1
|
Nguyen JB, Cook CN. Disruption of collective behaviour correlates with reduced interaction efficiency. Proc Biol Sci 2025; 292:20250039. [PMID: 40101763 PMCID: PMC11919496 DOI: 10.1098/rspb.2025.0039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/05/2025] [Accepted: 02/06/2025] [Indexed: 03/20/2025] Open
Abstract
Group-living organisms commonly engage in collective behaviour to respond to an ever-changing environment. As animals face environmental change, establishing the mechanisms of information used to collectively behave is critical. Western honeybees (Apis mellifera) are highly social insects that tightly coordinate many individuals to ensure optimum colony function. We used fanning, a collective thermoregulatory behaviour that depends on both social and thermal contexts, as a case study for collective behaviour. To identify potential mechanisms behind the coordination of fanning, we used oxytetracycline, an antibiotic used in apiculture and known environmental pollutant that impairs bee physiology and behaviour. Specifically, we hypothesized that interactions drive the fanning response in honeybees and predicted that oxytetracycline would disrupt social interactions which will lead to a reduced fanning response. We found that longer exposure to antibiotics decreases fanning. Using automated tracking, we show that antibiotic treatment reduces the number of interactions, impeding the social dynamics within these small groups. Our results contribute strong evidence that interactions between individuals may drive the collective fanning response in honeybees. This work emphasizes the importance of understanding the social mechanisms that underlie collective animal coordination and how the effects of pollutants on an individual can scale to affect populations.
Collapse
Affiliation(s)
- Justine B Nguyen
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233, USA
| | - Chelsea N Cook
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233, USA
| |
Collapse
|
2
|
Zhou C, Li H, Hu Y, Zhang B, Ren P, Kan Z, Jia X, Mi J, Guo X. Causal effects of key air pollutants and meteorology on ischemic stroke onset: A convergent cross-mapping approach. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 291:117861. [PMID: 39951883 DOI: 10.1016/j.ecoenv.2025.117861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 02/03/2025] [Accepted: 02/04/2025] [Indexed: 02/17/2025]
Abstract
BACKGROUND Evidence suggests that environmental factors may influence the risk of ischemic stroke(IS).1 Nevertheless, the majority of existing research has concentrated on correlation analysis, with only a limited number of studies employing specific methodologies to investigate the causal dynamics of this relationship with external drivers. METHOD In this study, we employed an approach known as convergent cross-mapping to identify and elucidate the causal effects of significant air pollutants and meteorological factors on the pathogenesis of IS. The city of Shouguang in the Shandong Peninsula region was selected for this study, primarily because of the environmental characteristics of the region and the notable prevalence of cases during the study period. RESULTS Key air pollutants and several meteorological factors in the region have a causal effects on IS. A general trend can be drawn. SO22 (ρ = 0.215, ∂=0.016), PM2.53 (ρ = 0.077, ∂=0.002), and PM104 (ρ = 0.058, ∂=0.0014) had a positive causal effects on IS,and relative humidity (ρ = 0.050, ∂=-0.009) tended to reduce the number of IS cases. CONCLUSION Through this case study, a causal network was developed with the aim of integrating the study of the interactions between variables and providing a clear model to aid the management of IS.
Collapse
Affiliation(s)
- Cheng Zhou
- Department of Epidemiology and Statistics, Bengbu Medical University, Bengbu, China
| | - Haoran Li
- Department of Epidemiology and Statistics, Bengbu Medical University, Bengbu, China
| | - Yang Hu
- Department of Epidemiology and Statistics, Bengbu Medical University, Bengbu, China
| | - Bingyin Zhang
- Shandong Center for Disease Control and Prevention, Jinan, China
| | - Pinxian Ren
- Department of Epidemiology and Statistics, Bengbu Medical University, Bengbu, China
| | - Zhe Kan
- Department of Epidemiology and Statistics, Bengbu Medical University, Bengbu, China
| | - Xianjie Jia
- Department of Epidemiology and Statistics, Bengbu Medical University, Bengbu, China
| | - Jing Mi
- Department of Epidemiology and Statistics, Bengbu Medical University, Bengbu, China.
| | - Xiaolei Guo
- Shandong Center for Disease Control and Prevention, Jinan, China.
| |
Collapse
|
3
|
Eriksson ANM, Dubiel J, Alcaraz AJ, Doering JA, Wiseman S. Far from Their Origins: A Transcriptomic Investigation on How 2,4-Di-tert-butyl-6-(5-chloro-2H-benzotriazol-2-yl) Phenol Affects Rainbow Trout Alevins. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:2026-2038. [PMID: 38923588 DOI: 10.1002/etc.5943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/08/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024]
Abstract
Benzotriazole ultraviolet stabilizers (BUVSs) are a group of widely used chemicals added to a variety of consumer (e.g., plastics) and industrial (e.g., metal coating) goods. Although detected globally as an environmentally persistent pollutant, BUVSs have received relatively little toxicological attention and only recently have been acknowledged to affect development and the endocrine system in vivo. In our previous study, altered behavior, indicative of potential neurotoxicity, was observed among rainbow trout alevins (day 14 posthatching) that were microinjected as embryos with a single environmentally relevant dose of 2,4-di-tert-butyl-6-(5-chloro-2H-benzotriazol-2-yl) phenol (UV-327). In the present follow-up study, we performed whole-transcriptome profiling (RNA sequencing) of newly hatched alevins from the same batch. The primary aim was to identify biomarkers related to behavior and neurology. Dose-specifically, 1 to 176 differentially expressed genes (DEGs) were identified. In the group presenting altered behavior (273.4 ng g-1), 176 DEGs were identified, yet only a fraction was related to neurological functions, including water, calcium, and potassium homeostasis; acetylcholine transmission and signaling; as well insulin and energy metabolism. The second objective was to estimate the transcriptomic point of departure (tPOD) and assess if point estimate(s) are protective of altered behavior. A tPOD was established at 35 to 94 ng UV-327 g-1 egg, making this tPOD protective of behavioral alterations. Holistically, these transcriptomic alterations provide a foundation for future research on how BUVSs can influence rainbow trout alevin development, while providing support to the hypothesis that UV-327 can influence neurogenesis and subsequent behavioral endpoints. The exact structural and functional changes caused by embryonic exposure to UV-327 remain enigmatic and will require extensive investigation before being deciphered and understood toxicologically. Environ Toxicol Chem 2024;43:2026-2038. © 2024 The Author(s). Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Andreas N M Eriksson
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Justin Dubiel
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Alper James Alcaraz
- National Institute of Environmental Health Sciences, Bethesda, Maryland, USA
| | - Jon A Doering
- Department of Environmental Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Steve Wiseman
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| |
Collapse
|
4
|
Samba VL, Mezgebu E, Habtes H, Oti NO, Mangongolo BM, Bafumba R, Burns K, Sierra MFO, Challinor J, de Villiers M. Climate change and oncology nursing: the African perspective. Ecancermedicalscience 2023; 17:1621. [PMID: 38414956 PMCID: PMC10898901 DOI: 10.3332/ecancer.2023.1621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Indexed: 02/29/2024] Open
Abstract
Climate change is impacting the lives of millions around the world and exacerbating existing challenges in healthcare globally. Although Africa contributes only 2%-3% of global greenhouse gas emissions, it suffers a disproportionate share of the environmental impact. High-income countries dominate the global discourse on climate change, while their continued utilisation of extractive policies exacerbates climate hazards and impacts economies in regions not responsible for the damage. Cancer is on the rise and constitutes a significant public health burden in low- and middle-income countries, yet little is known about the impact of climate change on oncology nursing on the African continent. To address the ways that climate change is exacerbating existing challenges and adding new difficulties for oncology care, it is essential that the expertise of professionals working in settings that are most impacted by the threats of climate change is amplified if climate crisis risks are to be effectively mitigated. Seven African oncology nurses from across sub-Saharan Africa were reflexively interviewed by voice over internet protocol (VOIP) in English to learn about their understanding of climate change and experiences with its impact on nursing care. Using a conceptual framework to map the impact of climate change on health and considering the vulnerability and social capacity of patients with cancer, our findings show how existing challenges to oncology nursing care are exacerbated by climate change on the continent. Food insecurity, national economic dependency on the agricultural sector, economic inequality, social vulnerability and isolation, transportation challenges, and the immunocompromised status of patients with cancer are all key concerns for oncology nurses in this context. We also present the nurses' specific recommendations for governments, hospital authorities, and oncology nurses regarding climate change mitigation, adaptation, and event response strategies. With this work, we aim to lay a foundation for further investigation and action to mitigate the oncoming challenges of climate disaster for oncology nurses across sub-Saharan Africa and the patients and families they care for.
Collapse
Affiliation(s)
| | - Esubalew Mezgebu
- Pediatric Oncology Unit, Jimma University Medical Center, MVM3+RV7, Jimma, Ethiopia
| | - Habtamu Habtes
- Oncology Center, Hiwot Fana Specialized Hospital, 844H+5M3, Harar, Ethiopia
| | - Naomi Ohene Oti
- National Radiotherapy Oncology and Nuclear Medicine Centre, Korle Bu Teaching Hospital, Accra, Ghana
- https://orcid.org/0000-0002-1433-0364
| | | | - Ritah Bafumba
- Haematology and Lymphoma Unit, Uganda Cancer Institute, Kampala, Uganda
| | - Kathryn Burns
- Independent Qualitative Research, Budapest, Hungary
- https://orcid.org/0000-0002-2695-1088
| | - Maria Fernanda Olarte Sierra
- Medical Anthropology and Global Health Institute for Cultural and Social Anthropology, University of Vienna, Universitätsstraße 7, 1010 Vienna, Austria
| | - Julia Challinor
- School of Nursing, University of California San Francisco, 2 Koret Way, San Francisco, CA 94143, USA
- https://orcid.org/0000-0002-5008-8501
| | - Martjie de Villiers
- Adelaide Tambo School of Nursing Science, Tshwane University of Technology, Pretoria 0001, South Africa
| |
Collapse
|
5
|
Pat Y, Ogulur I, Yazici D, Mitamura Y, Cevhertas L, Küçükkase OC, Mesisser SS, Akdis M, Nadeau K, Akdis CA. Effect of altered human exposome on the skin and mucosal epithelial barrier integrity. Tissue Barriers 2023; 11:2133877. [PMID: 36262078 PMCID: PMC10606824 DOI: 10.1080/21688370.2022.2133877] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/23/2022] [Accepted: 08/27/2022] [Indexed: 10/24/2022] Open
Abstract
Pollution in the world and exposure of humans and nature to toxic substances is continuously worsening at a rapid pace. In the last 60 years, human and domestic animal health has been challenged by continuous exposure to toxic substances and pollutants because of uncontrolled growth, modernization, and industrialization. More than 350,000 new chemicals have been introduced to our lives, mostly without any reasonable control of their health effects and toxicity. A plethora of studies show exposure to these harmful substances during this period with their implications on the skin and mucosal epithelial barrier and increasing prevalence of allergic and autoimmune diseases in the context of the "epithelial barrier hypothesis". Exposure to these substances causes an epithelial injury with peri-epithelial inflammation, microbial dysbiosis and bacterial translocation to sub-epithelial areas, and immune response to dysbiotic bacteria. Here, we provide scientific evidence on the altered human exposome and its impact on epithelial barriers.
Collapse
Affiliation(s)
- Yagiz Pat
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
- Department of Medical Microbiology, Faculty of Medicine, Aydin Menderes University, Turkey
| | - Ismail Ogulur
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Duygu Yazici
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Yasutaka Mitamura
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Lacin Cevhertas
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
- Department of Medical Immunology, Institute of Health Sciences, Bursa Uludag University, Turkey
| | - Ozan C Küçükkase
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Sanne S Mesisser
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Kari Nadeau
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University and Division of Pulmonary, Allergy, and Critical Care Medicine, Stanford University, Stanford, CA, USA
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
- Christine Kühne-Center for Allergy Research and Education, Davos, Switzerland
| |
Collapse
|
6
|
Niloy NM, Habib SA, Islam MI, Haque MM, Shammi M, Tareq SM. Distribution, characteristics and fate of fluorescent dissolved organic matter (FDOM) in the Bay of Bengal. MARINE POLLUTION BULLETIN 2023; 195:115467. [PMID: 37659388 DOI: 10.1016/j.marpolbul.2023.115467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 07/11/2023] [Accepted: 08/27/2023] [Indexed: 09/04/2023]
Abstract
The Bay of Bengal (BoB) is the largest sink to retain discharges from major rivers and the Sundarbans Mangrove Forest in Bangladesh and upholds significant ecological and resource diversity. This study aims to characterize, and identify sources, spatial dynamics, and the fate of the principal ecological web driver that is fluorescent dissolved organic matter (FDOM) in the BoB using advanced techniques of excitation-emission matrix (EEM) fluorescence spectroscopy and multivariate parallel factor (PARAFAC) analyses. The identified four protein-, two humic- and one detergent-like FDOM components mostly showed higher abundance in the shallow water than deep unlike a protein-like component. Such exceptional protein-like component was identified to form colloidal structure under elevated salinity in deep water. Autochthonous humic-like FDOM originated from primary production and water temperature counteracted microbial polymerization in shallow and deep water, respectively. The annual mass deposition indicated the influx of anthropogenic pollutants from both terrestrial and internal marine systems.
Collapse
Affiliation(s)
- Nahin Mostofa Niloy
- Hydrobiogeochemistry and Pollution Control Laboratory, Department of Environmental Sciences, Jahangirnagar University, Dhaka 1342, Bangladesh; Centre for Coastal Biogeochemistry, School of Environment, Science and Engineering, Southern Cross University, Lismore, New South Wales, Australia
| | - Sm Ahsan Habib
- Bangladesh Space Research and Remote Sensing Organization (SPARRSO), Bangladesh
| | | | - Md Morshedul Haque
- Hydrobiogeochemistry and Pollution Control Laboratory, Department of Environmental Sciences, Jahangirnagar University, Dhaka 1342, Bangladesh; Department of Environmental Science and Engineering, Bangladesh University of Textiles, Tejgaon, Dhaka 1208, Bangladesh
| | - Mashura Shammi
- Hydrobiogeochemistry and Pollution Control Laboratory, Department of Environmental Sciences, Jahangirnagar University, Dhaka 1342, Bangladesh
| | - Shafi M Tareq
- Hydrobiogeochemistry and Pollution Control Laboratory, Department of Environmental Sciences, Jahangirnagar University, Dhaka 1342, Bangladesh.
| |
Collapse
|
7
|
Marcantonio R, Fuentes A. Environmental violence: a tool for planetary health research. Lancet Planet Health 2023; 7:e859-e867. [PMID: 37821164 DOI: 10.1016/s2542-5196(23)00190-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 07/20/2023] [Accepted: 08/11/2023] [Indexed: 10/13/2023]
Abstract
From climate change to toxic pollution and the interactive effects of multiple pollution streams, human health is under siege. Human-produced environmental risks to health and wellbeing are high and contributing to patterns of global morbidity, mortality, economic inequality, displacement, and insecurity. The implications of human-produced environmental harms to global health are complex just as are their causes. The concept of environmental violence offers a potentially robust frame for engaging this issue. We argue that a more specified and structured framework and definition of environmental violence-focusing on human-produced harms by way of pollution emissions-is both timely and beneficial for engaging the complexities of global public health. To clarify why and how this is the case, we review the literature for publications that use the term environmental violence and we subsequently propose a specific definition focused on human-produced pollution along with a framework for tracking and analysing environmental violence and its constituent components. Finally, we discuss the potential value of our framework for research and policy making regarding human health.
Collapse
Affiliation(s)
- Richard Marcantonio
- Department of Management and Organization, Environmental Change Initiative, and Kroc Institute for International Peace Studies, University of Notre Dame, Notre Dame, IN, USA.
| | - Agustín Fuentes
- Department of Anthropology and High Meadows Environmental Institute, Princeton University, Princeton, NJ, USA
| |
Collapse
|
8
|
Rentschler J, Leonova N. Global air pollution exposure and poverty. Nat Commun 2023; 14:4432. [PMID: 37481598 PMCID: PMC10363163 DOI: 10.1038/s41467-023-39797-4] [Citation(s) in RCA: 86] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 06/29/2023] [Indexed: 07/24/2023] Open
Abstract
Air pollution is one of the leading causes of health complications and mortality worldwide, especially affecting lower-income groups, who tend to be more exposed and vulnerable. This study documents the relationship between ambient air pollution exposure and poverty in 211 countries and territories. Using the World Health Organization's (WHO) 2021 revised fine particulate matter (PM2.5) thresholds, we show that globally, 7.3 billion people are directly exposed to unsafe average annual PM2.5 concentrations, 80 percent of whom live in low- and middle-income countries. Moreover, 716 million of the world's lowest income people (living on less than $1.90 per day) live in areas with unsafe levels of air pollution, especially in Sub-Saharan Africa. Air pollution levels are particularly high in lower-middle-income countries, where economies tend to rely more heavily on polluting industries and technologies. These findings are based on high-resolution air pollution and population maps with global coverage, as well as subnational poverty estimates based on harmonized household surveys.
Collapse
|
9
|
de Paula Arrifano G, Crespo-Lopez ME, Lopes-Araújo A, Santos-Sacramento L, Barthelemy JL, de Nazaré CGL, Freitas LGR, Augusto-Oliveira M. Neurotoxicity and the Global Worst Pollutants: Astroglial Involvement in Arsenic, Lead, and Mercury Intoxication. Neurochem Res 2023; 48:1047-1065. [PMID: 35997862 DOI: 10.1007/s11064-022-03725-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/01/2022] [Accepted: 08/09/2022] [Indexed: 10/15/2022]
Abstract
Environmental pollution is a global threat and represents a strong risk factor for human health. It is estimated that pollution causes about 9 million premature deaths every year. Pollutants that can cross the blood-brain barrier and reach the central nervous system are of special concern, because of their potential to cause neurological and development disorders. Arsenic, lead and mercury are usually ranked as the top three in priority lists of regulatory agencies. Against xenobiotics, astrocytes are recognised as the first line of defence in the CNS, being involved in virtually all brain functions, contributing to homeostasis maintenance. Here, we discuss the current knowledge on the astroglial involvement in the neurotoxicity induced by these pollutants. Beginning by the main toxicokinetic characteristics, this review also highlights the several astrocytic mechanisms affected by these pollutants, involving redox system, neurotransmitter and glucose metabolism, and cytokine production/release, among others. Understanding how these alterations lead to neurological disturbances (including impaired memory, deficits in executive functions, and motor and visual disfunctions), by revisiting the current knowledge is essential for future research and development of therapies and prevention strategies.
Collapse
Affiliation(s)
- Gabriela de Paula Arrifano
- Laboratory of Molecular Pharmacology, Institute of Biological Sciences, Federal University of Pará, Av. Augusto Corrêa, 01, Belém, PA, 66075-110, Brazil
| | - Maria Elena Crespo-Lopez
- Laboratory of Molecular Pharmacology, Institute of Biological Sciences, Federal University of Pará, Av. Augusto Corrêa, 01, Belém, PA, 66075-110, Brazil
| | - Amanda Lopes-Araújo
- Laboratory of Molecular Pharmacology, Institute of Biological Sciences, Federal University of Pará, Av. Augusto Corrêa, 01, Belém, PA, 66075-110, Brazil
| | - Letícia Santos-Sacramento
- Laboratory of Molecular Pharmacology, Institute of Biological Sciences, Federal University of Pará, Av. Augusto Corrêa, 01, Belém, PA, 66075-110, Brazil
| | - Jean L Barthelemy
- Laboratory of Molecular Pharmacology, Institute of Biological Sciences, Federal University of Pará, Av. Augusto Corrêa, 01, Belém, PA, 66075-110, Brazil
| | - Caio Gustavo Leal de Nazaré
- Laboratory of Molecular Pharmacology, Institute of Biological Sciences, Federal University of Pará, Av. Augusto Corrêa, 01, Belém, PA, 66075-110, Brazil
| | - Luiz Gustavo R Freitas
- Laboratory of Molecular Pharmacology, Institute of Biological Sciences, Federal University of Pará, Av. Augusto Corrêa, 01, Belém, PA, 66075-110, Brazil
| | - Marcus Augusto-Oliveira
- Laboratory of Molecular Pharmacology, Institute of Biological Sciences, Federal University of Pará, Av. Augusto Corrêa, 01, Belém, PA, 66075-110, Brazil.
| |
Collapse
|
10
|
Boakye A, Yu K, Asinyo BK, Chai H, Raza T, Xu T, Zhang G, Qu L. A Portable Electrochemical Sensor Based on Manganese Porphyrin-Functionalized Carbon Cloth for Highly Sensitive Detection of Nitroaromatics and Gaseous Phenol. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:12058-12069. [PMID: 36126097 DOI: 10.1021/acs.langmuir.2c01908] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Organic pollutants (OPs) have garnered a considerable amount of attention in recent times due to their extreme toxicity toward humans and the ecosystem. The need for an inexpensive yet robust, sensitive, selective, and easy-to-operate method for detecting OPs remains a challenge. Herein, a portable electrochemical sensor is proposed based on manganese porphyrin-functionalized carbon cloth (CC). To explain the electrochemical performance of the sensor, cyclic voltammetry (CV) and differential pulse voltammetry (DPV) were employed. The presence of manganese(III) ion in the center of the porphyrin ligand acted as an agent for the transfer of electrons and enhanced sensitivity toward analyte-specific redox catalysis. Moreover, it allowed for the concurrent detection of multiple analytes in a complex environment. The modified CC electrode can selectively detect nitroaromatic and phenolic compounds with accessible data collected through wireless means onto a smartphone device. The as-synthesized electrode demonstrated a higher sensitivity toward the detection of nitrobenzene (NB) and aqueous phenol with a limit of detection (LOD) found to be 5.9268 × 10-10 M and 4.0178 × 10-10 M, respectively. Additionally, our proposed portable electrochemical sensor demonstrates a high selectivity and reproducibility toward nitroaromatic and phenolic compounds, which can be employed in real complex water samples. With regard to the sensor's remarkable electrochemical performance, it is envisaged that such a sensor could pave the way for environmental point of care (POC) testing.
Collapse
Affiliation(s)
- Andrews Boakye
- Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Kun Yu
- Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Benjamin K Asinyo
- Department of Industrial Art, Kwame Nkrumah University of Science and Technology, Kumasi AK-039-5028, Ghana
| | - Huining Chai
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, China
| | - Tahir Raza
- Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Tailin Xu
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Guangyao Zhang
- Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Lijun Qu
- Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| |
Collapse
|