1
|
Li MJ, Li JH, Li WL, He Y, Ma YB, Li XY, Wang Y, Li CX, Ma XR. The mango bacterial black spot altered the endophyte community structure and diversity. Int J Food Microbiol 2025; 428:110941. [PMID: 39566377 DOI: 10.1016/j.ijfoodmicro.2024.110941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/29/2024] [Accepted: 10/15/2024] [Indexed: 11/22/2024]
Abstract
Mango bacterial black spot is a major disease limiting mango production, which is now causing increasingly severe economic losses. In this study, we analyzed the differences in the composition and structure of bacterial and fungal communities in the pulp and leaves between the healthy mangoes of variety Kate and those affected by bacterial black spot, and attempted to explore potential biocontrol microorganisms for mangoes. The results showed there existed significant differences in microbial communities, the bacterial Stenotrophomonas, Curtobacterium, Massilia and fungous Penicillium, Alternaria, Aureobasidiu showed great abundance both in pulps and leaves. Some potential pathogenic bacteria, such as Pseudomonas, Xanthomonas, and Burkholderia, were also significantly enriched in the infected groups. In both the infected and healthy groups, the overall community structure of endophytic bacteria and fungi within the same organs was more similar, indicating that the composition of endophytes is organ-specific. After infection, the abundance of the potential probiotic bacterium class Paenibacillus was significantly increased both in leaves and pulp, suggesting that the pathogen invasion stimulated the defense systems of endophytes. Presumably, these Paenibacillus might be developed as defense bacteria for black spot as well as other plant diseases.
Collapse
Affiliation(s)
- Meng-Jiao Li
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan 610213, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ji-Han Li
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan 610213, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wen-Lin Li
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan 610213, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuan He
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan 610213, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu-Bo Ma
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan 610213, China; University of Chinese Academy of Sciences, Beijing 100049, China; College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, China
| | - Xin-Yu Li
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan 610213, China; University of Chinese Academy of Sciences, Beijing 100049, China; College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, China
| | - Yan Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan 610213, China
| | - Cai-Xia Li
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan 610213, China
| | - Xin-Rong Ma
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan 610213, China.
| |
Collapse
|
2
|
Hu J, Gong C, Jia Y, Feng H, Chen J, Qin G, Liang A, Peng A, Huang Y, Sun M, Rao H, Wang X. Preparation of pH-Responsive Kas@ZnO Quantum Dots for Synergistic Control of Rice Blast and Enhanced Disease Resistance in Rice. ACS APPLIED MATERIALS & INTERFACES 2024; 16:60842-60855. [PMID: 39447151 DOI: 10.1021/acsami.4c12611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
The construction of controlled-release formulations improves the sustained-release performance and utilization efficiency of pesticides, which are important aspects in plant protection and environmental chemistry. The current study employs kasugamycin (Kas), which is widely used to control Magnaporthe oryzae, conjugated with carboxyl-functionalized ZnO quantum dots via amide linkages to yield a pH-responsive pesticide delivery system (Kas@ZnO). Physicochemical characterizations indicated the successful preparation of the Kas@ZnO nanoparticles. In vitro drug release assessments indicated that Kas@ZnO exhibited a loading capacity of 21.05% and could effect the controlled release of Kas in an acidic environment, which is beneficial given the unique acidic microenvironment of M. oryzae. Bioactivity assays demonstrated that Kas@ZnO could simultaneously inhibit mycelial growth and spore germination. Additionally, bioactivity tests showed that the control efficacy of Kas@ZnO against rice blast reached 67.43% after 14 days of in vivo spray inoculation, which was higher than that obtained with Kas (55.50%), suggesting improved beneficial effects of Kas@ZnO application over a prolonged duration. Moreover, Kas@ZnO enhanced the activity of defense-related enzymes in rice and upregulated the expression of defense-related genes, such as OsPR2, OsPR3, OsPR5, OsWRKY45, OsLYP6, and OsNAC4. Ultimately, the biosafety assessments revealed that Kas@ZnO did not exert any harmful effects on rice and demonstrated slight toxicity toward zebrafish. These findings indicate that Kas@ZnO can function as a pH-sensitive pesticide delivery system, allowing for targeted release of the pesticide within plant tissues. This technology demonstrates significant potential for eco-friendly plant disease management.
Collapse
Affiliation(s)
- Jie Hu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Changwei Gong
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Jia
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Hui Feng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Jinfeng Chen
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Ge Qin
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Ao Liang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Anchun Peng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Yanyan Huang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Mengmeng Sun
- College of Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Hanbing Rao
- College of Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Xuegui Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
3
|
Thanwisai L, Siripornadulsil W, Siripornadulsil S. Kosakonia oryziphila NP19 bacterium acts as a plant growth promoter and biopesticide to suppress blast disease in KDML105 rice. Sci Rep 2024; 14:17944. [PMID: 39095388 PMCID: PMC11297130 DOI: 10.1038/s41598-024-68097-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 07/19/2024] [Indexed: 08/04/2024] Open
Abstract
This study demonstrates that root-associated Kosakonia oryziphila NP19, isolated from rice roots, is a promising plant growth-promoting bioagent and biopesticide for combating rice blast caused by Pyricularia oryzae. In vitro experiments were conducted on fresh leaves of Khao Dawk Mali 105 (KDML105) jasmine rice seedlings. The results showed that NP19 effectively inhibited the germination of P. oryzae fungal conidia. Fungal infection was suppressed across three different treatment conditions: rice colonized with NP19 and inoculated by fungal conidia, a mix of NP19 and fungal conidia concurrently inoculated on the leaves, and fungal conidia inoculation first followed by NP19 inoculation after 30 h. Additionally, NP19 reduced fungal mycelial growth by 9.9-53.4%. In pot experiments, NP19 enhanced the activities of peroxidase (POD) and superoxide dismutase (SOD) by 6.1-63.0% and 3.0-67.7%, respectively, indicating a boost in the plant's defense mechanisms. Compared to the uncolonized control, the NP19-colonized rice had 0.3-24.7% more pigment contents, 4.1% more filled grains per panicle, 26.3% greater filled grain yield, 34.4% higher harvest index, and 10.1% more content of the aroma compound 2-acetyl-1-pyrroline (2AP); for rice colonized with NP19 and infected with P. oryzae, these increases were 0.2-49.2%, 4.6%, 9.1%, 54.4%, and 7.5%, respectively. In field experiments, blast-infected rice that was colonized and/or inoculated with NP19 treatments had 15.1-27.2% more filled grains per panicle, 103.6-119.8% greater filled grain yield, and 18.0-35.8% higher 2AP content. A higher SOD activity (6.9-29.5%) was also observed in the above-mentioned rice than in the blast-infected rice that was not colonized and inoculated with NP19. Following blast infection, NP19 applied to leaves decreased blast lesion progression. Therefore, K. oryziphila NP19 was demonstrated to be a potential candidate for use as a plant growth-promoting bioagent and biopesticide for suppressing rice blast.
Collapse
Affiliation(s)
- Lalita Thanwisai
- Department of Microbiology, Faculty of Science, Khon Kaen University, 123 Mittrapap Road, Nai-Muang, Muang District, Khon Kaen, 40002, Thailand
| | - Wilailak Siripornadulsil
- Department of Microbiology, Faculty of Science, Khon Kaen University, 123 Mittrapap Road, Nai-Muang, Muang District, Khon Kaen, 40002, Thailand
- Salt-tolerant Rice Research Group, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Surasak Siripornadulsil
- Department of Microbiology, Faculty of Science, Khon Kaen University, 123 Mittrapap Road, Nai-Muang, Muang District, Khon Kaen, 40002, Thailand.
- Salt-tolerant Rice Research Group, Khon Kaen University, Khon Kaen, 40002, Thailand.
- Research Center for Environmental and Hazardous Substance Management, Khon Kaen University, Khon Kaen, 40002, Thailand.
| |
Collapse
|
4
|
Wang Z, Li N, Xu Y, Wang W, Liu Y. Functional activity of endophytic bacteria G9H01 with high salt tolerance and anti-Magnaporthe oryzae that isolated from saline-alkali-tolerant rice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171822. [PMID: 38521266 DOI: 10.1016/j.scitotenv.2024.171822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/24/2024] [Accepted: 03/17/2024] [Indexed: 03/25/2024]
Abstract
It holds significant practical importance to screen and investigate endophytic bacteria with salt-tolerant activity in rice for the development of relevant microbial agents. A total of 179 strains of endophytic bacteria were isolated from 24 samples of salt-tolerant rice seeds, with almost 95 % of these bacteria exhibiting tolerance to a salt content of 2 % (0.34 mol/L). Following the screening process, a bacterium named G9H01 was identified, which demonstrated a salt tolerance of up to 15 % (2.57 mol/L) and resistance to Magnaporthe oryzae, the causal agent of rice blast disease. Phylogenetic analysis confirmed G9H01 as a strain of Bacillus paralicheniformis. The complete genome of G9H01 was sequenced and assembled, revealing a considerable number of genes encoding proteins associated with salt tolerance. Further analysis indicated that G9H01 may alleviate salt stress in a high-salt environment through various mechanisms. These mechanisms include the utilization of proteins such as K+ transporters, antiporters, and Na+/H+ antiporters, which are involved in K+ absorption and Na+ excretion. G9H01 also demonstrated the ability to uptake and accumulate betaine, as well as secrete extracellular polysaccharides. Collectively, these findings suggest that Bacillus paralicheniformis G9H01 has potential as a biocontrol agent, capable of promoting rice growth under saline-alkali-tolerant conditions.
Collapse
Affiliation(s)
- Zhishan Wang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Ni Li
- State Key Laboratory of Hybrid Rice (Hunan Hybrid Rice Research Center), Changsha 410125, China
| | - Youqiang Xu
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China.
| | - Weiping Wang
- State Key Laboratory of Hybrid Rice (Hunan Hybrid Rice Research Center), Changsha 410125, China.
| | - Yang Liu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
5
|
Naqvi SAH, Abbas A, Farhan M, Kiran R, Hassan Z, Mehmood Y, Ali A, Ahmed N, Hassan MZ, Alrefaei AF, Ölmez F, Yang SH, Baloch FS. Unveiling the Genetic Tapestry: Exploring Rhizoctonia solani AG-3 Anastomosis Groups in Potato Crops across Borders. PLANTS (BASEL, SWITZERLAND) 2024; 13:715. [PMID: 38475561 DOI: 10.3390/plants13050715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/19/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024]
Abstract
The current study was carried out to screen 10 isolates (ARS-01-ARS-10) of Rhizoctonia. solani from potato tubers cv. Kuroda, which were collected from various potato fields in Multan, Pakistan. The isolates were found to be morphologically identical, as the hyphae exhibit the production of branches at right angles and acute angles often accompanied by septum near the emerging branches. Anastomosis grouping showed that these isolates belonged to AG-3. A pathogenicity test was performed against the susceptible Kuroda variety and among the isolates, ARS-05 exhibited the highest mean severity score of approximately 5.43, followed by ARS-09, which showed a mean severity score of about 3.67, indicating a moderate level of severity. On the lower end of the severity scale, isolates ARS-06 and ARS-07 displayed mean severity scores of approximately 0.53 and 0.57, respectively, suggesting minimal symptom severity. These mean severity scores offer insights into the varying degrees of symptom expression among the different isolates of R. solani under examination. PCoA indicates that the severe isolate causing black scurf on the Kuroda variety was AG-3. A comprehensive analysis of the distribution, genetic variability, and phylogenetic relationships of R. solani anastomosis groups (AGs) related to potato crops across diverse geographic regions was also performed to examine AG prevalence in various countries. AG-3 was identified as the most widespread group, prevalent in Sweden, China, and the USA. AG-5 showed prominence in Sweden and the USA, while AG-2-1 exhibited prevalence in China and Japan. The phylogenetic analysis unveiled two different clades: Clade I comprising AG-3 and Clade II encompassing AG-2, AG-4, and AG-5, further subdivided into three subclades. Although AGs clustered together regardless of origin, their genetic diversity revealed complex evolutionary patterns. The findings pave the way for region-specific disease management strategies to combat R. solani's impact on potato crops.
Collapse
Affiliation(s)
- Syed Atif Hasan Naqvi
- Department of Plant Pathology, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Aqleem Abbas
- Department of Agriculture and Food Technology, Karakoram International University, Gilgit Baltistan, Gilgit 15100, Pakistan
| | - Muhammad Farhan
- Department of Plant Pathology, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Rafia Kiran
- Department of Plant Pathology, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Zeshan Hassan
- College of Agriculture, University of Layyah, Layyah 31200, Pakistan
| | - Yasir Mehmood
- Department of Plant Pathology, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Amjad Ali
- Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas 58140, Türkiye
| | - Niaz Ahmed
- Department of Soil Science, Bahauddin Zakariya University, Multan 60800, Pakistan
| | | | - Abdulwahed Fahad Alrefaei
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Fatih Ölmez
- Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas 58140, Türkiye
| | - Seung-Hwan Yang
- Department of Biotechnology, Chonnam National University, Yeosu 59626, Republic of Korea
| | - Faheem Shehzad Baloch
- Department of Biotechnology, Faculty of Science, Mersin University, Yenişehir, Mersin 33343, Türkiye
| |
Collapse
|
6
|
Dehbi I, Achemrk O, Ezzouggari R, El Jarroudi M, Mokrini F, Legrifi I, Belabess Z, Laasli SE, Mazouz H, Lahlali R. Beneficial Microorganisms as Bioprotectants against Foliar Diseases of Cereals: A Review. PLANTS (BASEL, SWITZERLAND) 2023; 12:4162. [PMID: 38140489 PMCID: PMC10747484 DOI: 10.3390/plants12244162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023]
Abstract
Cereal production plays a major role in both animal and human diets throughout the world. However, cereal crops are vulnerable to attacks by fungal pathogens on the foliage, disrupting their biological cycle and photosynthesis, which can reduce yields by 15-20% or even 60%. Consumers are concerned about the excessive use of synthetic pesticides given their harmful effects on human health and the environment. As a result, the search for alternative solutions to protect crops has attracted the interest of scientists around the world. Among these solutions, biological control using beneficial microorganisms has taken on considerable importance, and several biological control agents (BCAs) have been studied, including species belonging to the genera Bacillus, Pseudomonas, Streptomyces, Trichoderma, Cladosporium, and Epicoccum, most of which include plants of growth-promoting rhizobacteria (PGPRs). Bacillus has proved to be a broad-spectrum agent against these leaf cereal diseases. Interaction between plant and beneficial agents occurs as direct mycoparasitism or hyperparasitism by a mixed pathway via the secretion of lytic enzymes, growth enzymes, and antibiotics, or by an indirect interaction involving competition for nutrients or space and the induction of host resistance (systemic acquired resistance (SAR) or induced systemic resistance (ISR) pathway). We mainly demonstrate the role of BCAs in the defense against fungal diseases of cereal leaves. To enhance a solution-based crop protection approach, it is also important to understand the mechanism of action of BCAs/molecules/plants. Research in the field of preventing cereal diseases is still ongoing.
Collapse
Affiliation(s)
- Ilham Dehbi
- Phytopathology Unit, Department of Plant Protection, Ecole National of Agriculture Meknes, Km10, Rte Haj Kaddour, BP S/40, Meknes 50001, Morocco; (I.D.); (O.A.); (R.E.); (I.L.); (S.-E.L.)
- Laboratory of Plant Biotechnology and Molecular Biology, Faculty of Sciences, Moulay Ismail University, BP 11201, Zitoune, Meknes 50000, Morocco;
| | - Oussama Achemrk
- Phytopathology Unit, Department of Plant Protection, Ecole National of Agriculture Meknes, Km10, Rte Haj Kaddour, BP S/40, Meknes 50001, Morocco; (I.D.); (O.A.); (R.E.); (I.L.); (S.-E.L.)
| | - Rachid Ezzouggari
- Phytopathology Unit, Department of Plant Protection, Ecole National of Agriculture Meknes, Km10, Rte Haj Kaddour, BP S/40, Meknes 50001, Morocco; (I.D.); (O.A.); (R.E.); (I.L.); (S.-E.L.)
- Laboratory of Biotechnology, Conservation, and Valorization of Natural Resources (LBCVNR), Faculty of Sciences Dhar El Mehraz, Sidi Mohamed Ben Abdallah University, Fez 30000, Morocco
| | - Moussa El Jarroudi
- Department of Environmental Sciences and Management, SPHERES Research Unit, University of Liège, 6700 Arlon, Belgium;
| | - Fouad Mokrini
- Biotechnology Unit, Regional Center of Agricultural Research, INRA–Morocco, Rabat 10080, Morocco;
| | - Ikram Legrifi
- Phytopathology Unit, Department of Plant Protection, Ecole National of Agriculture Meknes, Km10, Rte Haj Kaddour, BP S/40, Meknes 50001, Morocco; (I.D.); (O.A.); (R.E.); (I.L.); (S.-E.L.)
| | - Zineb Belabess
- Plant Protection Laboratory, Regional Center of Agricultural Research of Meknes, National Institute of Agricultural Research, Km 13, Route Haj Kaddour, BP 578, Meknes 50001, Morocco;
| | - Salah-Eddine Laasli
- Phytopathology Unit, Department of Plant Protection, Ecole National of Agriculture Meknes, Km10, Rte Haj Kaddour, BP S/40, Meknes 50001, Morocco; (I.D.); (O.A.); (R.E.); (I.L.); (S.-E.L.)
| | - Hamid Mazouz
- Laboratory of Plant Biotechnology and Molecular Biology, Faculty of Sciences, Moulay Ismail University, BP 11201, Zitoune, Meknes 50000, Morocco;
| | - Rachid Lahlali
- Phytopathology Unit, Department of Plant Protection, Ecole National of Agriculture Meknes, Km10, Rte Haj Kaddour, BP S/40, Meknes 50001, Morocco; (I.D.); (O.A.); (R.E.); (I.L.); (S.-E.L.)
| |
Collapse
|
7
|
Fan Y, He X, Dai J, Yang N, Jiang Q, Xu Z, Tang X, Yu Y, Xiao M. Induced Resistance Mechanism of Bacillus velezensis S3-1 Against Pepper Wilt. Curr Microbiol 2023; 80:367. [PMID: 37819393 DOI: 10.1007/s00284-023-03470-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 09/02/2023] [Indexed: 10/13/2023]
Abstract
In recent years, pepper wilt has emerged as a pivotal constraint on pepper yield augmentation. Bacillus velezensis S3-1, with a wide array of hosts, can be used as both a biocontrol agent and biofertilizer. Nonetheless, the precise mechanisms underpinning its employment in combating pepper wilt remain cloaked in ambiguity. In our study, we found that B. velezensis S3-1 could significantly inhibit Fusarium sp. F1T that caused pepper wilt. S3-1 could effectively inhibit both the growth and germination of F1T conidia, leading to a reduction in the spore germination percentage from 83.2 to 37.1% in vitro experiments. Additionally, leaf detachment experiments revealed that the volatile compounds produced by S3-1 could inhibit the spread of pepper leaf spot area. Moreover, we observed a significant decrease in the content of malondialdehyde (MDA) in pepper treated with S3-1, along with a significant increase in the content of soluble protein, polyphenol oxidase (PPO), peroxidase (POD), and phenylalanine ammonia-lyase (PAL) in pepper. Furthermore, RT-PCR analysis showed that the expression of the defense genes CaPR 1 and CaPIN II in pepper after treatment with S3-1 was significantly upregulated, suggesting that S3-1 had the potential to induce systemic resistance in pepper, thereby enhancing its disease resistance. Hence, our findings suggest that S3-1 can be a promising biocontrol agent for managing pepper wilt in modern agriculture.
Collapse
Affiliation(s)
- Yongjie Fan
- College of Life Sciences, Shanghai Normal University, Shanghai, 200234, People's Republic of China
| | - Xingjie He
- College of Life Sciences, Shanghai Normal University, Shanghai, 200234, People's Republic of China
| | - Jiawei Dai
- College of Life Sciences, Shanghai Normal University, Shanghai, 200234, People's Republic of China
| | - Ning Yang
- College of Life Sciences, Shanghai Normal University, Shanghai, 200234, People's Republic of China
| | - Qiuyan Jiang
- College of Life Sciences, Shanghai Normal University, Shanghai, 200234, People's Republic of China
| | - Zhaofeng Xu
- College of Life Sciences, Shanghai Normal University, Shanghai, 200234, People's Republic of China
| | - Xiaorong Tang
- College of Life Sciences, Shanghai Normal University, Shanghai, 200234, People's Republic of China
| | - Yating Yu
- College of Life Sciences, Shanghai Normal University, Shanghai, 200234, People's Republic of China
| | - Ming Xiao
- College of Life Sciences, Shanghai Normal University, Shanghai, 200234, People's Republic of China.
| |
Collapse
|
8
|
Lei LY, Xiong ZX, Li JL, Yang DZ, Li L, Chen L, Zhong QF, Yin FY, Li RX, Cheng ZQ, Xiao SQ. Biological control of Magnaporthe oryzae using natively isolated Bacillus subtilis G5 from Oryza officinalis roots. Front Microbiol 2023; 14:1264000. [PMID: 37876784 PMCID: PMC10591090 DOI: 10.3389/fmicb.2023.1264000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/15/2023] [Indexed: 10/26/2023] Open
Abstract
Rice blast, caused by Magnaporthe oryzae, is a major threat to global rice production causing significant crop losses and impacting grain quality. The annual loss of rice production due to this disease ranges from 10% to 30%. The use of biologically controlled strains, instead of chemical pesticides, to control plant diseases has become a research hotspot. In this study, an antagonistic endophytic bacterial strain was isolated from the roots of Oryza officinalis using the traditional isolation and culture methods. A phylogenetic tree based on 16S RNA and whole-genome sequencing identified isolate G5 as a strain of Bacillus subtilis. This isolate displayed strong antagonistic effects against different physiological strains of M. oryzae. After co-culture in LB medium for 7 days, the inhibition rates of the mycelial growth of four strains of M. oryzae, ZB15, WH97, Guy11, and T-39800E were 98.07 ± 0.0034%, 98.59 ± 0.0051%, 99.16 ± 0.0012%, and 98.69 ± 0.0065%, respectively. Isolate G5 significantly inhibited the formation of conidia of M. oryzae, with an inhibition rate of 97% at an OD600 of 2. Isolate G5 was able to provide 66.81% protection against rice blast under potted conditions. Whole-genome sequencing revealed that the genome size of isolate G5 was 4,065,878 bp, including 4,182 coding genes. Using the anti-SMASH software, 14 secondary metabolite synthesis gene clusters were predicted to encode antifungal substances, such as fengycin, surfactin, and bacilysin. The G5 isolate also contained genes related to plant growth promotion. These findings provide a theoretical basis for expounding the biocontrol mechanisms of this strain and suggest further development of biogenic agents that could effectively inhibit rice blast pathogen growth and reduce crop damage, while being environmentally friendly, conducive to ecological development, and a sustainable alternative to chemical pesticides. This study also enriches the relevant research on endophytes of wild rice, which proves that wild rice is a valuable microbial resource bank.
Collapse
Affiliation(s)
- Ling-Yun Lei
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
- School of Agriculture, Yunnan University, Kunming, China
| | - Zi-Xuan Xiong
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
- School of Agriculture, Yunnan University, Kunming, China
| | - Jin-Lu Li
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - De-Zheng Yang
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
- School of Agriculture, Yunnan University, Kunming, China
| | - Liu Li
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Ling Chen
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Qiao-Fang Zhong
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Fu-You Yin
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Rong-Xin Li
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
- School of Agriculture, Yunnan University, Kunming, China
| | - Zai-Quan Cheng
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Su-Qin Xiao
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| |
Collapse
|
9
|
Li X, Chen Y, Xu J, Lynch I, Guo Z, Xie C, Zhang P. Advanced nanopesticides: Advantage and action mechanisms. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 203:108051. [PMID: 37820512 DOI: 10.1016/j.plaphy.2023.108051] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 07/24/2023] [Accepted: 09/20/2023] [Indexed: 10/13/2023]
Abstract
The use of various chemical substances to control pests, diseases, and weeds in the field is a necessary part of the agricultural development process in every country. While the application of pesticides can improve the quality and yield of crops, plant resistance and the harm caused by pesticide residues to the environment and humans have led to the search for greener and safer pesticide formulations to improve the current situation. In recent years, nanopesticides (NPts) have shown great potential in agriculture due to their high efficiency, low toxicity, targeting, resistance, and controlled slow release demonstrated in the experimental stage. Commonly used approaches to prepare NPts include the use of nanoscale metal materials as active ingredients (AI) (ingredients that can play a role in insecticide, sterilization and weeding) or the construction of carriers based on commonly used pesticides to make them stable in nano-sized form. This paper systematically summarizes the advantages and effects of NPts over conventional pesticides, analyzes the formation and functions of NPts in terms of structure, AI, and additives, and describes the mechanism of action of NPts. Despite the feasibility of NPts use, there is not enough comprehensive research on NPts, which must be supplemented by more experiments in terms of biotoxicology and ecological effects to provide strong support for NPts application.
Collapse
Affiliation(s)
- Xiaowei Li
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, Shandong, China
| | - Yiqing Chen
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, Shandong, China
| | - Jianing Xu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, Shandong, China
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Zhiling Guo
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Changjian Xie
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, Shandong, China.
| | - Peng Zhang
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China; School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| |
Collapse
|
10
|
Xue Y, Zhang Y, Huang K, Wang X, Xing M, Xu Q, Guo Y. A novel biocontrol agent Bacillus velezensis K01 for management of gray mold caused by Botrytis cinerea. AMB Express 2023; 13:91. [PMID: 37642883 PMCID: PMC10465465 DOI: 10.1186/s13568-023-01596-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 08/12/2023] [Indexed: 08/31/2023] Open
Abstract
Gray mold is a destructive plant disease caused by a fungal pathogen Botrytis cinerea. The use of plant growth promoting rhizobacteria (PGPR) has proven to be a promising method to control this disease. Bacillus velezensis K01 was isolated from the rhizosphere of planting tomatoes. Strain K01 has a range of roles, including the ability to solubilize phytate phosphorus, stimulate resistant response, and produce indoleacetic acid (IAA), protease, cellulase, and antimicrobial substances. Strain K01 was found to inhibit 12 phytopathogenic fungi and 5 phytopathogenic bacteria. Specially, strain K01 demonstrated a biocontrol efficiency of over 78% against gray mold caused by B. cinerea on the leaves and fruits of tomato and pepper. Additionally, K01 was found to promote the growth of maize seedlings. Further genomic analysis revealed that K01 belongs to B. velezensis, which is consistent with phylogenetic analysis, average nucleotide polymorphism (ANI), and digital DNA-DNA hybridization (dDDH). The genome of strain K01 had a size of 3,927,799 bp and deduced 3866 predicted genes, with an average guanine-cytosine (GC) content of 46.5%. Based on the analyses of genomic secondary metabolites, over 18.4% of the genome was annotated to 12 gene clusters related to antimicrobial metabolite synthesis. Additionally, genome annotation and comparative genomics identified several genes associated with plant growth promotion and environmental adaption. These findings suggest that B. velezensis K01 has the potential to serve as a new biocontrol agent for management of gray mold on tomato and pepper.
Collapse
Affiliation(s)
- Yinting Xue
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Yunge Zhang
- Hebei Innovation Center of Biofertilizer Technology, Xingtai, Hebei, 054700, China
| | - Kun Huang
- Hebei Innovation Center of Biofertilizer Technology, Xingtai, Hebei, 054700, China
| | - Xiuyan Wang
- Hebei Innovation Center of Biofertilizer Technology, Xingtai, Hebei, 054700, China
| | - Mingzhen Xing
- Hebei Innovation Center of Biofertilizer Technology, Xingtai, Hebei, 054700, China
| | - Qiaolin Xu
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Yanbin Guo
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
11
|
Li Z, Li J, Yu M, Quandahor P, Tian T, Shen T. Bacillus velezensis FX-6 suppresses the infection of Botrytis cinerea and increases the biomass of tomato plants. PLoS One 2023; 18:e0286971. [PMID: 37319286 PMCID: PMC10270589 DOI: 10.1371/journal.pone.0286971] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 05/29/2023] [Indexed: 06/17/2023] Open
Abstract
Botrytis cinerea causing tomato gray mold is a major cause of economic loss in tomato production. It is urgent and necessary to seek an effective and environmentally friendly control strategy to control tomato grey mold disease. In this study, Bacillus velezensis FX-6 isolated from the rhizosphere of plants displayed significant inhibitory ability against B. cinerea and could promote tomato plant growth. FX-6 could effectively inhibit the growth of Botrytis cinerea mycelium in vitro and in vivo, and the inhibitory rate in vitro could reach 78.63%. According to morphological observations and phylogenetic trees based on sequences of the 16S rDNA and gyrA (DNA gyrase subunit A) genes, the strain FX-6 was identified as Bacillus velezensis. In addition, B. velezensis FX-6 showed antagonistic activity against seven phytopathogens, this indicated that FX-6 had broad-spectrum biocontrol activity. We also found that FX-6 fermentation broth had the strongest antagonistic activity against B. cinerea when the culture time was 72 hours, and the inhibition rate was 76.27%. The growth promotion test revealed that strain FX-6 significantly promoted tomato seed germination and seedling growth. Further deeply study on growth-promoting mechanism indicated that the FX-6 produced IAA and siderophore, and had ACC deaminase activity. The trait of significant biological control activity and growth promoting effect on tomato imply that B. velezensis FX-6 has the potential to be used as a biocontrol agent for tomato gray mold management.
Collapse
Affiliation(s)
- Zhaoyu Li
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu Province, China
| | - Jiajia Li
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu Province, China
| | - Mei Yu
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu Province, China
| | | | - Tian Tian
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu Province, China
| | - Tong Shen
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu Province, China
| |
Collapse
|
12
|
Zhang Y, Yang Y, Zhang L, Zhang J, Zhou Z, Yang J, Hu Y, Gao X, Chen R, Huang Z, Xu Z, Li L. Antifungal mechanisms of the antagonistic bacterium Bacillus mojavensis UTF-33 and its potential as a new biopesticide. Front Microbiol 2023; 14:1201624. [PMID: 37293221 PMCID: PMC10246745 DOI: 10.3389/fmicb.2023.1201624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 05/09/2023] [Indexed: 06/10/2023] Open
Abstract
Biological control has gradually become the dominant means of controlling fungal disease over recent years. In this study, an endophytic strain of UTF-33 was isolated from acid mold (Rumex acetosa L.) leaves. Based on 16S rDNA gene sequence comparison, and biochemical and physiological characteristics, this strain was formally identified as Bacillus mojavensis. Bacillus mojavensis UTF-33 was sensitive to most of the antibiotics tested except neomycin. Moreover, the filtrate fermentation solution of Bacillus mojavensis UTF-33 had a significant inhibitory effect on the growth of rice blast and was used in field evaluation tests, which reduced the infestation of rice blast effectively. Rice treated with filtrate fermentation broth exhibited multiple defense mechanisms in response, including the enhanced expression of disease process-related genes and transcription factor genes, and significantly upregulated the gene expression of titin, salicylic acid pathway-related genes, and H2O2 accumulation, in plants; this may directly or indirectly act as an antagonist to pathogenic infestation. Further analysis revealed that the n-butanol crude extract of Bacillus mojavensis UTF-33 could retard or even inhibit conidial germination and prevent the formation of adherent cells both in vitro and in vivo. In addition, the amplification of functional genes for biocontrol using specific primers showed that Bacillus mojavensis UTF-33 expresses genes that can direct the synthesis of bioA, bmyB, fenB, ituD, srfAA and other substances; this information can help us to determine the extraction direction and purification method for inhibitory substances at a later stage. In conclusion, this is the first study to identify Bacillus mojavensis as a potential agent for the control of rice diseases; this strain, and its bioactive substances, have the potential to be developed as biopesticides.
Collapse
Affiliation(s)
- Yifan Zhang
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
| | - Yanmei Yang
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
| | - Luyi Zhang
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
| | - Jia Zhang
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
| | - Zhanmei Zhou
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
| | - Jinchang Yang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yu Hu
- College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xiaoling Gao
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
| | - Rongjun Chen
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
| | - Zhengjian Huang
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
| | - Zhengjun Xu
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
| | - Lihua Li
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
| |
Collapse
|
13
|
Yang Y, Zhang Y, Zhang L, Zhou Z, Zhang J, Yang J, Gao X, Chen R, Huang Z, Xu Z, Li L. Isolation of Bacillus siamensis B-612, a Strain That Is Resistant to Rice Blast Disease and an Investigation of the Mechanisms Responsible for Suppressing Rice Blast Fungus. Int J Mol Sci 2023; 24:ijms24108513. [PMID: 37239859 DOI: 10.3390/ijms24108513] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/28/2023] [Accepted: 05/07/2023] [Indexed: 05/28/2023] Open
Abstract
Rice yield can be significantly impacted by rice blast disease. In this investigation, an endophytic strain of Bacillus siamensis that exhibited a potent inhibitory effect on the growth of rice blast was isolated from healthy cauliflower leaves. 16S rDNA gene sequence analysis showed that it belongs to the genus Bacillus siamensis. Using the rice OsActin gene as an internal control, we analyzed the expression levels of genes related to the defense response of rice. Analysis showed that the expression levels of genes related to the defense response in rice were significantly upregulated 48 h after treatment. In addition, peroxidase (POD) activity gradually increased after treatment with B-612 fermentation solution and peaked 48 h after inoculation. These findings clearly demonstrated that the 1-butanol crude extract of B-612 retarded and inhibited conidial germination as well as the development of appressorium. The results of field experiments showed that treatment with B-612 fermentation solution and B-612 bacterial solution significantly reduced the severity of the disease before the seedling stage of Lijiangxintuan (LTH) was infected with rice blast. Future studies will focus on exploring whether Bacillus siamensis B-612 produces new lipopeptides and will apply proteomic and transcriptomic approaches to investigate the signaling pathways involved in its antimicrobial effects.
Collapse
Affiliation(s)
- Yanmei Yang
- Crop Ecophysiolgy and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yifan Zhang
- Crop Ecophysiolgy and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Luyi Zhang
- Crop Ecophysiolgy and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhanmei Zhou
- Crop Ecophysiolgy and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Jia Zhang
- Crop Ecophysiolgy and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Jinchang Yang
- Maize Research Institute of Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaoling Gao
- Crop Ecophysiolgy and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Rongjun Chen
- Crop Ecophysiolgy and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhengjian Huang
- Crop Ecophysiolgy and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhengjun Xu
- Crop Ecophysiolgy and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Lihua Li
- Crop Ecophysiolgy and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
14
|
Kadiri M, Sevugapperumal N, Nallusamy S, Ragunathan J, Ganesan MV, Alfarraj S, Ansari MJ, Sayyed RZ, Lim HR, Show PL. Pan-genome analysis and molecular docking unveil the biocontrol potential of Bacillus velezensis VB7 against Phytophthora infestans. Microbiol Res 2023; 268:127277. [PMID: 36577205 DOI: 10.1016/j.micres.2022.127277] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/23/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
Management of late blight of potato incited by Phytophthora infestans remains a major challenge. Coevolution of pathogen with resistant strains and the rise of fungicide resistance have made it more challenging to prevent the spread of P. infestans. Here, the anti-oomycete potential of Bacillus velezensis VB7 against P. infestans through pan-genome analysis and molecular docking were explored. The Biocontrol potential of VB7 against P. infestans was assessed using a confrontational assay. The biomolecules from the inhibition zone were identified and subjected to in silico analysis against P. infestans target proteins. Nucleotide sequences for 54 B. velezensis strains from different geographical locations were used for pan-genome analysis. The confrontational assay revealed the anti-oomycetes potential of VB7 against P. infestans. Molecular docking confirmed that the penicillamine disulfide had the maximum binding energy with eight effector proteins of P. infestans. Besides, scanning electron microscopic observations of P. infestans interaction with VB7 revealed structural changes in hypha and sporangia. Pan-genome analysis between 54 strains of B. velezensis confirmed that the core genome had 2226 genes, and it has an open pan-genome. The present study confirmed the anti-oomycete potential of B. velezensis VB7 against P. infestans and paved the way to explore the genetic potential of VB7.
Collapse
Affiliation(s)
- Mahendra Kadiri
- Department of Plant Pathology, Centre for Plant Protection Studies, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - Nakkeeran Sevugapperumal
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641003, India.
| | - Saranya Nallusamy
- Department of Plant Molecular Biology and Bioinformatics, Centre for Plant Molecular Biology & Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - Janani Ragunathan
- Department of Plant Pathology, Centre for Plant Protection Studies, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - Malathi Varagur Ganesan
- Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Saleh Alfarraj
- Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Mohammad Javed Ansari
- Department of Botany, Hindu College, Moradabad (Mahatma Jyotiba Phule Rohilkhand University Bareilly), 244001, India.
| | - R Z Sayyed
- Asian PGPR Society, Department of Entomology, Auburn University, Auburn, AL, 36849, USA.
| | - Hooi Ren Lim
- Department of Chemical and Environmental Engineering, University of Nottingham, Malaysia, 43500, Semenyih, Selangor Darul Ehsan, Malaysia
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, University of Nottingham, Malaysia, 43500, Semenyih, Selangor Darul Ehsan, Malaysia; Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China; Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai, India 602105.
| |
Collapse
|
15
|
Appressoria-Small but Incredibly Powerful Structures in Plant-Pathogen Interactions. Int J Mol Sci 2023; 24:ijms24032141. [PMID: 36768468 PMCID: PMC9917257 DOI: 10.3390/ijms24032141] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/25/2023] Open
Abstract
Plant-pathogenic fungi are responsible for many of the most severe crop diseases in the world and remain very challenging to control. Improving current protection strategies or designating new measures based on an overall understanding of molecular host-pathogen interaction mechanisms could be helpful for disease management. The attachment and penetration of the plant surface are the most important events among diverse plant-fungi interactions. Fungi evolved as small but incredibly powerful infection structure appressoria to facilitate attachment and penetration. Appressoria are indispensable for many diseases, such as rusts, powdery mildews, and blast diseases, as well as devastating oomycete diseases. Investigation into the formation of plant-pathogen appressoria contributes to improving the understanding of the molecular mechanisms of plant-pathogen interactions. Fungal host attachment is a vital step of fungal pathogenesis. Here, we review recent advances in the molecular mechanisms regulating the formation of appressoria. Additionally, some biocontrol agents were revealed to act on appressorium. The regulation of fungal adhesion during the infective process by acting on appressoria formation is expected to prevent the occurrence of crop disease caused by some pathogenic fungi.
Collapse
|
16
|
Zhou J, Xie Y, Liao Y, Li X, Li Y, Li S, Ma X, Lei S, Lin F, Jiang W, He YQ. Characterization of a Bacillus velezensis strain isolated from Bolbostemmatis Rhizoma displaying strong antagonistic activities against a variety of rice pathogens. Front Microbiol 2022; 13:983781. [PMID: 36246295 PMCID: PMC9555170 DOI: 10.3389/fmicb.2022.983781] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/30/2022] [Indexed: 11/25/2022] Open
Abstract
Biological control is an effective measure in the green control of rice diseases. To search for biocontrol agents with broad-spectrum and high efficiency against rice diseases, in this study, a strain of antagonistic bacterium BR-01 with strong inhibitory effect against various rice diseases was isolated from Bolbostemmatis Rhizoma by plate confrontation method. The strain was identified as Bacillus velezensis by morphological observation, physiological and biochemical identification, and molecular characterization by 16S rDNA and gyrB gene sequencing analysis. The confrontation test (dual culture) and Oxford cup assays demonstrated that B. velezensis BR-01 had strong antagonistic effects on Magnaporthe oryzae, Ustilaginoidea virens, Fusarium fujikuroi, Xanthomonas oryzae pv. Oryzicola, and Xanthomonas oryzae pv. oryzae, the major rice pathogens. The genes encoding antimicrobial peptides (ituA, ituD, bmyB, bmyC, srfAA, fenB, fenD, bacA, and bacD) were found in B. velezensis BR-01 by PCR amplification with specific primers. B. velezensis BR-01 could produce protease, cellulase, β-1,3-glucanase, chitinase, indoleacetic acid, siderophore, and 1-aminocyclopropane-1-carboxylate (ACC) deaminase, and might produce three lipopeptide antibiotics, surfactin, iturin, and fengycin based on Liquid chromatography-mass spectrometry (LC-MS) results. Furthermore, the plant assays showed that B. velezensis BR-01 had significant control effects on rice bacterial blight and bacterial leaf streak by pot experiments in greenhouse. In conclusion, B. velezensis BR-01 is a broad-spectrum antagonistic bacterium and has the potential as the ideal biocontrol agent in controlling multiple rice diseases with high efficiency.
Collapse
Affiliation(s)
- Jianping Zhou
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresource and College of Life Science and Technology, Nanning, China
| | - Yunqiao Xie
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi, China
| | - Yuhong Liao
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi, China
| | - Xinyang Li
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi, China
| | - Yiming Li
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresource and College of Life Science and Technology, Nanning, China
| | - Shuping Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresource and College of Life Science and Technology, Nanning, China
| | - Xiuguo Ma
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi, China
| | - Shimin Lei
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi, China
| | - Fei Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Wei Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresource and College of Life Science and Technology, Nanning, China
| | - Yong-Qiang He
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresource and College of Life Science and Technology, Nanning, China
| |
Collapse
|
17
|
Chaudhary P, Singh S, Chaudhary A, Sharma A, Kumar G. Overview of biofertilizers in crop production and stress management for sustainable agriculture. FRONTIERS IN PLANT SCIENCE 2022; 13:930340. [PMID: 36082294 PMCID: PMC9445558 DOI: 10.3389/fpls.2022.930340] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/21/2022] [Indexed: 05/09/2023]
Abstract
With the increase in world population, the demography of humans is estimated to be exceeded and it has become a major challenge to provide an adequate amount of food, feed, and agricultural products majorly in developing countries. The use of chemical fertilizers causes the plant to grow efficiently and rapidly to meet the food demand. The drawbacks of using a higher quantity of chemical or synthetic fertilizers are environmental pollution, persistent changes in the soil ecology, physiochemical composition, decreasing agricultural productivity and cause several health hazards. Climatic factors are responsible for enhancing abiotic stress on crops, resulting in reduced agricultural productivity. There are various types of abiotic and biotic stress factors like soil salinity, drought, wind, improper temperature, heavy metals, waterlogging, and different weeds and phytopathogens like bacteria, viruses, fungi, and nematodes which attack plants, reducing crop productivity and quality. There is a shift toward the use of biofertilizers due to all these facts, which provide nutrition through natural processes like zinc, potassium and phosphorus solubilization, nitrogen fixation, production of hormones, siderophore, various hydrolytic enzymes and protect the plant from different plant pathogens and stress conditions. They provide the nutrition in adequate amount that is sufficient for healthy crop development to fulfill the demand of the increasing population worldwide, eco-friendly and economically convenient. This review will focus on biofertilizers and their mechanisms of action, role in crop productivity and in biotic/abiotic stress tolerance.
Collapse
Affiliation(s)
- Parul Chaudhary
- Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, India
| | - Shivani Singh
- Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, India
| | - Anuj Chaudhary
- School of Agriculture and Environmental Science, Shobhit University, Gangoh, India
| | - Anita Sharma
- Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, India
| | - Govind Kumar
- Department of Crop Production, Central Institute for Subtropical Horticulture, Lucknow, India
| |
Collapse
|
18
|
Lahlali R, Ezrari S, Radouane N, Kenfaoui J, Esmaeel Q, El Hamss H, Belabess Z, Barka EA. Biological Control of Plant Pathogens: A Global Perspective. Microorganisms 2022; 10:microorganisms10030596. [PMID: 35336171 PMCID: PMC8951280 DOI: 10.3390/microorganisms10030596] [Citation(s) in RCA: 198] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/07/2022] [Accepted: 03/07/2022] [Indexed: 12/24/2022] Open
Abstract
The increase in the world population has generated an important need for both quality and quantity agricultural products, which has led to a significant surge in the use of chemical pesticides to fight crop diseases. Consumers, however, have become very concerned in recent years over the side effects of chemical fungicides on human health and the environment. As a result, research into alternative solutions to protect crops has been imposed and attracted wide attention from researchers worldwide. Among these alternatives, biological controls through beneficial microorganisms have gained considerable importance, whilst several biological control agents (BCAs) have been screened, among them Bacillus, Pantoea, Streptomyces, Trichoderma, Clonostachys, Pseudomonas, Burkholderia, and certain yeasts. At present, biopesticide products have been developed and marketed either to fight leaf diseases, root diseases, or fruit storage diseases. However, no positive correlation has been observed between the number of screened BCAs and available marketed products. Therefore, this review emphasizes the development of biofungicides products from screening to marketing and the problems that hinder their development. Finally, particular attention was given to the gaps observed in this sector and factors that hamper its development, particularly in terms of efficacy and legislation procedures.
Collapse
Affiliation(s)
- Rachid Lahlali
- Phytopathology Unit, Department of Plant Protection, Ecole Nationale d’Agriculture de Meknès, Km10, Rte Haj Kaddour, BP S/40, Menkes 50001, Morocco; (S.E.); (N.R.); (J.K.); (H.E.H.)
- Correspondence: (R.L.); (E.A.B.); Tel.: +212-55-30-02-39 (R.L.); +33-3-2691-3441 (E.A.B.)
| | - Said Ezrari
- Phytopathology Unit, Department of Plant Protection, Ecole Nationale d’Agriculture de Meknès, Km10, Rte Haj Kaddour, BP S/40, Menkes 50001, Morocco; (S.E.); (N.R.); (J.K.); (H.E.H.)
- Laboratory of Functional Ecology and Environmental Engineering, Sidi Mohamed Ben Abdellah University, P.O. Box 2202, Route d’Imouzzer, Fez 30000, Morocco
| | - Nabil Radouane
- Phytopathology Unit, Department of Plant Protection, Ecole Nationale d’Agriculture de Meknès, Km10, Rte Haj Kaddour, BP S/40, Menkes 50001, Morocco; (S.E.); (N.R.); (J.K.); (H.E.H.)
- Laboratory of Functional Ecology and Environmental Engineering, Sidi Mohamed Ben Abdellah University, P.O. Box 2202, Route d’Imouzzer, Fez 30000, Morocco
| | - Jihane Kenfaoui
- Phytopathology Unit, Department of Plant Protection, Ecole Nationale d’Agriculture de Meknès, Km10, Rte Haj Kaddour, BP S/40, Menkes 50001, Morocco; (S.E.); (N.R.); (J.K.); (H.E.H.)
- Laboratory of Functional Ecology and Environmental Engineering, Sidi Mohamed Ben Abdellah University, P.O. Box 2202, Route d’Imouzzer, Fez 30000, Morocco
| | - Qassim Esmaeel
- Unité de Recherche Résistance Induite et Bio-Protection des Plantes-EA 4707-USC INRAE1488, Université de Reims Champagne-Ardenne, 51100 Reims, France;
| | - Hajar El Hamss
- Phytopathology Unit, Department of Plant Protection, Ecole Nationale d’Agriculture de Meknès, Km10, Rte Haj Kaddour, BP S/40, Menkes 50001, Morocco; (S.E.); (N.R.); (J.K.); (H.E.H.)
| | - Zineb Belabess
- Plant Protection Laboratory, Regional Center of Agricultural Research of Oujda, National Institute of Agricultural Research, Avenue Mohamed VI, BP428 Oujda, Oujda 60000, Morocco;
| | - Essaid Ait Barka
- Unité de Recherche Résistance Induite et Bio-Protection des Plantes-EA 4707-USC INRAE1488, Université de Reims Champagne-Ardenne, 51100 Reims, France;
- Correspondence: (R.L.); (E.A.B.); Tel.: +212-55-30-02-39 (R.L.); +33-3-2691-3441 (E.A.B.)
| |
Collapse
|