly understood, for example, the GIT for frugivorous primates is usually classified as unspecialized and homogeneous. Here, we compare the GIT structure of 13 primate species from the three families of extant platyrrhines (Atelidae, Pitheciidae, and Cebidae) in Amazonia, and discuss possible evolutionary adaptations to different diets and trophic niches. METHODS We measured the length of the esophagus, stomach, small intestine, large intestine, cecum, colon, and rectum of the digestive tracts of 289 primate specimens. We determined the allometric relationships of the different tubular organs with the total length of the GIT as a proxy of specimen body size. Allometric parameters were used to establish the quotients of differentiation of every organ for each primate specimen. RESULTS There was a high differentiation in structure of the digestive organs among genera. Alouatta specimens clearly separated from the other genera based on dissimilarities in gastric, colonic, and rectal quotients, likely linked to the fermentation of plant contents. In contrast, all cebines (Sapajus, Cebus, and Saimiri) and Cacajao species had similar small intestine quotients, which is expected due to their high rates of animal matter consumed. CONCLUSIONS We show that diverse adaptations in digestive structure exist among frugivorous primates, which in turn reflect different dietary patterns within this group that may enable the geographic coexistence of different primate species.
Collapse
Affiliation(s)
- Anamélia de Souza Jesus
- Programa de Pós-Graduação em Saúde e Produção Animal na Amazônia, Universidade Federal Rural da Amazônia, Belém, Brazil
- Grupo de Pesquisa em Ecologia de Vertebrados Terrestres, Instituto de Desenvolvimento Sustentável Mamirauá, Tefé, Brazil
- Grupo de Pesquisa em Biologia e Conservação de Primatas, Instituto de Desenvolvimento Sustentável Mamirauá, Tefé, Brazil
- Rede de Pesquisa para Estudos sobre Diversidade, Conservação e Uso da Fauna na Amazônia (RedeFauna), Manaus, Brazil
| | - Hani R El Bizri
- Grupo de Pesquisa em Ecologia de Vertebrados Terrestres, Instituto de Desenvolvimento Sustentável Mamirauá, Tefé, Brazil
- Rede de Pesquisa para Estudos sobre Diversidade, Conservação e Uso da Fauna na Amazônia (RedeFauna), Manaus, Brazil
- School of Science, Engineering and Environment, University of Salford, Salford, UK
- Comunidad de Manejo de Fauna Silvestre en la Amazonía y en Latinoamérica (ComFauna), Iquitos, Peru
| | - Julia E Fa
- Department of Natural Sciences, School of Science and the Environment, Manchester Metropolitan University, Manchester, UK
- CIFOR Headquarters, Center for International Forestry Research (CIFOR), Bogor, Indonesia
| | - João Valsecchi
- Grupo de Pesquisa em Ecologia de Vertebrados Terrestres, Instituto de Desenvolvimento Sustentável Mamirauá, Tefé, Brazil
- Rede de Pesquisa para Estudos sobre Diversidade, Conservação e Uso da Fauna na Amazônia (RedeFauna), Manaus, Brazil
| | - Rafael Magalhães Rabelo
- Grupo de Pesquisa em Ecologia de Vertebrados Terrestres, Instituto de Desenvolvimento Sustentável Mamirauá, Tefé, Brazil
| | - Pedro Mayor
- Programa de Pós-Graduação em Saúde e Produção Animal na Amazônia, Universidade Federal Rural da Amazônia, Belém, Brazil
- Comunidad de Manejo de Fauna Silvestre en la Amazonía y en Latinoamérica (ComFauna), Iquitos, Peru
- Departamento Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
5
|
Yawitz TA, Barts N, Kohl KD. Comparative digestive morphology and physiology of five species of Peromyscus under controlled environment and diet. Comp Biochem Physiol A Mol Integr Physiol 2022; 271:111265. [PMID: 35760269 DOI: 10.1016/j.cbpa.2022.111265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 06/22/2022] [Accepted: 06/22/2022] [Indexed: 10/17/2022]
Abstract
Digestive morphology and physiology differ across animal species, with many comparative studies uncovering relationships between animal ecology or diet, and the morphology and physiology of the gastrointestinal tract. However, many of these studies compare wild-caught animals feeding on uncontrolled diets and compare broadly related taxa. Thus, few studies have disentangled the phenotypic consequences of genetics from those potentially caused by the environment, especially across closely related species that occupy similar ecological niches. Here, we examined differences in digestive morphology and physiology of five closely related species of Peromyscus mice that were captive bred under identical environmental conditions and identical diets for multiple generations. Using phylogenetic generalized least squares (PGLS) of species means to control for body size, we identified a phylogenetic signal in the mass of the foregut and length of the small intestine across species. As proportions of total gut mass, we identified phylogenetic signals in relative foregut and small intestine masses, indicating that the sizes of these structures are more similar among closely related species. Finally, we detected differences in activities of the protease aminopeptidase-N enzyme across species. Overall, we demonstrate fine-scale differences in digestive morphology and physiology among closely related species. Our results suggest that Peromyscus could provide a system for future studies to explore the interplay between natural history, morphology, and physiology (e.g. ecomorphology and ecophysiology), and to investigate the genetic architecture that underlies gut anatomy.
Collapse
Affiliation(s)
- Tate A Yawitz
- Department of Biological Sciences, University of Pittsburgh, 4249 Fifth Avenue, Pittsburgh, PA 15260, USA
| | - Nick Barts
- Department of Biological Sciences, University of Pittsburgh, 4249 Fifth Avenue, Pittsburgh, PA 15260, USA
| | - Kevin D Kohl
- Department of Biological Sciences, University of Pittsburgh, 4249 Fifth Avenue, Pittsburgh, PA 15260, USA.
| |
Collapse
|
6
|
Duque-Correa MJ, Clauss M, Hoppe MI, Buyse K, Codron D, Meloro C, Edwards MS. Diet, habitat and flight characteristics correlate with intestine length in birds. Proc Biol Sci 2022; 289:20220675. [PMID: 35642364 PMCID: PMC9156916 DOI: 10.1098/rspb.2022.0675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
A link between diet and avian intestinal anatomy is generally assumed. We collated the length of intestinal sections and body mass of 390 bird species and tested relationships with diet, climate and locomotion. There was a strong phylogenetic signal in all datasets. The total and small intestine scaled more-than-geometrically (95%CI of the scaling exponent > 0.33). The traditional dietary classification (faunivore, omnivore and herbivore) had no significant effect on total intestine (TI) length. Significant dietary proxies included %folivory, %frugi-nectarivory and categories (frugi-nectarivory, granivory, folivory, omnivory, insectivory and vertivory). Individual intestinal sections were affected by different dietary proxies. The best model indicates that higher consumption of fruit and nectar, drier habitats, and a high degree of flightedness are linked to shorter TI length. Notably, the length of the avian intestine depends on other biological factors as much as on diet. Given the weak dietary signal in our datasets, the diet intestinal length relationships lend themselves to narratives of flexibility (morphology is not destiny) rather than of distinct adaptations that facilitate using one character (intestine length) as proxy for another (diet). Birds have TIs of about 85% that of similar-sized mammals, corroborating systematic differences in intestinal macroanatomy between vertebrate clades.
Collapse
Affiliation(s)
- María J. Duque-Correa
- Clinic for Zoo Animals, Exotic Pets and Wildlife, Vetsuisse Faculty, University of Zurich, Winterthurerstr. 260, 8057 Zurich, Switzerland
| | - Marcus Clauss
- Clinic for Zoo Animals, Exotic Pets and Wildlife, Vetsuisse Faculty, University of Zurich, Winterthurerstr. 260, 8057 Zurich, Switzerland
| | - Monika I. Hoppe
- Clinic for Zoo Animals, Exotic Pets and Wildlife, Vetsuisse Faculty, University of Zurich, Winterthurerstr. 260, 8057 Zurich, Switzerland
| | - Kobe Buyse
- Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, 9820 Merelbeke, Belgium
| | - Daryl Codron
- Department of Zoology and Entomology, University of the Free State, PO Box 339, 9300 Bloemfontein, South Africa
| | - Carlo Meloro
- Research Centre in Evolutionary Anthropology and Palaeoecology, Liverpool John Moores University, Liverpool, UK
| | - Mark S. Edwards
- California Polytechnic State University, San Luis Obispo, CA, USA
| |
Collapse
|