1
|
Kim G, Grams RJ, Hsu KL. Advancing Covalent Ligand and Drug Discovery beyond Cysteine. Chem Rev 2025. [PMID: 40404146 DOI: 10.1021/acs.chemrev.5c00001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2025]
Abstract
Targeting intractable proteins remains a key challenge in drug discovery, as these proteins often lack well-defined binding pockets or possess shallow surfaces not readily addressed by traditional drug design. Covalent chemistry has emerged as a powerful solution for accessing protein sites in difficult to ligand regions. By leveraging activity-based protein profiling (ABPP) and LC-MS/MS technologies, academic groups and industry have identified cysteine-reactive ligands that enable selective targeting of challenging protein sites to modulate previously inaccessible biological pathways. Cysteines within a protein are rare, however, and developing covalent ligands that target additional residues hold great promise for further expanding the ligandable proteome. This review highlights recent advancements in targeting amino acids beyond cysteine binding with an emphasis on tyrosine- and lysine-directed covalent ligands and their applications in chemical biology and therapeutic development. We outline the process of developing covalent ligands using chemical proteomic methodology, highlighting recent successful examples and discuss considerations for future expansion to additional amino acid sites on proteins.
Collapse
Affiliation(s)
- Gibae Kim
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - R Justin Grams
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Ku-Lung Hsu
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
2
|
Anand P, Zhang Y, Patil S, Kaur K. Metabolic Stability and Targeted Delivery of Oligonucleotides: Advancing RNA Therapeutics Beyond The Liver. J Med Chem 2025; 68:6870-6896. [PMID: 39772535 PMCID: PMC11998008 DOI: 10.1021/acs.jmedchem.4c02528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/11/2024] [Accepted: 12/26/2024] [Indexed: 01/11/2025]
Abstract
Oligonucleotides have emerged as a formidable new class of nucleic acid therapeutics. Fully modified oligonucleotides exhibit enhanced metabolic stability and display successful clinical applicability for targets formerly considered "undruggable". Accumulating studies show that conjugation to targeting modalities of stabilized oligonucleotides, especially small interfering RNAs (siRNAs), has enabled robust delivery to intended cells/tissues. However, the major challenge in the field has been the stability and targeted delivery of oligonucleotides (siRNAs and antisense oligonucleotides (ASOs)) to extrahepatic tissues. In this Perspective, we review chemistry innovations and emerging delivery approaches that have revolutionized oligonucleotide drug discovery and development. We explore findings from both academia and industry that highlight the potential of oligonucleotides for indications involving different extrahepatic organs─including skeletal muscles, brain, lungs, skin, heart, adipose tissue, and eyes. In all, continued advances in chemistry coupled with conjugation-based approaches or novel administration routes will further advance the delivery of oligonucleotides to extrahepatic tissues.
Collapse
Affiliation(s)
- Puneet Anand
- Regeneron Genetic Medicines, Regeneron Pharmaceuticals, Inc., Tarrytown, New York 10591, United States
| | - Yu Zhang
- Regeneron Genetic Medicines, Regeneron Pharmaceuticals, Inc., Tarrytown, New York 10591, United States
| | - Spoorthi Patil
- Regeneron Genetic Medicines, Regeneron Pharmaceuticals, Inc., Tarrytown, New York 10591, United States
| | - Keerat Kaur
- Regeneron Genetic Medicines, Regeneron Pharmaceuticals, Inc., Tarrytown, New York 10591, United States
| |
Collapse
|
3
|
Kuril AK, Saravanan K, Subbappa PK. Analytical considerations for characterization of generic peptide product: A regulatory insight. Anal Biochem 2024; 694:115633. [PMID: 39089363 DOI: 10.1016/j.ab.2024.115633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/23/2024] [Accepted: 07/29/2024] [Indexed: 08/03/2024]
Abstract
The Peptide therapeutics market was evaluated to be around USD 45.67 BN in 2023 and is projected to witness massive growth at a CAGR of around 5.63 % from 2024 to 2032 (USD 80.4 BN). Generic peptides are expected to reach USD 27.1 billion by 2032 after the patent monopoly of the pioneer peptides expires, and generic peptides become accessible. The generic manufacturers are venturing into peptide-based therapeutics for the aforementioned reasons. There is an abundance of material accessible regarding the characterization of peptides, which can be quite confusing for researchers. The FDA believes that an ANDA applicant may now demonstrate that the active component in a proposed generic synthetic peptide drug product is the "same" as the active ingredient in a peptide of rDNA origin that has previously been approved. To ensure the efficacy, safety, and quality of peptide therapies during development, regulatory bodies demand comprehensive characterization utilizing several orthogonal methodologies. This article elaborates the peptide characterization by segmenting into different segments as per the critical quality attribute from identification of the peptide to the physicochemical property of the peptide therapeutics which will be required to demonstrate the sameness with reference product based on the size of the peptide chain and molecular weight of the peptides. Article insights briefly on each individual technique and the orthogonal techniques for each test were explained. The impurities requirements in the generic peptides as per the regulatory requirement were also discussed.
Collapse
Affiliation(s)
| | - K Saravanan
- Bhagwant University, Sikar Road, Ajmer, Rajasthan, India
| | | |
Collapse
|
4
|
Halawa M, Newman PM, Aderibigbe T, Carabetta VJ. Conjugated therapeutic proteins as a treatment for bacteria which trigger cancer development. iScience 2024; 27:111029. [PMID: 39635133 PMCID: PMC11615139 DOI: 10.1016/j.isci.2024.111029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024] Open
Abstract
In recent years, an increasing amount of research has focused on the intricate and complex correlation between bacterial infections and the development of cancer. Some studies even identified specific bacterial species as potential culprits in the initiation of carcinogenesis, which generated a great deal of interest in the creation of innovative therapeutic strategies aimed at addressing both the infection and the subsequent risk of cancer. Among these strategies, there has been a recent emergence of the use of conjugated therapeutic proteins, which represent a highly promising avenue in the field of cancer therapeutics. These proteins offer a dual-targeting approach that seeks to effectively combat both the bacterial infection and the resulting malignancies that may arise because of such infections. This review delves into the landscape of conjugated therapeutic proteins that have been intricately designed with the purpose of specifically targeting bacteria that have been implicated in the induction of cancer.
Collapse
Affiliation(s)
- Mohamed Halawa
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08103, USA
| | - Precious M. Newman
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08103, USA
| | - Tope Aderibigbe
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08103, USA
| | - Valerie J. Carabetta
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08103, USA
| |
Collapse
|
5
|
Pritam M, Dutta S, Medicherla KM, Kumar R, Singh SP. Computational analysis of spike protein of SARS-CoV-2 (Omicron variant) for development of peptide-based therapeutics and diagnostics. J Biomol Struct Dyn 2024; 42:7321-7339. [PMID: 37498146 DOI: 10.1080/07391102.2023.2239932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/17/2023] [Indexed: 07/28/2023]
Abstract
In the last few years, the worldwide population has suffered from the SARS-CoV-2 pandemic. The WHO dashboard indicated that around 504,079,039 people were infected and 6,204,155 died from COVID-19 caused by different variants of SARS-CoV-2. Recently, a new variant of SARS-CoV-2 (B.1.1.529) was reported by South Africa known as Omicron. The high transmissibility rate and resistance towards available anti-SARS-CoV-2 drugs/vaccines/monoclonal antibodies, make Omicron a variant of concern. Because of various mutations in spike protein, available diagnostic and therapeutic treatments are not reliable. Therefore, the present study explored the development of some therapeutic peptides that can inhibit the SARS-CoV-2 virus interaction with host ACE2 receptors and can also be used for diagnostic purposes. The screened linear B cell epitopes derived from receptor-binding domain of spike protein of Omicron variant were evaluated as peptide inhibitor/vaccine candidates through different bioinformatics tools including molecular docking and simulation to analyze the interaction between Omicron peptide and human ACE2 receptor. Overall, in-silico studies revealed that Omicron peptides OP1-P12, OP14, OP20, OP23, OP24, OP25, OP26, OP27, OP28, OP29, and OP30 have the potential to inhibit Omicron interaction with ACE2 receptor. Moreover, Omicron peptides OP20, OP22, OP23, OP24, OP25, OP26, OP27, and OP30 have shown potential antigenic and immunogenic properties that can be used in design and development vaccines against Omicron. Although the in-silico validation was performed by comparative analysis with the control peptide inhibitor, further validation through wet lab experimentation is required before its use as therapeutic peptides.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Manisha Pritam
- Department of Biotechnology and Bioinformatics, Birla Institute of Scientific Research, Jaipur, India
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, India
| | - Somenath Dutta
- Department of Biotechnology and Bioinformatics, Birla Institute of Scientific Research, Jaipur, India
- Department of Bioinformatics, Pondicherry Central University, Puducherry, India
| | - Krishna Mohan Medicherla
- Department of Biotechnology and Bioinformatics, Birla Institute of Scientific Research, Jaipur, India
| | - Rajnish Kumar
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, India
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
| | | |
Collapse
|
6
|
Andrés CMC, Pérez de la Lastra JM, Bustamante Munguira E, Andrés Juan C, Pérez-Lebeña E. Michael Acceptors as Anti-Cancer Compounds: Coincidence or Causality? Int J Mol Sci 2024; 25:6099. [PMID: 38892287 PMCID: PMC11172677 DOI: 10.3390/ijms25116099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/25/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Michael acceptors represent a class of compounds with potential anti-cancer properties. They act by binding to nucleophilic sites in biological molecules, thereby disrupting cancer cell function and inducing cell death. This mode of action, as well as their ability to be modified and targeted, makes them a promising avenue for advancing cancer therapy. We are investigating the molecular mechanisms underlying Michael acceptors and their interactions with cancer cells, in particular their ability to interfere with cellular processes and induce apoptosis. The anti-cancer properties of Michael acceptors are not accidental but are due to their chemical structure and reactivity. The electrophilic nature of these compounds allows them to selectively target nucleophilic residues on disease-associated proteins, resulting in significant therapeutic benefits and minimal toxicity in various diseases. This opens up new perspectives for the development of more effective and precise cancer drugs. Nevertheless, further studies are essential to fully understand the impact of our discoveries and translate them into clinical practice.
Collapse
Affiliation(s)
| | - José Manuel Pérez de la Lastra
- Institute of Natural Products and Agrobiology, CSIC-Spanish Research Council, Avda. Astrofísico Fco. Sánchez, 3, 38206 La Laguna, Spain
| | | | - Celia Andrés Juan
- Cinquima Institute and Department of Organic Chemistry, Faculty of Sciences, Valladolid University, Paseo de Belén, 7, 47011 Valladolid, Spain
| | | |
Collapse
|
7
|
Gomez-Soler M, Olson EJ, de la Torre ER, Zhao C, Lamberto I, Flood DT, Danho W, Lechtenberg BC, Riedl SJ, Dawson PE, Pasquale EB. Lipidation and PEGylation Strategies to Prolong the in Vivo Half-Life of a Nanomolar EphA4 Receptor Antagonist. Eur J Med Chem 2023; 262:115876. [PMID: 38523699 PMCID: PMC10959496 DOI: 10.1016/j.ejmech.2023.115876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/08/2023] [Accepted: 10/12/2023] [Indexed: 03/26/2024]
Abstract
The EphA4 receptor tyrosine kinase plays a role in neurodegenerative diseases, inhibition of nerve regeneration, cancer progression and other diseases. Therefore, EphA4 inhibition has potential therapeutic value. Selective EphA4 kinase inhibitors are not available, but we identified peptide antagonists that inhibit ephrin ligand binding to EphA4 with high specificity. One of these peptides is the cyclic APY-d3 (βAPYCVYRβASWSC-NH2), which inhibits ephrin-A5 ligand binding to EphA4 with low nanomolar binding affinity and is highly protease resistant. Here we describe modifications of APY-d3 that yield two different key derivatives with greatly increased half-lives in the mouse circulation, the lipidated APY-d3-laur8 and the PEGylated APY-d3-PEG4. These two derivatives inhibit ligand induced EphA4 activation in cells with sub-micromolar potency. Since they retain high potency and specificity for EphA4, lipidated and PEGylated APY-d3 derivatives represent new tools for discriminating EphA4 activities in vivo and for preclinical testing of EphA4 inhibition in animal disease models.
Collapse
Affiliation(s)
- Maricel Gomez-Soler
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Erika J. Olson
- Departments of Chemistry and Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Elena Rubio de la Torre
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Chunxia Zhao
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Ilaria Lamberto
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Dillon T. Flood
- Departments of Chemistry and Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Waleed Danho
- Del Mar, California 92014, United States
- Deceased
| | - Bernhard C. Lechtenberg
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Stefan J. Riedl
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Philip E. Dawson
- Departments of Chemistry and Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Elena B. Pasquale
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| |
Collapse
|
8
|
El-Ansary A, Al-Ayadhi L. Effects of Walnut and Pumpkin on Selective Neurophenotypes of Autism Spectrum Disorders: A Case Study. Nutrients 2023; 15:4564. [PMID: 37960217 PMCID: PMC10647375 DOI: 10.3390/nu15214564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Special diets or nutritional supplements are regularly given to treat children with autism spectrum disorder (ASD). The increased consumption of particular foods has been demonstrated in numerous trials to lessen autism-related symptoms and comorbidities. A case study on a boy with moderate autism who significantly improved after three years of following a healthy diet consisting of pumpkin and walnuts was examined in this review in connection to a few different neurophenotypes of ASD. We are able to suggest that a diet high in pumpkin and walnuts was useful in improving the clinical presentation of the ASD case evaluated by reducing oxidative stress, neuroinflammation, glutamate excitotoxicity, mitochondrial dysfunction, and altered gut microbiota, all of which are etiological variables. Using illustrated figures, a full description of the ways by which a diet high in pumpkin and nuts could assist the included case is offered.
Collapse
Affiliation(s)
- Afaf El-Ansary
- Autism Center, Lotus Holistic Alternative Medical Center, Abu Dhabi P.O. Box 110281, United Arab Emirates
- Autism Research and Treatment Center, P.O. Box 2925, Riyadh 11461, Saudi Arabia;
| | - Laila Al-Ayadhi
- Autism Research and Treatment Center, P.O. Box 2925, Riyadh 11461, Saudi Arabia;
- Department of Physiology, Faculty of Medicine, King Saud University, P.O. Box 2925, Riyadh 11461, Saudi Arabia
| |
Collapse
|
9
|
Costa NS, dos Anjos LR, de Souza JV, Brasil MCDA, Moreira VP, Graminha MAS, Lubec G, Gonzalez ERP, Cilli EM. Development of New Leishmanicidal Compounds via Bioconjugation of Antimicrobial Peptides and Antileishmanial Guanidines. ACS OMEGA 2023; 8:34008-34016. [PMID: 37744786 PMCID: PMC10515597 DOI: 10.1021/acsomega.3c04878] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/16/2023] [Indexed: 09/26/2023]
Abstract
Leishmaniasis refers to a collection of diseases caused by protozoa from the Leishmania genus. These diseases, along with other parasitic afflictions, pose a significant public health issue, particularly given the escalating number of at-risk patients. This group includes immunocompromised individuals and those residing in impoverished conditions. The treatment of leishmaniasis is crucial, particularly in light of the mortality rate associated with nontreatment, which stands at 20-30,000 deaths per year globally. However, the therapeutic options currently available are limited, often ineffective, and potentially toxic. Consequently, the pursuit of new therapeutic alternatives is warranted. This study aims to design, synthesize, and evaluate the leishmanicidal activity of antimicrobial peptides functionalized with guanidine compounds and identify those with enhanced potency and selectivity against the parasite. Accordingly, three bioconjugates were obtained by using the solid-phase peptide synthesis protocol. Each proved to be more potent against intracellular amastigotes than their respective peptide or guanidine compounds alone and demonstrated higher selectivity to the parasites than to the host cells. Thus, the conjugation strategy employed with these compounds effectively contributes to the development of new molecules with leishmanicidal activity.
Collapse
Affiliation(s)
- Natalia
C. S. Costa
- Department
of Biochemistry and Organic Chemistry, Institute
of Chemistry, São Paulo State University (UNESP), 14800-060 Araraquara, São Paulo, Brazil
| | - Luana Ribeiro dos Anjos
- Fine
Organic Chemistry Lab, School of Sciences and Technology, São Paulo State University (UNESP), 19060-080 Presidente
Prudente, Sao Paulo, Brazil
| | - João Victor
Marcelino de Souza
- Department
of Biochemistry and Organic Chemistry, Institute
of Chemistry, São Paulo State University (UNESP), 14800-060 Araraquara, São Paulo, Brazil
| | | | - Vitor Partite Moreira
- Fine
Organic Chemistry Lab, School of Sciences and Technology, São Paulo State University (UNESP), 19060-080 Presidente
Prudente, Sao Paulo, Brazil
| | - Marcia A. S. Graminha
- School
of Pharmaceutical Sciences, São Paulo
State University (UNESP), 14800-903 Araraquara, São
Paulo, Brazil
| | - Gert Lubec
- Department
of Neuroproteomics, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Eduardo Rene P. Gonzalez
- Fine
Organic Chemistry Lab, School of Sciences and Technology, São Paulo State University (UNESP), 19060-080 Presidente
Prudente, Sao Paulo, Brazil
| | - Eduardo Maffud Cilli
- Department
of Biochemistry and Organic Chemistry, Institute
of Chemistry, São Paulo State University (UNESP), 14800-060 Araraquara, São Paulo, Brazil
| |
Collapse
|
10
|
Bugatti K. A Brief Guide to Preparing a Peptide-Drug Conjugate. Chembiochem 2023; 24:e202300254. [PMID: 37288718 DOI: 10.1002/cbic.202300254] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/09/2023]
Abstract
Peptide-drug conjugates (PDCs) have recently emerged as interesting hybrid constructs not only for targeted therapy, but also for the early diagnosis of different pathologies. In most cases, the crucial step in the PDC synthesis is the final conjugation step, where a specific drug is bound to a particular peptide-/peptidomimetic-targeting unit. Thus, this concept paper aims to give a short guide to determining the finest conjugation reaction, by considering in particular the reaction conditions, the stability of the linker and the major pros and cons of each reaction. Based on the recent PDCs reported in literature, the most common and efficient conjugation methods will be systematically presented and compared, generating a short guide to consult while planning the synthesis of a novel peptide-drug conjugate.
Collapse
Affiliation(s)
- Kelly Bugatti
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124, Parma, Italy
| |
Collapse
|
11
|
Todaro B, Ottalagana E, Luin S, Santi M. Targeting Peptides: The New Generation of Targeted Drug Delivery Systems. Pharmaceutics 2023; 15:1648. [PMID: 37376097 DOI: 10.3390/pharmaceutics15061648] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/22/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Peptides can act as targeting molecules, analogously to oligonucleotide aptamers and antibodies. They are particularly efficient in terms of production and stability in physiological environments; in recent years, they have been increasingly studied as targeting agents for several diseases, from tumors to central nervous system disorders, also thanks to the ability of some of them to cross the blood-brain barrier. In this review, we will describe the techniques employed for their experimental and in silico design, as well as their possible applications. We will also discuss advancements in their formulation and chemical modifications that make them even more stable and effective. Finally, we will discuss how their use could effectively help to overcome various physiological problems and improve existing treatments.
Collapse
Affiliation(s)
- Biagio Todaro
- NEST Laboratory, Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Elisa Ottalagana
- NEST Laboratory, Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
- Fondazione Pisana per la Scienza, Via Ferruccio Giovannini 13, San Giuliano Terme, 56017 Pisa, Italy
| | - Stefano Luin
- NEST Laboratory, Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Melissa Santi
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
| |
Collapse
|
12
|
Bonaccorso A, Privitera A, Grasso M, Salamone S, Carbone C, Pignatello R, Musumeci T, Caraci F, Caruso G. The Therapeutic Potential of Novel Carnosine Formulations: Perspectives for Drug Development. Pharmaceuticals (Basel) 2023; 16:778. [PMID: 37375726 PMCID: PMC10300694 DOI: 10.3390/ph16060778] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/12/2023] [Accepted: 05/16/2023] [Indexed: 06/29/2023] Open
Abstract
Carnosine (beta-alanyl-L-histidine) is an endogenous dipeptide synthesized via the activity of the ATP-dependent enzyme carnosine synthetase 1 and can be found at a very high concentration in tissues with a high metabolic rate, including muscles (up to 20 mM) and brain (up to 5 mM). Because of its well-demonstrated multimodal pharmacodynamic profile, which includes anti-aggregant, antioxidant, and anti-inflammatory activities, as well as its ability to modulate the energy metabolism status in immune cells, this dipeptide has been investigated in numerous experimental models of diseases, including Alzheimer's disease, and at a clinical level. The main limit for the therapeutic use of carnosine is related to its rapid hydrolysis exerted by carnosinases, especially at the plasma level, reason why the development of new strategies, including the chemical modification of carnosine or its vehiculation into innovative drug delivery systems (DDS), aiming at increasing its bioavailability and/or at facilitating the site-specific transport to different tissues, is of utmost importance. In the present review, after a description of carnosine structure, biological activities, administration routes, and metabolism, we focused on different DDS, including vesicular systems and metallic nanoparticles, as well as on possible chemical derivatization strategies related to carnosine. In particular, a basic description of the DDS employed or the derivatization/conjugation applied to obtain carnosine formulations, followed by the possible mechanism of action, is given. To the best of our knowledge, this is the first review that includes all the new formulations of carnosine (DDS and derivatives), allowing a decrease or complete prevention of the hydrolysis of this dipeptide exerted by carnosinases, the simultaneous blood-brain barrier crossing, the maintenance or enhancement of carnosine biological activity, and the site-specific transport to different tissues, which then offers perspectives for the development of new drugs.
Collapse
Affiliation(s)
- Angela Bonaccorso
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
- NANOMED–Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, 95125 Catania, Italy
| | - Anna Privitera
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Margherita Grasso
- Unit of Neuropharmacology and Translational Neurosciences, Oasi Research Institute-IRCCS, 94018 Troina, Italy
| | - Sonya Salamone
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
| | - Claudia Carbone
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
- NANOMED–Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, 95125 Catania, Italy
| | - Rosario Pignatello
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
- NANOMED–Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, 95125 Catania, Italy
| | - Teresa Musumeci
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
- NANOMED–Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, 95125 Catania, Italy
| | - Filippo Caraci
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
- Unit of Neuropharmacology and Translational Neurosciences, Oasi Research Institute-IRCCS, 94018 Troina, Italy
| | - Giuseppe Caruso
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
- Unit of Neuropharmacology and Translational Neurosciences, Oasi Research Institute-IRCCS, 94018 Troina, Italy
| |
Collapse
|
13
|
Current Status of Peptide Medications and the Position of Active Therapeutic Peptides with Scorpion Venom Origin. Jundishapur J Nat Pharm Prod 2023. [DOI: 10.5812/jjnpp-134049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
: Peptides are highly potent, selective, and relatively safe therapeutics. Over the past two decades, natural peptides have been obtained, studied, and eventually approved by the Food and Drug Administration (FDA) due to advancements in identification, production, modification, and analytical technologies. Some peptide therapeutics has been derived from the venom gland of venomous animals, including snake, leech, lizard, snail, and scorpion. Scorpion was identified as a reservoir of important peptides with pharmaceutical properties. The scorpion uses these peptides for capturing prey and defense. However, their pharmacological properties in treating different diseases, including cardiac problems, autoimmune and infectious diseases, and diverse cancers, have been confirmed. Ion channel modifiers are the greatest components of the scorpion venom glands. Due to advances in proteomic and transcriptomic approaches, the identification of new scorpion venom peptides is steadily increasing. In this review, we tried to represent the current status of peptide medicines and describe the last peptide medications approved by FDA in 2022. Moreover, we will further explain potent peptides originating from scorpion venom, which have gone through important steps to be approved.
Collapse
|
14
|
Pereira MR, dos Santos VR, de Oliveira WC, Duque C, da Silva BF, Santos-Filho NA, Carneiro VA, Lorenzón EN, Cilli EM. Effects of Conjugation of Ferrocene and Gallic Acid On desCys 11/Lys 12/Lys 13-(p-BthTX-I) 2K Peptide: Structure, Permeabilization and Antibacterial Activity. Protein Pept Lett 2023; 30:690-698. [PMID: 37488753 DOI: 10.2174/0929866530666230721112129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/11/2023] [Accepted: 06/15/2023] [Indexed: 07/26/2023]
Abstract
BACKGROUND Antimicrobial resistance is an emerging global health challenge that has led researchers to study alternatives to conventional antibiotics. A promising alternative is antimicrobial peptides (AMPs), produced as the first line of defense by almost all living organisms. To improve its biological activity, the conjugation of AMPs is a promising approach. OBJECTIVE In this study, we evaluated the N-terminal conjugation of p-Bt (a peptide derived from Bothrops Jararacuçu`s venom) with ferrocene (Fc) and gallic acid (GA). Acetylated and linear versions of p-Bt were also synthesized to evaluate the importance of N-terminal charge and dimeric structure. METHODS The compounds were obtained using solid-phase peptide synthesis. Circular dichroism, vesicle permeabilization, antimicrobial activity, and cytotoxicity studies were conducted. RESULTS No increase in antibacterial activity against Escherichia coli was observed by adding either Fc or GA to p-Bt. However, Fc-p-Bt and GA-p-Bt exhibited improved activity against Staphylococcus aureus. No cytotoxicity upon fibroblast was observed for GA-p-Bt. On the other hand, conjugation with Fc increased cytotoxicity. This toxicity may be related to the membrane permeabilization capacity of this bioconjugate, which showed the highest carboxyfluorescein leakage in vesicle permeabilization experiments. CONCLUSION Considering these observations, our findings highlight the importance of adding bioactive organic compounds in the N-terminal position as a tool to modulate the activity of AMPs.
Collapse
Affiliation(s)
- Marina Rodrigues Pereira
- Departamento de Bioquímica e Química Orgânica, Instituto de Química, Universidade Estadual Paulista (UNESP), SP, 14800-060, São Paulo, Araraquara, Brasil
| | - Vanessa Rodrigues dos Santos
- Departamento de Odontologia Preventiva e Restauradora, Faculdade de Odontologia de Araçatuba, Universidade Estadual Paulista (UNESP), Araçatuba 16015-050, SP, Brasil
| | - Warlley Campos de Oliveira
- Departamento de Odontologia Preventiva e Restauradora, Faculdade de Odontologia de Araçatuba, Universidade Estadual Paulista (UNESP), Araçatuba 16015-050, SP, Brasil
| | - Cristiane Duque
- Departamento de Odontologia Preventiva e Restauradora, Faculdade de Odontologia de Araçatuba, Universidade Estadual Paulista (UNESP), Araçatuba 16015-050, SP, Brasil
- Dental Research Institute, Faculdade de Odontologia, Universidade de Toronto, Toronto, ONM5G 1G6, Canadá
| | - Benise Ferreira da Silva
- Núcleo de Bioprospecção e Experimentação Molecular Aplicada (NUBEM), Centro Universitário INTA - UNINTA, Sobral, 62050-100, Ceará, Brasil
| | - Norival Alves Santos-Filho
- Departamento de Bioquímica e Química Orgânica, Instituto de Química, Universidade Estadual Paulista (UNESP), SP, 14800-060, São Paulo, Araraquara, Brasil
| | - Victor Alves Carneiro
- Núcleo de Bioprospecção e Experimentação Molecular Aplicada (NUBEM), Centro Universitário INTA - UNINTA, Sobral, 62050-100, Ceará, Brasil
| | | | - Eduardo Maffud Cilli
- Departamento de Bioquímica e Química Orgânica, Instituto de Química, Universidade Estadual Paulista (UNESP), SP, 14800-060, São Paulo, Araraquara, Brasil
| |
Collapse
|
15
|
Kogkos G, Gkartziou F, Mourtas S, Barlos KK, Klepetsanis P, Barlos K, Antimisiaris SG. Liposomal Entrapment or Chemical Modification of Relaxin2 for Prolongation of Its Stability and Biological Activity. Biomolecules 2022; 12:biom12101362. [PMID: 36291571 PMCID: PMC9599704 DOI: 10.3390/biom12101362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 11/24/2022] Open
Abstract
Relaxin (RLX) is a protein that is structurally similar to insulin and has interesting biological activities. As with all proteins, preservation of RLX’s structural integrity/biological functionality is problematic. Herein, we investigated two methods for increasing the duration of relaxin-2’s (RLX2) biological activity: synthesis of a palmitoyl RLX2 conjugate (P-RLX2) with the use of a Palmitoyl-l-Glu-OtBu peptide modifier, and encapsulation into liposomes of P-RLX2, RLX2, and its oxidized form (O-RLX2). For liposomal encapsulation thin-film hydration and DRV methods were applied, and different lipid compositions were tested for optimized protein loading. RLX2 and O-RLX2 were quantified by HPLC. The capability of the peptides/conjugate to stimulate transfected cells to produce cyclic adenosine monophosphate (cAMP) was used as a measure of their biological activity. The stability and bioactivity of free and liposomal RLX2 types were monitored for a 30 d period, in buffer (in some cases) and bovine serum (80%) at 37 °C. The results showed that liposome encapsulation substantially increased the RLX2 integrity in buffer; PEGylated liposomes demonstrated a higher protection. Liposome encapsulation also increased the stability of RLX2 and O-RLX2 in serum. Considering the peptide’s biological activity, cAMP production of RLX2 was higher than that of the oxidized form and the P-RLX2 conjugate (which demonstrated a similar activity to O-RLX2 when measured in buffer, but lower when measured in the presence of serum proteins), while liposome encapsulation resulted in a slight decrease of bioactivity initially, but prolonged the peptide bioactivity during incubation in serum. It was concluded that liposome encapsulation of RLX2 and synthetic modification to P-RLX2 can both prolong RLX2 peptide in vitro stability; however, the applied chemical conjugation results in a significant loss of bioactivity (cAMP production), whereas the effect of liposome entrapment on RLX2 activity was significantly lower.
Collapse
Affiliation(s)
- George Kogkos
- Lab Pharm Technology, Department of Pharmacy, University of Patras, Rio, 26504 Patras, Greece
| | - Foteini Gkartziou
- Foundation for Research and Technology Hellas, Institute of Chemical Engineering, FORTH/ICE-HT, Platani, 26504 Patras, Greece
| | - Spyridon Mourtas
- Lab Pharm Technology, Department of Pharmacy, University of Patras, Rio, 26504 Patras, Greece
- Department of Chemistry, University of Patras, Rio, 26504 Patras, Greece
| | - Kostas K. Barlos
- Chemical & Biopharmaceutical Laboratories CBL Patras, Ind. Area of Patras, Block 1, 25018 Patras, Greece
| | - Pavlos Klepetsanis
- Lab Pharm Technology, Department of Pharmacy, University of Patras, Rio, 26504 Patras, Greece
- Foundation for Research and Technology Hellas, Institute of Chemical Engineering, FORTH/ICE-HT, Platani, 26504 Patras, Greece
| | - Kleomenis Barlos
- Chemical & Biopharmaceutical Laboratories CBL Patras, Ind. Area of Patras, Block 1, 25018 Patras, Greece
| | - Sophia G. Antimisiaris
- Lab Pharm Technology, Department of Pharmacy, University of Patras, Rio, 26504 Patras, Greece
- Foundation for Research and Technology Hellas, Institute of Chemical Engineering, FORTH/ICE-HT, Platani, 26504 Patras, Greece
- Correspondence: ; Tel.: +30-2610962332
| |
Collapse
|
16
|
Majura JJ, Cao W, Chen Z, Htwe KK, Li W, Du R, Zhang P, Zheng H, Gao J. The current research status and strategies employed to modify food-derived bioactive peptides. Front Nutr 2022; 9:950823. [PMID: 36118740 PMCID: PMC9479208 DOI: 10.3389/fnut.2022.950823] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/17/2022] [Indexed: 01/10/2023] Open
Abstract
The ability of bioactive peptides to exert biological functions has mainly contributed to their exploitation. The exploitation and utilization of these peptides have grown tremendously over the past two decades. Food-derived peptides from sources such as plant, animal, and marine proteins and their byproducts constitute a more significant portion of the naturally-occurring peptides that have been documented. Due to their high specificity and biocompatibility, these peptides serve as a suitable alternative to pharmacological drugs for treating non-communicable diseases (such as cardiovascular diseases, obesity, and cancer). They are helpful as food preservatives, ingredients in functional foods, and dietary supplements in the food sector. Despite their unique features, the application of these peptides in the clinical and food sector is to some extent hindered by their inherent drawbacks such as toxicity, bitterness, instability, and susceptibility to enzymatic degradation in the gastrointestinal tract. Several strategies have been employed to eliminate or reduce the disadvantages of peptides, thus enhancing the peptide bioactivity and broadening the opportunities for their applications. This review article focuses on the current research status of various bioactive peptides and the strategies that have been implemented to overcome their disadvantages. It will also highlight future perspectives regarding the possible improvements to be made for the development of bioactive peptides with practical uses and their commercialization.
Collapse
Affiliation(s)
- Julieth Joram Majura
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang, China
| | - Wenhong Cao
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang, China
- National Research and Development Branch Center for Shellfish Processing, Zhanjiang, China
- Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Zhongqin Chen
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang, China
- National Research and Development Branch Center for Shellfish Processing, Zhanjiang, China
- Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Kyi Kyi Htwe
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Wan Li
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang, China
| | - Ran Du
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang, China
| | - Pei Zhang
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Huina Zheng
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang, China
- National Research and Development Branch Center for Shellfish Processing, Zhanjiang, China
- Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Jialong Gao
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang, China
- National Research and Development Branch Center for Shellfish Processing, Zhanjiang, China
- Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| |
Collapse
|