1
|
Santos AKM, dos Santos BA, Farias JR, de Morais SV, Vasconcelos CC, Guerra RNM, Rodrigues-Filho E, Lopes AJO, Cantanhede Filho AJ. Effect of Mn(II) and Co(II) on Anti- Candida Metabolite Production by Aspergillus sp. an Endophyte Isolated from Dizygostemon riparius (Plantaginaceae). Pharmaceuticals (Basel) 2024; 17:1678. [PMID: 39770520 PMCID: PMC11677262 DOI: 10.3390/ph17121678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/03/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
Background/Objectives: This study evaluates the effect of Mn(II) and Co(II) ions on the production of anti-Candida metabolites by the endophytic fungus Aspergillus sp., isolated from Dizygostemon riparius. The objective was to identify metal-induced secondary metabolites with antifungal potential against drug-resistant Candida species. Methods: Aspergillus sp. was cultivated in Czapek agar supplemented with MnCl₂ (400 µM) or CoCl₂ (200 µM). Metabolite profiles were analyzed using UHPLC-DAD and LC-ESI-HRMS, followed by structural elucidation via NMR. Antifungal and biofilm inhibition activities were tested against Candida albicans and Candida parapsilosis. Toxicity was assessed using Tenebrio molitor larvae. Results: Key metabolites, including pyrophen, penicillquei B, and fonsecinone B, demonstrated antifungal activity with MIC values of 4.37-280.61 µg/mL. Fonsecinone B exhibited superior biofilm inhibition, surpassing fluconazole in reducing biofilm biomass and viability. In vivo assays showed low toxicity, with survival rates above 80% at 2× MIC/kg. Conclusions: Mn(II) and Co(II) significantly modulated the production of antifungal metabolites in Aspergillus sp. Fonsecinone B emerged as a promising candidate for antifungal therapy due to its potent activity and low toxicity. These findings support further investigation into the therapeutic potential of metal-induced fungal metabolites for combating drug-resistant Candida infections.
Collapse
Affiliation(s)
- Anne Karoline Maiorana Santos
- Chemistry Postgraduate Program, Federal Institute of Science Education and Technology of Maranhão, São Luís 65030-005, Brazil; (A.K.M.S.); (B.A.d.S.); (S.V.d.M.)
| | - Bianca Araújo dos Santos
- Chemistry Postgraduate Program, Federal Institute of Science Education and Technology of Maranhão, São Luís 65030-005, Brazil; (A.K.M.S.); (B.A.d.S.); (S.V.d.M.)
| | - Josivan Regis Farias
- Center for Biological and Health Sciences, Federal University of Maranhão, São Luís 65080-805, Brazil
| | - Sebastião Vieira de Morais
- Chemistry Postgraduate Program, Federal Institute of Science Education and Technology of Maranhão, São Luís 65030-005, Brazil; (A.K.M.S.); (B.A.d.S.); (S.V.d.M.)
| | - Cleydlenne Costa Vasconcelos
- Chemistry Postgraduate Program, Federal Institute of Science Education and Technology of Maranhão, São Luís 65030-005, Brazil; (A.K.M.S.); (B.A.d.S.); (S.V.d.M.)
| | | | | | - Alberto Jorge Oliveira Lopes
- Chemistry Postgraduate Program, Federal Institute of Science Education and Technology of Maranhão, São Luís 65030-005, Brazil; (A.K.M.S.); (B.A.d.S.); (S.V.d.M.)
| | - Antônio José Cantanhede Filho
- Chemistry Postgraduate Program, Federal Institute of Science Education and Technology of Maranhão, São Luís 65030-005, Brazil; (A.K.M.S.); (B.A.d.S.); (S.V.d.M.)
| |
Collapse
|
2
|
Lieu MD, Dang TKT, Nguyen TH. Green synthesized silver nanoparticles, a sustainable approach for fruit and vegetable preservation: An overview. Food Chem X 2024; 23:101664. [PMID: 39148528 PMCID: PMC11324848 DOI: 10.1016/j.fochx.2024.101664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/12/2024] [Accepted: 07/14/2024] [Indexed: 08/17/2024] Open
Abstract
Nanotechnology in which silver nanoparticles (AgNPs) have received more interest in fruits and vegetables (FaV) preservation due to their anti-microorganism properties. There are various approaches to synthesizing AgNPs, in which biological reduction, especially plant extraction containing bioactive compounds, is considered non-toxic, eco-friendly, and economically viable. AgNPs can be applied for FaV preservation by immersing or incorporating AgNPs into the edible coating or wrapper film. Depending on the type of coating and the kind of FaV, choosing the coating components is necessary to ensure the anti-microorganism ability and improve preservation efficiency. This review highlights green-synthesized AgNPs for preserving FaV. The study covered the materials employed in the green synthesis of AgNPs, their effectiveness against microorganisms, the influence of AgNPs on film structure, safety properties, and various preservation strategies. Using plant or bacterial-synthesized AgNPs in edible coatings offers a sustainable approach to enhance safety, edibility, environmental friendliness, and FaV quality during storage.
Collapse
Affiliation(s)
- My Dong Lieu
- Faculty of Food Science and Technology, Ho Chi Minh City University of Industry and Trade, 140 Le Trong Tan Street, Tay Thanh Ward, Tan Phu District, Ho Chi Minh City, Viet Nam
- Department of Biotechnology, Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam
- Vietnam National University-Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc, Ho Chi Minh City, Viet Nam
| | - Thi Kim Thuy Dang
- Department of Plant Cell Technology, Institute of Tropical Biology, Vietnam Academy of Science and Technology, 9/621 Xa lo Ha Noi Street, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Viet Nam
| | - Thuy Huong Nguyen
- Department of Biotechnology, Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam
- Vietnam National University-Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc, Ho Chi Minh City, Viet Nam
| |
Collapse
|
3
|
Talaat M. Biologically synthesized nanoparticles: barley-mediated silver and gold nanoparticles and caged gold nanoplatform for advanced drug delivery system engineering in medicine. DISCOVER NANO 2024; 19:167. [PMID: 39375276 PMCID: PMC11458901 DOI: 10.1186/s11671-024-04097-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 08/27/2024] [Indexed: 10/09/2024]
Abstract
The integration of green synthesis methods and advanced nanostructure designs holds significant promise for the development of innovative nanomaterials with diverse biomedical applications. This commentary delves into the use of barley grains for the eco-friendly synthesis of silver and gold nanoparticles, highlighting their potential as biocompatible agents with potent antibacterial properties. The barley-mediated synthesis approach not only offers a sustainable and cost-effective method for producing these nanoparticles but also underscores their remarkable efficacy against pathogenic bacteria. The barley-mediated approach not only offers a sustainable and cost-effective method for producing biocompatible nanoparticles but also demonstrates remarkable antibacterial efficacy against pathogenic bacteria. By critically evaluating the strengths and potential gaps in this synthesis approach, this commentary emphasizes the importance of integrating green synthesis techniques with advanced nanoparticle applications. Future research directions should aim at optimizing synthesis processes, ensuring enhanced stability and biocompatibility, and exploring the full potential of biologically synthesized nanoparticles in medical treatments and environmental sustainability. This focus on sustainable synthesis and application could pave the way for the next generation of nanomaterials, offering significant advancements in both healthcare and ecological preservation. By examining the strengths, gaps, and potential synergies between these two approaches, this commentary underscores the importance of sustainable synthesis techniques and the development of multifunctional nanoparticles. This integrated approach could lead to the creation of next-generation nanomaterials, offering significant advancements in medical treatments and environmental sustainability.
Collapse
Affiliation(s)
- Muhammad Talaat
- Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
- El Demerdash Hospital, Ain Shams University, Cairo, Egypt.
- R&D Department, BRAND For Pharmaceutical Industries, Giza, Egypt.
| |
Collapse
|
4
|
Andırın A, Yaycı ND, Idikut M, Kara A, Tuncsoy M, Tuncsoy B, Ozalp P. Green synthesis of silver nanoparticles using carob leaf extract: Characterization and analysis of toxic effects in model organism Galleria mellonella L. (The greater wax moth). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:57778-57788. [PMID: 39294535 DOI: 10.1007/s11356-024-34996-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 09/12/2024] [Indexed: 09/20/2024]
Abstract
Silver nanoparticles (Ag NPs) have been used in many studies due to their inhibitory properties on microorganisms such as bacteria and viruses. In recent years, due to global problems such as environmental pollution, the green synthesis (biosynthesis) method is frequently preferred because it is simple and low cost and does not require the use of toxic substances. The aim of this study is to synthesize silver nanoparticles (Ag NPs) from Ceratonia siliqua L. leaves and investigate their antioxidant and immunotoxic properties using Galleria mellonella last instar larvae. The UV spectrophotometer, TEM, XRD and FTIR measurements were used to characterize the Ag NPs. In this study, it was determined that the effects on antioxidant enzyme activities (SOD, CAT, GPx, GST), acetylcholinesterase (AChE) and total hemocyte count (THC) as well as phenoloxidase activity determine their effect on antioxidant defence and the immune system in model organism G. mellonella larvae. We observed that green synthesized Ag NPs accumulate in the midgut of the larvae and led to the increasing of CAT and SOD activities. GST and AChE activities were increased in the fat body of the larvae; otherwise, it was decreased in the midgut. Moreover, increases were found in THC and phenoloxidase activity. Consequently, green synthesized silver nanoparticles led to oxidative stress and immunotoxic effects on G. mellonella larvae.
Collapse
Affiliation(s)
- Aslıhan Andırın
- Department of Bioengineering, Faculty of Engineering, Adana Alparslan Turkes Science and Technology University, Adana, Turkey
| | - Nur Dudu Yaycı
- Department of Bioengineering, Faculty of Engineering, Adana Alparslan Turkes Science and Technology University, Adana, Turkey
| | - Murat Idikut
- Department of Bioengineering, Faculty of Engineering, Adana Alparslan Turkes Science and Technology University, Adana, Turkey
| | - Ayse Kara
- Department of Biology, Faculty of Science and Letter, Cukurova University, Adana, Turkey
| | - Mustafa Tuncsoy
- Department of Biology, Faculty of Science and Letter, Cukurova University, Adana, Turkey
| | - Benay Tuncsoy
- Department of Bioengineering, Faculty of Engineering, Adana Alparslan Turkes Science and Technology University, Adana, Turkey.
| | - Pınar Ozalp
- Department of Biology, Faculty of Science and Letter, Cukurova University, Adana, Turkey
| |
Collapse
|
5
|
Liu Chung Ming C, Wang X, Gentile C. Protective role of acetylcholine and the cholinergic system in the injured heart. iScience 2024; 27:110726. [PMID: 39280620 PMCID: PMC11402255 DOI: 10.1016/j.isci.2024.110726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2024] Open
Abstract
This review explores the roles of the cholinergic system in the heart, comprising the neuronal and non-neuronal cholinergic systems. Both systems are essential for maintaining cardiac homeostasis by regulating the release of acetylcholine (ACh). A reduction in ACh release is associated with the early onset of cardiovascular diseases (CVDs), and increasing evidence supports the protective roles of ACh against CVD. We address the challenges and limitations of current strategies to elevate ACh levels, including vagus nerve stimulation and pharmacological interventions such as cholinesterase inhibitors. Additionally, we introduce alternative strategies to increase ACh in the heart, such as stem cell therapy, gene therapy, microRNAs, and nanoparticle drug delivery methods. These findings offer new insights into advanced treatments for regenerating the injured human heart.
Collapse
Affiliation(s)
- Clara Liu Chung Ming
- School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW, Australia
- Cardiovascular Regeneration Group, Heart Research Institute, Newtown, NSW 2042, Australia
| | - Xiaowei Wang
- Department of Medicine, Monash University, Melbourne, VIC 3800, Australia
- Department of Cardiometabolic Health, University of Melbourne, Melbourne, VIC 3010, Australia
- Molecular Imaging and Theranostics Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
| | - Carmine Gentile
- School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW, Australia
- Cardiovascular Regeneration Group, Heart Research Institute, Newtown, NSW 2042, Australia
| |
Collapse
|
6
|
Suthar JK, Vaidya A, Ravindran S. Size, Surface Properties, and Ion Release of Zinc Oxide Nanoparticles: Effects on Cytotoxicity, Dopaminergic Gene Expression, and Acetylcholinesterase Inhibition in Neuronal PC-12 Cells. Biol Trace Elem Res 2024; 202:2254-2271. [PMID: 37713055 DOI: 10.1007/s12011-023-03832-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 08/25/2023] [Indexed: 09/16/2023]
Abstract
The extensive applications of zinc oxide nanoparticles (ZnO NPs) have resulted in a substantial risk of human exposure. However, the knowledge of the toxicity of these NPs in the nervous system is still limited. A comparative analysis of ZnO NPs of various sizes and NPs of the same size, with and without surface coating, and the potential role of released zinc ions is yet to be thoroughly explored. As a result, we have studied the cellular toxicity of two different-sized ZnO NPs, ZnO-22 (22 nm) and ZnO-43 (43 nm), and NPs with similar size but with polyvinylpyrrolidone coating (ZnO-P, 45 nm). The findings from our study suggested a time-, size-, and surface coating-dependent cytotoxicity in PC-12 cells at a concentration ≥ 10 μg/ml. ZnO NP treatment significantly elevated reactive oxygen and reactive nitrogen species, thereby increasing oxidative stress. The exposure of ZnO-22 and ZnO-43 significantly upregulated the expression of monoamine oxidase-A and downregulated the α-synuclein gene expression associated with the dopaminergic system. The interaction of NPs enzymes in the nervous system is also hazardous. Therefore, the inhibition activity of acetylcholinesterase enzyme was also studied for its interaction with these NPs, and the results indicated a dose-dependent inhibition of enzyme activity. Particle size, coating, and cellular interactions modulate ZnO NP's cytotoxicity; smaller sizes enhance cellular uptake and reactivity, while coating reduces cytotoxicity by limiting direct cell contact and potentially mitigating oxidative stress. Furthermore, the study of released zinc ions from the NPs suggested no significant contribution to the observed cytotoxicity compared to the NPs.
Collapse
Affiliation(s)
- Jitendra Kumar Suthar
- Symbiosis School of Biological Sciences, Faculty of Medical and Health Sciences, Symbiosis International (Deemed) University, Pune, India
| | - Anuradha Vaidya
- Symbiosis Centre for Stem Cell Research, Symbiosis School of Biological Sciences, Symbiosis International (Deemed) University, Pune, India
| | - Selvan Ravindran
- Symbiosis School of Biological Sciences, Faculty of Medical and Health Sciences, Symbiosis International (Deemed) University, Pune, India.
| |
Collapse
|
7
|
Taheri M, Bahrami A, Asadi KK, Mohammadi M, Molaei P, Hashemi M, Nouri F. A review on nonviral, nonbacterial infectious agents toxicity involved in neurodegenerative diseases. Neurodegener Dis Manag 2023; 13:351-369. [PMID: 38357803 DOI: 10.2217/nmt-2023-0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024] Open
Abstract
Neuronal death, decreased activity or dysfunction of neurotransmitters are some of the pathophysiological reasons for neurodegenerative diseases like Alzheimer's, Parkinson's and multiple sclerosis. Also, there is evidence for the role of infections and infectious agents in neurodegenerative diseases and the effect of some metabolites in microorganisms in the pathophysiology of these diseases. In this study, we intend to evaluate the existing studies on the role of infectious agents and their metabolites on the pathophysiology of neurodegenerative diseases. PubMed, Scopus, Google Scholar and Web of Science search engines were searched. Some infectious agents have been observed in neurodegenerative diseases. Also, isolations of some fungi and microalgae have an improving effect on Parkinson's and Alzheimer's.
Collapse
Affiliation(s)
- Mohammad Taheri
- Department of Medical Microbiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ali Bahrami
- Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Kiana Kimiaei Asadi
- Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mojdeh Mohammadi
- Department of Pharmacology & Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Pejman Molaei
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science & Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Fatemeh Nouri
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
8
|
Suthar JK, Rakesh B, Vaidya A, Ravindran S. Comprehensive Analysis of Titanium Oxide Nanoparticle Size and Surface Properties on Neuronal PC-12 Cells: Unraveling Cytotoxicity, Dopaminergic Gene Expression, and Acetylcholinesterase Inhibition. J Xenobiot 2023; 13:662-684. [PMID: 37987444 PMCID: PMC10660528 DOI: 10.3390/jox13040043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 09/30/2023] [Accepted: 10/05/2023] [Indexed: 11/22/2023] Open
Abstract
Titanium oxide nanoparticles can penetrate the blood-brain barrier, infiltrate the central nervous system, and induce neurotoxicity. One of the most often utilized nanoparticles has been investigated for their neurotoxicity in many studies. Nonetheless, there remains an unexplored aspect regarding the comparative analysis of particles varying in size and nanoparticles of identical dimensions, both with and devoid of surface coating. In the current study, we synthesized two differently sized nanoparticles, TiO2-10 (10 nm) and TiO2-22 (22 nm), and nanoparticles of the same size but with a polyvinylpyrrolidone surface coating (TiO2-PVP, 22 nm) and studied their toxic effects on neural PC-12 cells. The results highlighted significant dose- and time-dependent cytotoxicity at concentrations ≥10 μg/mL. The exposure of TiO2 nanoparticles significantly elevated reactive oxygen and nitrogen species levels, IL-6 and TNF-α levels, altered the mitochondrial membrane potential, and enhanced apoptosis-related caspase-3 activity, irrespective of size and surface coating. The interaction of the nanoparticles with acetylcholinesterase enzyme activity was also investigated, and the results revealed a dose-dependent suppression of enzymatic activity. However, the gene expression studies indicated no effect on the expression of all six genes associated with the dopaminergic system upon exposure to 10 μg/mL for any nanoparticle. The results demonstrated no significant difference between the outcomes of TiO2-10 and TiO2-22 NPs. However, the polyvinylpyrrolidone surface coating was able to attenuate the neurotoxic effects. These findings suggest that as the TiO2 nanoparticles get smaller (towards 0 nm), they might promote apoptosis and inflammatory reactions in neural cells via oxidative stress, irrespective of their size.
Collapse
Affiliation(s)
- Jitendra Kumar Suthar
- Symbiosis School of Biological Sciences, Faculty of Medical and Health Sciences, Symbiosis International (Deemed) University, Pune 412115, India;
| | - Balaji Rakesh
- Symbiosis Institute of Technology, Symbiosis International (Deemed) University, Pune 412115, India;
| | - Anuradha Vaidya
- Symbiosis Centre for Stem Cell Research, Symbiosis School of Biological Sciences, Symbiosis International (Deemed) University, Pune 412115, India;
| | - Selvan Ravindran
- Symbiosis School of Biological Sciences, Faculty of Medical and Health Sciences, Symbiosis International (Deemed) University, Pune 412115, India;
| |
Collapse
|
9
|
Saleh A, Negm WA, El-Masry TA, Eliwa D, Alotaibi B, Alosaimi ME, Alotaibi KN, Magdeldin S, Mahgoub S, Elekhnawy E. Anti-inflammatory potential of Penicillium brefeldianum endophytic fungus supported with phytochemical profiling. Microb Cell Fact 2023; 22:83. [PMID: 37106372 PMCID: PMC10141907 DOI: 10.1186/s12934-023-02091-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Various factors contribute to the development of the acute inflammation process, like the pro-inflammatory cytokines, certain enzymes as well as oxidative stress mediators. The anti-inflammatory potential of the endophytic fungus Penicillium brefeldianum was explored in carrageenan-induced inflammation in rats. After isolation of the fungus from Acalypha hispida leaves, it was identified by 18S rRNA gene sequencing. Then, its phytochemical profile was elucidated using LC-ESI-MS/MS technique. There was a remarkable decrease in the edema weight in the endophytic fungi-treated group (200 mg/kg). Also, this group had few inflammatory cells and thickened epidermis with underlying moderate collagenosis when stained with haematoxylin and eosin. Besides, immunostaining with monoclonal antibodies of cyclooxygenase-2 and tumor necrosis factor alpha showed a decrease in the positive immune cells in the endophytic fungi treated group (200 mg/kg) in relation to the positive control. Interestingly, the levels of the inflammatory as well as oxidative stress markers, including prostaglandin E2, nitric oxide, and malondialdehyde, which are hallmarks of the inflammatory process, considerably diminished (p < 0.05) in this group. qRT-PCR was utilised to elucidate the impact of the endophytic fungi treatment on the expression of interleukins (IL-1β and IL-6) genes, which decreased in comparison with the positive control group. Consequently, we can deduce that P. brefeldianum endophytic fungus has a promising anti-inflammatory potential and should be extensively studied on a broader range in the near future.
Collapse
Affiliation(s)
- Asmaa Saleh
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, Riyadh, 84428 Saudi Arabia
| | - Walaa A. Negm
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta, 31527 Egypt
| | - Thanaa A. El-Masry
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, 31527 Egypt
| | - Duaa Eliwa
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta, 31527 Egypt
| | - Badriyah Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, Riyadh, 84428 Saudi Arabia
| | - Manal E. Alosaimi
- Department of Basic Health Sciences, College of Medicine, Princess Nourah Bint Abdulrahman University, Riyadh, 84428 Saudi Arabia
| | | | - Sameh Magdeldin
- Proteomics and Metabolomics Research Program, Department of Basic Research, Children’s Cancer Hospital 57357, Cairo, 11441 Egypt
- Department of Physiology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522 Egypt
| | - Sebaey Mahgoub
- Proteomics and Metabolomics Research Program, Department of Basic Research, Children’s Cancer Hospital 57357, Cairo, 11441 Egypt
| | - Engy Elekhnawy
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta, 31527 Egypt
| |
Collapse
|
10
|
Ekayoda O, Kadiri HE, Ohwokevwo OA. Combined Effects of Cadmium- and Cyanide-Contaminated Diet on Oxidative Stress Biomarkers in Different Tissues of Rats. GALICIAN MEDICAL JOURNAL 2022. [DOI: 10.21802/gmj.2022.4.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Background. Several toxicants present simultaneously in the environment have combined toxicological effects. In addition, various xenobiotics have distinct effects on oxidative stress biomarkers in animal cells and tissues.
The aim of this study was to analyze the effect of cadmium (Cd) and cyanide (CN) through the food chain on some antioxidant indices in the tissues (lungs, testes, heart, and brain) of male Wistar rats.
Materials and Methods. The study included sixty African catfish allocated to four groups, each comprising fifteen fish, treated with potassium cyanide (KCN) and cadmium chloride (CdCl2), held at a temperature of 25°C in a 100-litre fish tank aquarium with water contaminated with 0.4 mg of both cyanide and cadmium/100 ml of water. All the fish were later killed, dried, and used to prepare diet for experimental animals. Twenty male rats divided into four groups, each comprising five rats, were used for this study as well, and fed for 28 days as follows: Group A - control diet; Group B - cyanide-contaminated diet; Group C - cadmium-contaminated diet; Group D - diet contaminated with cyanide + cadmium. Subsequently, they were sacrificed. Biochemical analysis of the tissues excised from the rats was done.
Results. There was a significant (p < 0.05) increase in lipid peroxidation level and a significant decrease in superoxide dismutase, catalase and reduced glutathione activities in the lungs, testes, heart, and brain of rats fed a catfish diet containing both cyanide and cadmium as compared to controls. In addition, contaminated diet altered acetylcholinesterase activity in the brain, glutathione peroxidase activity, glutathione-S-transferase activity, and glutathione reductase activity in the tissues of experimental rats.
Conclusions. Cadmium and cyanide, via the food chain, induce oxidative stress in the lungs, testes, heart, and brain of rats.
Collapse
|
11
|
Zinc Oxide Nanoparticles as Potential Delivery Carrier: Green Synthesis by Aspergillus niger Endophytic Fungus, Characterization, and In Vitro/In Vivo Antibacterial Activity. Pharmaceuticals (Basel) 2022; 15:ph15091057. [PMID: 36145278 PMCID: PMC9500724 DOI: 10.3390/ph15091057] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/20/2022] [Accepted: 08/23/2022] [Indexed: 12/17/2022] Open
Abstract
We aimed to synthesize zinc oxide nanoparticles (ZnO NPs) using the endophytic fungal extract of Aspergillus niger. The prepared ZnO NPs were characterized, and their in vitro and in vivo antibacterial activity was investigated. Isolated endophytic fungus identification was carried out using 18S rRNA. A. niger endophytic fungal extract was employed for the green synthesis of ZnO NPs. The in vitro antibacterial activity of the prepared ZnO NPs was elucidated against Staphylococcus aureus using the broth microdilution method and quantitative real-time polymerase chain reaction (qRT-PCR). Additionally, the in vivo antibacterial activity was elucidated using a systemic infection model in mice. The biosynthesized ZnO NPs showed a maximum optical density at 380 nm with characteristic peaks on the Fourier-transform infrared spectrum. The X-ray diffraction pattern was highly matched with a standard platform of zinc oxide crystals. Energy-dispersive X-ray analysis confirmed that the main composition of nanoparticles was zinc and oxygen atoms. Scanning and transmission electron microscopies showed spherical geometry with a smooth surface. Zeta potential measurements (26.6 ± 0.56 mV) verified the adequate stability of ZnO NPs. Minimum inhibitory concentrations of ZnO NPs against S. aureus isolates ranged from 8 to 128 µg/mL. Additionally, ZnO NPs revealed antibiofilm activity, resulting in the downregulation of the tested biofilm genes in 29.17% of S. aureus isolates. Regarding the in vivo experiment, ZnO NPs reduced congestion and fibrosis in liver and spleen tissues. They also improved liver function, increased the survival rate, and significantly decreased inflammatory markers (p < 0.05). ZnO NPs synthesized by A. niger endophytic fungus revealed a promising in vivo and in vitro antibacterial action against S. aureus isolates.
Collapse
|
12
|
Jeong GJ, Khan S, Tabassum N, Khan F, Kim YM. Marine-Bioinspired Nanoparticles as Potential Drugs for Multiple Biological Roles. Mar Drugs 2022; 20:md20080527. [PMID: 36005529 PMCID: PMC9409790 DOI: 10.3390/md20080527] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/13/2022] [Accepted: 08/16/2022] [Indexed: 12/12/2022] Open
Abstract
The increased interest in nanomedicine and its applicability for a wide range of biological functions demands the search for raw materials to create nanomaterials. Recent trends have focused on the use of green chemistry to synthesize metal and metal-oxide nanoparticles. Bioactive chemicals have been found in a variety of marine organisms, including invertebrates, marine mammals, fish, algae, plankton, fungi, and bacteria. These marine-derived active chemicals have been widely used for various biological properties. Marine-derived materials, either whole extracts or pure components, are employed in the synthesis of nanoparticles due to their ease of availability, low cost of production, biocompatibility, and low cytotoxicity toward eukaryotic cells. These marine-derived nanomaterials have been employed to treat infectious diseases caused by bacteria, fungi, and viruses as well as treat non-infectious diseases, such as tumors, cancer, inflammatory responses, and diabetes, and support wound healing. Furthermore, several polymeric materials derived from the marine, such as chitosan and alginate, are exploited as nanocarriers in drug delivery. Moreover, a variety of pure bioactive compounds have been loaded onto polymeric nanocarriers and employed to treat infectious and non-infectious diseases. The current review is focused on a thorough overview of nanoparticle synthesis and its biological applications made from their entire extracts or pure chemicals derived from marine sources.
Collapse
Affiliation(s)
- Geum-Jae Jeong
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Korea
| | - Sohail Khan
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, A-10, Sector-62, Noida 201309, Uttar Pradesh, India
| | - Nazia Tabassum
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Korea
| | - Fazlurrahman Khan
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Korea
- Correspondence: (F.K.); (Y.-M.K.); Tel.: +82-51-629-5832 (Y.-M.K.); Fax: +82-51-629-5824 (Y.-M.K.)
| | - Young-Mog Kim
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Korea
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Korea
- Correspondence: (F.K.); (Y.-M.K.); Tel.: +82-51-629-5832 (Y.-M.K.); Fax: +82-51-629-5824 (Y.-M.K.)
| |
Collapse
|
13
|
ElNaggar MH, Abdelwahab GM, Kutkat O, GabAllah M, Ali MA, El-Metwally MEA, Sayed AM, Abdelmohsen UR, Khalil AT. Aurasperone A Inhibits SARS CoV-2 In Vitro: An Integrated In Vitro and In Silico Study. Mar Drugs 2022; 20:179. [PMID: 35323478 PMCID: PMC8949533 DOI: 10.3390/md20030179] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 01/18/2023] Open
Abstract
Several natural products recovered from a marine-derived Aspergillus niger were tested for their inhibitory activity against SARS CoV-2 in vitro. Aurasperone A (3) was found to inhibit SARS CoV-2 efficiently (IC50 = 12.25 µM) with comparable activity with the positive control remdesivir (IC50 = 10.11 µM). Aurasperone A exerted minimal cytotoxicity on Vero E6 cells (CC50 = 32.36 mM, SI = 2641.5) and it was found to be much safer than remdesivir (CC50 = 415.22 µM, SI = 41.07). To putatively highlight its molecular target, aurasperone A was subjected to molecular docking against several key-viral protein targets followed by a series of molecular dynamics-based in silico experiments that suggested Mpro to be its primary viral protein target. More potent anti-SARS CoV-2 Mpro inhibitors can be developed according to our findings presented in the present investigation.
Collapse
Affiliation(s)
- Mai H. ElNaggar
- Department of Pharmacognosy, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Ghada M. Abdelwahab
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt;
- Department of Pharmacognosy, Faculty of Pharmacy, Horus University, Damietta 34518, Egypt
| | - Omnia Kutkat
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt; (O.K.); (M.G.); (M.A.A.)
| | - Mohamed GabAllah
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt; (O.K.); (M.G.); (M.A.A.)
| | - Mohamed A. Ali
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt; (O.K.); (M.G.); (M.A.A.)
| | | | - Ahmed M. Sayed
- Department of Pharmacognosy, Faculty of Pharmacy, Nahda University, Beni-Suef 62513, Egypt;
- Department of Pharmacognosy, Faculty of Pharmacy, Almaaqal University, Basra 61014, Iraq
| | - Usama Ramadan Abdelmohsen
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia 61519, Egypt;
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University, New Minia 61111, Egypt
| | - Ashraf T. Khalil
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt;
| |
Collapse
|