1
|
Cao H, Zhang X, Wang H, Ding B, Ge S, Zhao J. Effects of Graphene-Based Nanomaterials on Microorganisms and Soil Microbial Communities. Microorganisms 2024; 12:814. [PMID: 38674758 PMCID: PMC11051958 DOI: 10.3390/microorganisms12040814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/15/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
The past decades have witnessed intensive research on the biological effects of graphene-based nanomaterials (GBNs) and the application of GBNs in different fields. The published literature shows that GBNs exhibit inhibitory effects on almost all microorganisms under pure culture conditions, and that this inhibitory effect is influenced by the microbial species, the GBN's physicochemical properties, the GBN's concentration, treatment time, and experimental surroundings. In addition, microorganisms exist in the soil in the form of microbial communities. Considering the complex interactions between different soil components, different microbial communities, and GBNs in the soil environment, the effects of GBNs on soil microbial communities are undoubtedly intertwined. Since bacteria and fungi are major players in terrestrial biogeochemistry, this review focuses on the antibacterial and antifungal performance of GBNs, their antimicrobial mechanisms and influencing factors, as well as the impact of this effect on soil microbial communities. This review will provide a better understanding of the effects of GBNs on microorganisms at both the individual and population scales, thus providing an ecologically safe reference for the release of GBNs to different soil environments.
Collapse
Affiliation(s)
- Huifen Cao
- College of Agriculture and Life Science, Shanxi Datong University, Datong 037009, China;
| | - Xiao Zhang
- Engineering Research Center of Coal-Based Ecological Carbon Sequestration Technology of the Ministry of Education, Key Laboratory of Graphene Forestry Application of National Forest and Grass Administration, Shanxi Datong University, Datong 037009, China; (B.D.); (J.Z.)
| | - Haiyan Wang
- College of Chemistry and Chemical Engineering, Shanxi Datong University, Datong 037009, China
| | - Baopeng Ding
- Engineering Research Center of Coal-Based Ecological Carbon Sequestration Technology of the Ministry of Education, Key Laboratory of Graphene Forestry Application of National Forest and Grass Administration, Shanxi Datong University, Datong 037009, China; (B.D.); (J.Z.)
| | - Sai Ge
- Center of Academic Journal, Shanxi Datong University, Datong 037009, China;
| | - Jianguo Zhao
- Engineering Research Center of Coal-Based Ecological Carbon Sequestration Technology of the Ministry of Education, Key Laboratory of Graphene Forestry Application of National Forest and Grass Administration, Shanxi Datong University, Datong 037009, China; (B.D.); (J.Z.)
| |
Collapse
|
2
|
Wang S, Wang X, Liu Y, Sun G, Kong D, Guo W, Sun H. Regulatory effect of graphene on growth and carbon/nitrogen metabolism of maize (Zea mays L.). JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:1572-1582. [PMID: 37819595 DOI: 10.1002/jsfa.13038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 10/07/2023] [Accepted: 10/09/2023] [Indexed: 10/13/2023]
Abstract
BACKGROUND Leakage of graphene into the environment has resulted from its increasing use. Although the impact of graphene on ecosystems is already in full swing, information regarding its impact on plants is lacking. In particular, the effects of graphene on plant growth and development vary, and basic information on the regulation of carbon and nitrogen metabolism is missing. In the current study, the way in which graphene (0, 25, 50, 100, and 200 g kg-1 ) affects maize seedlings was studied in terms of morphological and biochemical indicators. The purpose of this study was to understand better how graphene regulates plant carbon and nitrogen metabolism and to understand its interactions with leaf structure and plant growth. RESULTS The results showed that 50 g kg-1 graphene increased plant height, stem diameter, leaf area, and dry weight; however, this was inhibited by the high level of graphene (200 g kg-1 ). Further studies indicated that different concentrations of graphene could increase leaf thickness and vascular bundle area as well as the net photosynthetic rate (Pn) of leaves; 25 and 50 g kg-1 graphene enhanced the leaves stomatal conductance (Cond), transpiration rate (Tr), intercellular carbon dioxide (Ci), and chlorophyll content. Higher concentrations decreased the above indicators. At 50 g kg-1 , graphene increased the activity of carbon/nitrogen metabolism enzymes by increasing carbon metabolites (fructose, sucrose, and soluble sugars) and soluble proteins (nitrogen metabolites). These enzymes included sucrose synthase (SS), sucrose phosphate synthase (SPS), nitrate reductase (NR), glutamine synthase (GS), and glutamate synthase (GOGAT). CONCLUSION These results indicate that graphene can regulate the activities of key enzymes involved in carbon and nitrogen metabolism effectively and supplement nitrogen metabolism through substances produced by carbon metabolism by improving photosynthetic efficiency, thus maintaining the balance between carbon and nitrogen and promoting plant growth and development. The relationship between these indexes explained the mechanism by which graphene supported the growth of maize seedlings by enhancing photosynthetic carbon metabolism and maintaining metabolic balance. For maize seedling growth, graphene treatment with 50 g kg-1 soil is recommended. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shiya Wang
- College of Agriculture, Heilongjiang Bayi Agriculture University, Daqing, China
| | - Xinyi Wang
- College of Agriculture, Heilongjiang Bayi Agriculture University, Daqing, China
| | - Ying Liu
- College of Agriculture, Heilongjiang Bayi Agriculture University, Daqing, China
| | - Guangxu Sun
- College of Agriculture, Heilongjiang Bayi Agriculture University, Daqing, China
| | - Deyong Kong
- College of Agriculture, Heilongjiang Bayi Agriculture University, Daqing, China
| | - Wei Guo
- College of Agriculture, Heilongjiang Bayi Agriculture University, Daqing, China
- Key Laboratory of Low Carbon Green Agriculture in Northeast Plain, Ministry of Agriculture and Rural Affairs, P. R. China, Daqing, China
| | - Haiyan Sun
- College of Agriculture, Heilongjiang Bayi Agriculture University, Daqing, China
- Heilongjiang Provincial Key Laboratory of Modern Agricultural Cultivation and Germplasm Improvement, Daqing, China
| |
Collapse
|
3
|
Tian J, Zhang J, Francis F. Large-Scale Identification and Characterization Analysis of VQ Family Genes in Plants, Especially Gymnosperms. Int J Mol Sci 2023; 24:14968. [PMID: 37834416 PMCID: PMC10573558 DOI: 10.3390/ijms241914968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/24/2023] [Accepted: 10/05/2023] [Indexed: 10/15/2023] Open
Abstract
VQ motif-containing (VQ) proteins are a class of transcription regulatory cofactors widely present in plants, playing crucial roles in growth and development, stress response, and defense. Although there have been some reports on the member identification and functional research of VQ genes in some plants, there is still a lack of large-scale identification and clear graphical presentation of their basic characterization information to help us to better understand this family. Especially in gymnosperms, the VQ family genes and their evolutionary relationships have not yet been reported. In this study, we systematically identified 2469 VQ genes from 56 plant species, including bryophytes, gymnosperms, and angiosperms, and analyzed their molecular and evolutionary features. We found that amino acids are only highly conserved in the VQ domain, while other positions are relatively variable; most VQ genes encode relatively small proteins and do not have introns. The GC content in Poaceae plants is the highest (up to 70%); these VQ proteins can be divided into nine subgroups. In particular, we analyzed the molecular characteristics, chromosome distribution, duplication events, and expression levels of VQ genes in three gymnosperms: Ginkgo biloba, Taxus chinensis, and Pinus tabuliformis. In gymnosperms, VQ genes are classified into 11 groups, with highly similar motifs in each group; most VQ proteins have less than 300 amino acids and are predicted to be located in nucleus. Tandem duplication is an important driving force for the expansion of the VQ gene family, and the evolutionary processes of most VQ genes and duplication events are relatively independent; some candidate VQ genes are preliminarily screened, and they are likely to be involved in plant growth and stress and defense responses. These results provide detailed information and powerful references for further understanding and utilizing the VQ family genes in various plants.
Collapse
Affiliation(s)
- Jinfu Tian
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium; (J.T.)
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Jiahui Zhang
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium; (J.T.)
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Frédéric Francis
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium; (J.T.)
| |
Collapse
|
4
|
Zhang X, Cao H, Wang J, Li F, Zhao J. Graphene Oxide Exhibits Antifungal Activity against Bipolaris sorokiniana In Vitro and In Vivo. Microorganisms 2022; 10:microorganisms10101994. [PMID: 36296270 PMCID: PMC9606959 DOI: 10.3390/microorganisms10101994] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/26/2022] [Accepted: 10/01/2022] [Indexed: 11/06/2022] Open
Abstract
The antimicrobial properties of graphene in vitro have been widely reported. However, compared to research performed on graphene’s antibacterial properties, there have been relatively few studies assessing graphene’s antifungal properties. In particular, evaluating graphene’s pathogenic effects on host plants in vivo, which is critical to using graphene in disease control, has rarely been performed. In this study, the fungal pathogen of wheat, barley, and other plants, Bipolaris sorokiniana (B. sorokiniana) and graphene oxide (GO) were selected for materials. A combination of physiological, cytological, and biochemical approaches was used to explore how GO affects the growth and pathogenicity of B. sorokiniana. The mycelial growth and spore germination of B. sorokiniana were both inhibited in a dose-dependent manner by GO treatment. The addition of GO significantly alleviated the infection of pathogenic fungi in host plants. The results of scanning electron microscopy demonstrated that the inhibitory effect of GO on B. sorokiniana was primarily related to the destruction of the cell membrane. Our study confirmed the antifungal effect of graphene in vitro and in vivo, providing an experimental basis for applying graphene in disease resistance, which is of great significance for agricultural and forestry production.
Collapse
Affiliation(s)
- Xiao Zhang
- Key Laboratory of National Forest and Grass Administration for the Application of Graphene in Forestry, Institute of Carbon Materials Science, Shanxi Datong University, Datong 037009, China
- Correspondence: (X.Z.); (H.C.); (J.Z.)
| | - Huifen Cao
- College of Agriculture and Life Science, Shanxi Datong University, Datong 037009, China
- Correspondence: (X.Z.); (H.C.); (J.Z.)
| | - Juan Wang
- College of Agriculture and Life Science, Shanxi Datong University, Datong 037009, China
| | - Feng Li
- College of Agriculture and Life Science, Shanxi Datong University, Datong 037009, China
| | - Jianguo Zhao
- Key Laboratory of National Forest and Grass Administration for the Application of Graphene in Forestry, Institute of Carbon Materials Science, Shanxi Datong University, Datong 037009, China
- Correspondence: (X.Z.); (H.C.); (J.Z.)
| |
Collapse
|
5
|
Chen Z, Zhao J, Liu Z, Bai X, Li W, Guan Z, Zhou M, Zhu H. Graphene-Delivered Insecticides against Cotton Bollworm. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2731. [PMID: 36014596 PMCID: PMC9412252 DOI: 10.3390/nano12162731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/31/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
Nanopesticides can facilitate controlled release kinetics and efficiently enhance the permeability of active ingredients to reduce the dosage and loss of pesticides. To clarify the synergistic mechanism of graphene-insecticide nanocarriers against cotton bollworm, treatment groups, namely, control, graphene (G), insecticide (lambda-cyhalothrin (Cyh) and cyfluthrin (Cyf)), and graphene-delivered insecticide groups were used to treat the third-instar larvae of cotton bollworm. The variations in phenotypes, namely, the body length, body weight, and mortality of the cotton bollworm, were analyzed. The results show that graphene enhances the insecticidal activity of lambda-cyhalothrin and cyfluthrin against cotton bollworm. The two graphene-delivered insecticides with optimal compositions (3:1) had the strongest inhibitory effects and the highest mortality rates, with the fatality rates for the 3/1 Cyh/G and Cyf/G mixture compositions being 62.91% and 38.89%, respectively. In addition, the 100 μg/mL Cyh/G mixture had the greatest inhibitory effect on cotton bollworm, and it decreased the body length by 1.40 mm, decreased the weight by 1.88 mg, and had a mortality rate of up to 61.85%. The 100 and 150 μg/mL Cyh/G mixtures achieved the same mortality rate as that of lambda-cyhalothrin, thus reducing the use of the insecticide by one-quarter. The graphene-delivered insecticides could effectively destroy the epicuticle spine cells of the cotton bollworm by increasing the permeability and, thus, the toxicity of the insecticides.
Collapse
Affiliation(s)
- Zhiwen Chen
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
- National Key Laboratory of Plant Molecular Genetics and National Center for Plant Gene Research, Institute of Plant Physiology and Ecology/CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jianguo Zhao
- Institute of Carbon Materials Science, School of Chemistry and Chemical Engineering, Shanxi Datong University, Datong 037009, China
| | - Zehui Liu
- Institute of Carbon Materials Science, School of Chemistry and Chemical Engineering, Shanxi Datong University, Datong 037009, China
| | - Xiuli Bai
- Institute of Carbon Materials Science, School of Chemistry and Chemical Engineering, Shanxi Datong University, Datong 037009, China
| | - Weijia Li
- Institute of Carbon Materials Science, School of Chemistry and Chemical Engineering, Shanxi Datong University, Datong 037009, China
| | - Zhifang Guan
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Ming Zhou
- School of Mechanical and Transportation Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China
| | - Hongwei Zhu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
6
|
Zhang X, Cao H, Wang H, Zhao J, Gao K, Qiao J, Li J, Ge S. The Effects of Graphene-Family Nanomaterials on Plant Growth: A Review. NANOMATERIALS 2022; 12:nano12060936. [PMID: 35335748 PMCID: PMC8949508 DOI: 10.3390/nano12060936] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 02/05/2023]
Abstract
Numerous reports of graphene-family nanomaterials (GFNs) promoting plant growth have opened up a wide range of promising potential applications in agroforestry. However, several toxicity studies have raised growing concerns about the biosafety of GFNs. Although these studies have provided clues about the role of GFNs from different perspectives (such as plant physiology, biochemistry, cytology, and molecular biology), the mechanisms by which GFNs affect plant growth remain poorly understood. In particular, a systematic collection of data regarding differentially expressed genes in response to GFN treatment has not been conducted. We summarize here the fate and biological effects of GFNs in plants. We propose that soil environments may be conducive to the positive effects of GFNs but may be detrimental to the absorption of GFNs. Alterations in plant physiology, biochemistry, cytological structure, and gene expression in response to GFN treatment are discussed. Coincidentally, many changes from the morphological to biochemical scales, which are caused by GFNs treatment, such as affecting root growth, disrupting cell membrane structure, and altering antioxidant systems and hormone concentrations, can all be mapped to gene expression level. This review provides a comprehensive understanding of the effects of GFNs on plant growth to promote their safe and efficient use.
Collapse
Affiliation(s)
- Xiao Zhang
- Key Laboratory of National Forest and Grass Administration for the Application of Graphene in Forestry, Institute of Carbon Materials Science, Shanxi Datong University, Datong 037009, China; (X.Z.); (J.Z.); (J.Q.); (J.L.); (S.G.)
| | - Huifen Cao
- College of Agriculture and Life Science, Shanxi Datong University, Datong 037009, China;
- Correspondence: (H.C.); (H.W.)
| | - Haiyan Wang
- College of Chemistry and Chemical Engineering, Shanxi Datong University, Datong 037009, China
- Correspondence: (H.C.); (H.W.)
| | - Jianguo Zhao
- Key Laboratory of National Forest and Grass Administration for the Application of Graphene in Forestry, Institute of Carbon Materials Science, Shanxi Datong University, Datong 037009, China; (X.Z.); (J.Z.); (J.Q.); (J.L.); (S.G.)
- College of Chemistry and Chemical Engineering, Shanxi Datong University, Datong 037009, China
| | - Kun Gao
- College of Agriculture and Life Science, Shanxi Datong University, Datong 037009, China;
| | - Jun Qiao
- Key Laboratory of National Forest and Grass Administration for the Application of Graphene in Forestry, Institute of Carbon Materials Science, Shanxi Datong University, Datong 037009, China; (X.Z.); (J.Z.); (J.Q.); (J.L.); (S.G.)
- College of Chemistry and Chemical Engineering, Shanxi Datong University, Datong 037009, China
| | - Jingwei Li
- Key Laboratory of National Forest and Grass Administration for the Application of Graphene in Forestry, Institute of Carbon Materials Science, Shanxi Datong University, Datong 037009, China; (X.Z.); (J.Z.); (J.Q.); (J.L.); (S.G.)
- College of Chemistry and Chemical Engineering, Shanxi Datong University, Datong 037009, China
| | - Sai Ge
- Key Laboratory of National Forest and Grass Administration for the Application of Graphene in Forestry, Institute of Carbon Materials Science, Shanxi Datong University, Datong 037009, China; (X.Z.); (J.Z.); (J.Q.); (J.L.); (S.G.)
- College of Chemistry and Chemical Engineering, Shanxi Datong University, Datong 037009, China
| |
Collapse
|