1
|
Pironon S, Ondo I, Diazgranados M, Allkin R, Baquero AC, Cámara-Leret R, Canteiro C, Dennehy-Carr Z, Govaerts R, Hargreaves S, Hudson AJ, Lemmens R, Milliken W, Nesbitt M, Patmore K, Schmelzer G, Turner RM, van Andel TR, Ulian T, Antonelli A, Willis KJ. The global distribution of plants used by humans. Science 2024; 383:293-297. [PMID: 38236975 DOI: 10.1126/science.adg8028] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 12/18/2023] [Indexed: 01/23/2024]
Abstract
Plants sustain human life. Understanding geographic patterns of the diversity of species used by people is thus essential for the sustainable management of plant resources. Here, we investigate the global distribution of 35,687 utilized plant species spanning 10 use categories (e.g., food, medicine, material). Our findings indicate general concordance between utilized and total plant diversity, supporting the potential for simultaneously conserving species diversity and its contributions to people. Although Indigenous lands across Mesoamerica, the Horn of Africa, and Southern Asia harbor a disproportionate diversity of utilized plants, the incidence of protected areas is negatively correlated with utilized species richness. Finding mechanisms to preserve areas containing concentrations of utilized plants and traditional knowledge must become a priority for the implementation of the Kunming-Montreal Global Biodiversity Framework.
Collapse
Affiliation(s)
- S Pironon
- Royal Botanic Gardens, Kew, Richmond, Surrey, UK
- UN Environment Programme World Conservation Monitoring Centre (UNEP-WCMC), Cambridge, UK
| | - I Ondo
- Royal Botanic Gardens, Kew, Richmond, Surrey, UK
- UN Environment Programme World Conservation Monitoring Centre (UNEP-WCMC), Cambridge, UK
| | - M Diazgranados
- Royal Botanic Gardens, Kew, Richmond, Surrey, UK
- International Plant Science Center, New York Botanical Garden, New York, NY, USA
| | - R Allkin
- Royal Botanic Gardens, Kew, Richmond, Surrey, UK
| | - A C Baquero
- UN Environment Programme World Conservation Monitoring Centre (UNEP-WCMC), Cambridge, UK
| | - R Cámara-Leret
- Department of Systematic and Evolutionary Botany, University of Zurich, Switzerland
| | - C Canteiro
- Royal Botanic Gardens, Kew, Richmond, Surrey, UK
| | - Z Dennehy-Carr
- Royal Botanic Gardens, Kew, Richmond, Surrey, UK
- Herbarium, School of Biological Sciences, University of Reading, Whiteknights, UK
| | - R Govaerts
- Royal Botanic Gardens, Kew, Richmond, Surrey, UK
| | - S Hargreaves
- Royal Botanic Gardens, Kew, Richmond, Surrey, UK
| | - A J Hudson
- Royal Botanic Gardens, Kew, Wakehurst, Ardingly, UK
- Botanic Gardens Conservation International, Richmond, UK
| | - R Lemmens
- Wageningen University and Research, Wageningen, Netherlands
| | - W Milliken
- Royal Botanic Gardens, Kew, Wakehurst, Ardingly, UK
| | - M Nesbitt
- Royal Botanic Gardens, Kew, Richmond, Surrey, UK
- Department of Geography, Royal Holloway, University of London, Egham, UK
- Institute of Archaeology, University College London, London, UK
| | - K Patmore
- Royal Botanic Gardens, Kew, Richmond, Surrey, UK
| | - G Schmelzer
- Wageningen University and Research, Wageningen, Netherlands
| | - R M Turner
- Royal Botanic Gardens, Kew, Richmond, Surrey, UK
| | - T R van Andel
- Wageningen University and Research, Wageningen, Netherlands
- Naturalis Biodiversity Center, Leiden, Netherlands
| | - T Ulian
- Royal Botanic Gardens, Kew, Wakehurst, Ardingly, UK
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - A Antonelli
- Royal Botanic Gardens, Kew, Richmond, Surrey, UK
- Gothenburg Global Biodiversity Centre, Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Department of Biology, University of Oxford, Oxford, UK
| | - K J Willis
- Royal Botanic Gardens, Kew, Richmond, Surrey, UK
- Department of Biology, University of Oxford, Oxford, UK
| |
Collapse
|
2
|
Understanding the diversity and biogeography of Colombian edible plants. Sci Rep 2022; 12:7835. [PMID: 35551226 PMCID: PMC9098877 DOI: 10.1038/s41598-022-11600-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 04/08/2022] [Indexed: 11/10/2022] Open
Abstract
Despite being the second most biodiverse country in the world, hosting more than 7000 useful species, Colombia is characterized by widespread poverty and food insecurity. Following the growing attention in Neglected and Underutilized Species, the present study will combine spatial and taxonomic analysis to unveil their diversity and distribution, as well as to advocate their potential as key resources for tackling food security in the country. The cataloguing of Colombian edible plants resulted in 3805 species. Among these, the most species-rich genera included Inga, Passiflora, Miconia, Solanum, Pouteria, Protium, Annona and Bactris. Biogeographic analysis revealed major diversity hotspots in the Andean humid forests by number of records, species, families, and genera. The departments of Antioquia, Boyacá, Meta, and Cundinamarca ranked first both in terms of number of unique georeferenced records and species of edible plants. Significant information gaps about species distribution were detected in the departments of Cesar, Sucre, Atlántico, Vichada, and Guainía, corresponding to the Caribe and Llanos bioregions, indicating the urgent need for focusing investigation in these areas. Furthermore, a significant level of geographic specificity was found in edible plant species’ distributions between 13 different bioregions and 33 departments, hinting the adoption of tailorized prioritisation protocols for the conservation and revitalization of such resources at the local level.
Collapse
|