1
|
Rani MHS, Nandana RK, Khatun A, Brindha V, Midhun D, Gowtham P, Mani SSD, Kumar SR, Aswini A, Muthukumar S. Three strategy rules of filamentous fungi in hydrocarbon remediation: an overview. Biodegradation 2024; 35:833-861. [PMID: 38733427 DOI: 10.1007/s10532-024-10086-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/13/2024] [Indexed: 05/13/2024]
Abstract
Remediation of hydrocarbon contaminations requires much attention nowadays since it causes detrimental effects on land and even worse impacts on aquatic environments. Tools of bioremediation especially filamentous fungi permissible for cleaning up as much as conceivable, at least they turn into non-toxic residues with less consumed periods. Inorganic chemicals, CO2, H2O, and cell biomass are produced as a result of the breakdown and mineralization of petroleum hydrocarbon pollutants. This paper presents a detailed overview of three strategic rules of filamentous fungi in remediating the various aliphatic, and aromatic hydrocarbon compounds: utilizing carbons from hydrocarbons as sole energy, Co-metabolism manners (Enzymatic and Non-enzymatic theories), and Biosorption approaches. Upliftment in the degradation rate of complex hydrocarbon by the Filamentous Fungi in consortia scenario we can say, "Fungal Talk", which includes a variety of cellular mechanisms, including biosurfactant production, biomineralization, and precipitation, etc., This review not only displays its efficiency but showcases the field applications - cost-effective, reliable, eco-friendly, easy to culture as biomass, applicable in both land and any water bodies in operational environment cleanups. Nevertheless, the potentiality of fungi-human interaction has not been fully understood, henceforth further studies are highly endorsed with spore pathogenicity of the fungal species capable of high remediation rate, and the gene knockout study, if the specific peptides cause toxicity to any living matters via Genomics and Proteomics approaches, before application of any in situ or ex situ environments.
Collapse
Affiliation(s)
| | - Ramesh Kumar Nandana
- Department of Biotechnology, Sri Ramakrishna College of Arts & Science, Coimbatore, India
| | - Alisha Khatun
- Department of Biotechnology, Sri Ramakrishna College of Arts & Science, Coimbatore, India
| | - Velumani Brindha
- Department of Biotechnology, Sri Ramakrishna College of Arts & Science, Coimbatore, India
| | - Durairaj Midhun
- Department of Biotechnology, Sri Ramakrishna College of Arts & Science, Coimbatore, India
| | - Ponnusamy Gowtham
- Department of Biotechnology, Sri Ramakrishna College of Arts & Science, Coimbatore, India
| | | | | | - Anguraj Aswini
- Department of Biotechnology, Sri Ramakrishna College of Arts & Science, Coimbatore, India
| | - Sugumar Muthukumar
- Department of Biotechnology, Sri Ramakrishna College of Arts & Science, Coimbatore, India
| |
Collapse
|
2
|
Yehia RS. Highlighting the potential for crude oil bioremediation of locally isolated Cunninghamella echinulata and Mucor circinelloides. Braz J Microbiol 2023; 54:1969-1981. [PMID: 37249816 PMCID: PMC10485222 DOI: 10.1007/s42770-023-01008-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/13/2023] [Indexed: 05/31/2023] Open
Abstract
The current investigation was carried out to assess the potential of fungi isolated from polluted soil samples in Al Jubail, Saudi Arabia, to degrade crude oil. In a minimal salt medium with 1% crude oil as the carbon source, the growth potential of various fungal isolates was examined. Among twelve fungal isolates, YS-6 and YS-10, identified as Cunninghamella echinulata and Mucor circinelloides based on multiple sequence comparisons and phylogenetic analyses, were selected as having superior crude oil degrading abilities. To the best of our knowledge, the isolated species have never been detected in polluted soil samples in the eastern province of Saudi Arabia. YS-6 and YS-10 have shown their capacity to metabolize crude oil by removing 59.7 and 78.1% of crude oil, respectively. Interestingly, they succeeded in reducing the surface tension to 41.2 and 35.9 mN/m, respectively. Moreover, the emulsification activity and hydrophobicity were determined to be 36.7, 44.9, 35.9, and 53.4%, respectively. The recovery assays included zinc sulfate, ammonium sulfate, acid precipitation, and solvent extraction techniques. All these approaches showed that the amount of biosurfactants correlates to the tested hydrocarbons. Furthermore, the enzyme activity of these two isolates generated significantly more laccase (Lac) than manganese peroxidase (MnP) and lignin peroxidase (LiP), as compared to the control. In conclusion, our study highlights new perspectives on the fungal resources found in persistently polluted terrestrial ecosystems. This knowledge will be useful for bioremediation, safe disposal of petroleum-oil contamination, and other industrial uses.
Collapse
Affiliation(s)
- Ramy S Yehia
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa, 31982, Saudi Arabia.
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza, 12613, Egypt.
| |
Collapse
|
3
|
Retraction: Evaluation of crude oil biodegradation using mixed fungal cultures. PLoS One 2023; 18:e0286773. [PMID: 37314991 DOI: 10.1371/journal.pone.0286773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023] Open
|
4
|
Patowary R, Devi A, Mukherjee AK. Advanced bioremediation by an amalgamation of nanotechnology and modern artificial intelligence for efficient restoration of crude petroleum oil-contaminated sites: a prospective study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:74459-74484. [PMID: 37219770 PMCID: PMC10204040 DOI: 10.1007/s11356-023-27698-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 05/11/2023] [Indexed: 05/24/2023]
Abstract
Crude petroleum oil spillage is becoming a global concern for environmental pollution and poses a severe threat to flora and fauna. Bioremediation is considered a clean, eco-friendly, and cost-effective process to achieve success among the several technologies adopted to mitigate fossil fuel pollution. However, due to the hydrophobic and recalcitrant nature of the oily components, they are not readily bioavailable to the biological components for the remediation process. In the last decade, nanoparticle-based restoration of oil-contaminated, owing to several attractive properties, has gained significant momentum. Thus, intertwining nano- and bioremediation can lead to a suitable technology termed 'nanobioremediation' expected to nullify bioremediation's drawbacks. Furthermore, artificial intelligence (AI), an advanced and sophisticated technique that utilizes digital brains or software to perform different tasks, may radically transfer the bioremediation process to develop an efficient, faster, robust, and more accurate method for rehabilitating oil-contaminated systems. The present review outlines the critical issues associated with the conventional bioremediation process. It analyses the significance of the nanobioremediation process in combination with AI to overcome such drawbacks of a traditional approach for efficiently remedying crude petroleum oil-contaminated sites.
Collapse
Affiliation(s)
- Rupshikha Patowary
- Environmental Chemistry Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Guwahati, 781 035, Assam, India
| | - Arundhuti Devi
- Environmental Chemistry Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Guwahati, 781 035, Assam, India
| | - Ashis K Mukherjee
- Microbial Biotechnology and Protein Research Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Guwahati, 781 035, Assam, India.
| |
Collapse
|
5
|
Daâssi D, Almaghrabi FQ. Petroleum-Degrading Fungal Isolates for the Treatment of Soil Microcosms. Microorganisms 2023; 11:1351. [PMID: 37317325 DOI: 10.3390/microorganisms11051351] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/10/2023] [Accepted: 05/16/2023] [Indexed: 06/16/2023] Open
Abstract
The main purpose of this study was to degrade total petroleum hydrocarbons (TPHs) from contaminated soil in batch microcosm reactors. Native soil fungi isolated from the same petroleum-polluted soil and ligninolytic fungal strains were screened and applied in the treatment of soil-contaminated microcosms in aerobic conditions. The bioaugmentation processes were carried out using selected hydrocarbonoclastic fungal strains in mono or co-cultures. Results demonstrated the petroleum-degrading potential of six fungal isolates, namely KBR1 and KBR8 (indigenous) and KBR1-1, KB4, KB2 and LB3 (exogenous). Based on the molecular and phylogenetic analysis, KBR1 and KB8 were identified as Aspergillus niger [MW699896] and tubingensis [MW699895], while KBR1-1, KB4, KB2 and LB3 were affiliated with the genera Syncephalastrum sp. [MZ817958], Paecilomyces formosus [MW699897], Fusarium chlamydosporum [MZ817957] and Coniochaeta sp. [MW699893], respectively. The highest rate of TPH degradation was recorded in soil microcosm treatments (SMT) after 60 days by inoculation with Paecilomyces formosus 97 ± 2.54%, followed by bioaugmentation with the native strain Aspergillus niger (92 ± 1.83%) and then by the fungal consortium (84 ± 2.21%). The statistical analysis of the results showed significant differences.
Collapse
Affiliation(s)
- Dalel Daâssi
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, P.O. Box 1177, Sfax 3018, Tunisia
- Department of Biology, College of Sciences and Arts, Khulais, University of Jeddah, P.O. Box 34, Jeddah 21959, Saudi Arabia
| | - Fatimah Qabil Almaghrabi
- Department of Biology, College of Sciences and Arts, Khulais, University of Jeddah, P.O. Box 34, Jeddah 21959, Saudi Arabia
| |
Collapse
|
6
|
Biodegradation of Selected Hydrocarbons by Fusarium Species Isolated from Contaminated Soil Samples in Riyadh, Saudi Arabia. J Fungi (Basel) 2023; 9:jof9020216. [PMID: 36836330 PMCID: PMC9966121 DOI: 10.3390/jof9020216] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
BACKGROUND Microbial biodegradation of oil-hydrocarbons is one of the sustainable and cost-effective methods to remove petroleum spills from contaminated environments. The current study aimed to investigate the biodegradation abilities of three Fusarium isolates from oil reservoirs in Saudi Arabia. The novelty of the current work is that the biodegradation ability of these isolates was never tested against some natural hydrocarbons of variable compositions, such as Crude oil, and those of known components such as kerosene and diesel oils. METHODS The isolates were treated with five selected hydrocarbons. The hydrocarbon tolerance test in solid and liquid media was performed. The scanning electron microscope (SEM) investigated the morphological changes of treated fungi. 2, 6-Dichlorophenol Indophenol (DCPIP), drop collapse, emulsification activity, and oil Spreading assays investigated the biodegradation ability. The amount of produced biosurfactants was measured, and their safety profile was estimated by the germination assay of tomato seeds. RESULTS The tolerance test showed enhanced fungal growth of all isolates, whereas the highest dose inhibition response (DIR) was 77% for Fusarium proliferatum treated with the used oil (p < 0.05). SEM showed morphological changes in all isolates. DCPIP results showed that used oil had the highest biodegradation by Fusarium verticillioides and Fusarium oxysporum. Mixed oil induced the highest effect in oil spreading, drop collapse, and emulsification assay caused by F. proliferatum. The highest recovery of biosurfactants was obtained by the solvent extraction method for F. verticillioides (4.6 g/L), F. proliferatum (4.22 g/L), and F. oxysporum (3.73 g/L). The biosurfactants produced by the three isolates stimulated tomato seeds' germination more than in control experiments. CONCLUSION The current study suggested the possible oil-biodegradation activities induced by three Fusarium isolates from Riyadh, Saudi Arabia. The produced biosurfactants are not toxic against tomato seed germination, emphasizing their environmental sustainability. Further studies are required to investigate the mechanism of biodegradation activities and the chemical composition of the biosurfactants produced by these species.
Collapse
|
7
|
Chaurasia PK, Nagraj, Sharma N, Kumari S, Yadav M, Singh S, Mani A, Yadava S, Bharati SL. Fungal assisted bio-treatment of environmental pollutants with comprehensive emphasis on noxious heavy metals: Recent updates. Biotechnol Bioeng 2023; 120:57-81. [PMID: 36253930 DOI: 10.1002/bit.28268] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 09/09/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022]
Abstract
In the present time of speedy developments and industrialization, heavy metals are being uncovered in aquatic environment and soil via refining, electroplating, processing, mining, metallurgical activities, dyeing and other several metallic and metal based industrial and synthetic activities. Heavy metals like lead (Pb), mercury (Hg), cadmium (Cd), arsenic (As), Zinc (Zn), Cobalt (Co), Iron (Fe), and many other are considered as seriously noxious and toxic for the aquatic environment, human, and other aquatic lives and have damaging influences. Such heavy metals, which are very tough to be degraded, can be managed by reducing their potential through various processes like removal, precipitation, oxidation-reduction, bio-sorption, recovery, bioaccumulation, bio-mineralization etc. Microbes are known as talented bio-agents for the heavy metals detoxification process and fungi are one of the cherished bio-sources that show noteworthy aptitude of heavy metal sorption and metal tolerance. Thus, the main objective of the authors was to come with a comprehensive review having methodological insights on the novel and recent results in the field of mycoremediation of heavy metals. This review significantly assesses the potential talent of fungi in heavy metal detoxification and thus, in environmental restoration. Many reported works, methodologies and mechanistic sights have been evaluated to explore the fungal-assisted heavy metal remediation. Herein, a compact and effectual discussion on the recent mycoremediation studies of organic pollutants like dyes, petroleum, pesticides, insecticides, herbicides, and pharmaceutical wastes have also been presented.
Collapse
Affiliation(s)
- Pankaj Kumar Chaurasia
- P. G. Department of Chemistry, L.S. College, B. R. A. Bihar University, Muzaffarpur, Bihar, India
| | - Nagraj
- P. G. Department of Chemistry, L.S. College, B. R. A. Bihar University, Muzaffarpur, Bihar, India
| | - Nagendra Sharma
- P. G. Department of Chemistry, L.S. College, B. R. A. Bihar University, Muzaffarpur, Bihar, India
| | - Sunita Kumari
- P. G. Department of Chemistry, L.S. College, B. R. A. Bihar University, Muzaffarpur, Bihar, India
| | - Mithu Yadav
- P. G. Department of Chemistry, L.S. College, B. R. A. Bihar University, Muzaffarpur, Bihar, India
| | - Sunita Singh
- Department of Chemistry, Navyug Kanya Mahavidyalaya, University of Lucknow, Lucknow, Uttar Pradesh, India
| | - Ashutosh Mani
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, Uttar Pradesh, India
| | - Sudha Yadava
- Department of Chemistry, D. D. U. Gorakhpur University, Gorakhpur, Uttar Pradesh, India
| | - Shashi Lata Bharati
- Department of Chemistry, North Eastern Regional Institute of Science and Technology, Nirjuli, Arunachal Pradesh, India
| |
Collapse
|
8
|
Biodegradation of Petroleum Hydrocarbons by Drechsleraspicifera Isolated from Contaminated Soil in Riyadh, Saudi Arabia. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196450. [PMID: 36234987 PMCID: PMC9572601 DOI: 10.3390/molecules27196450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/02/2022] [Accepted: 09/26/2022] [Indexed: 11/14/2022]
Abstract
Currently, the bioremediation of petroleum hydrocarbons employs microbial biosurfactants because of their public acceptability, biological safety, and low cost. These organisms can degrade or detoxify organic-contaminated areas, such as marine ecosystems. The current study aimed to test the oil-biodegradation ability of the fungus Drechslera spicifera, which was isolated from contaminated soil samples in Riyadh, Saudi Arabia. We used hydrocarbon tolerance, scanning electron microscopy, DCPIP, drop-collapse, emulsification activity, recovery of biosurfactants, and germination assays to assess the biodegradation characteristics of the D. spicifera against kerosene, crude, diesel, used, and mixed oils. The results of DCPIP show that the highest oxidation (0.736 a.u.) was induced by crude oil on the 15th day. In contrast, kerosene and used oil had the highest measurements in emulsification activity and drop-collapse assays, respectively. Meanwhile, crude and used oils produced the highest amounts of biosurfactants through acid precipitation and solvent extraction assays. Furthermore, the biosurfactants stimulated the germination of tomato seeds by more than 50% compared to the control. These findings highlight the biodegradation ability of D. spicifera, which has been proven in the use of petroleum oils as the sole source of carbon. That might encourage further research to demonstrate its application in the cleaning of large, contaminated areas.
Collapse
|
9
|
Transcriptome Profiling Reveals Differential Gene Expression of Laccase Genes in Aspergillus terreus KC462061 during Biodegradation of Crude Oil. BIOLOGY 2022; 11:biology11040564. [PMID: 35453763 PMCID: PMC9026905 DOI: 10.3390/biology11040564] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/30/2022] [Accepted: 04/05/2022] [Indexed: 01/01/2023]
Abstract
Fungal laccases have high catalytic efficiency and are utilized for the removal of crude oil because they oxidize various aliphatic and aromatic hydrocarbons and convert them into harmless compounds or less toxic compounds, thus accelerating the biodegradation potential of crude oil. Laccases are important gene families and the function of laccases genes varied widely based on transcription and function. Biodegradation of crude oil using Aspergillus terreus KC462061 was studied in the current study beside the transcription level of eight laccase (Lcc) genes have participated in biodegradation in the presence of aromatic compounds, and metal ions. Time-course profiles of laccase activity in the presence of crude oil indicated that the five inducers individual or combined have a very positive on laccase activity. In the status of the existence of crude oil, the synergistic effect of Cu-ABTS compound caused an increase in laccase yields up to 22-fold after 10 days than control. The biodegradation efficiencies of A. terreus KC462061 for aliphatic and aromatic hydrocarbons of crude oil were 82.1 ± 0.2% and 77.4 ± 0.6%, respectively. The crude oil biodegradation efficiency was improved by the supplemented Cu-ABTS compound in A. terreus KC462061. Gas chromatography-mass spectrometry was a very accurate tool to demonstrate the biodegradation efficiencies of A. terreus KC462061 for crude oil. Significant differences were observed in the SDS-PAGE of A. terreus KC462061 band intensities of laccase proteins after the addition of five inducers, but the Cu-ABTS compound highly affects very particular laccase electrophoresis. Quantitative real-time polymerase chain reaction (qPCR) was used for the analysis of transcription profile of eight laccase genes in A. terreus KC462061 with a verified reference gene. Cu2+ ions and Cu-ABTS were highly effective for efficient laccase expression profiling, mainly via Lcc11 and 12 transcription induction. The current study will explain the theoretical foundation for laccase transcription in A. terreus KC462061, paving the road for commercialization and usage.
Collapse
|