1
|
Mittal R, Weiss MB, Rendon A, Shafazand S, Lemos JRN, Hirani K. Harnessing Machine Learning, a Subset of Artificial Intelligence, for Early Detection and Diagnosis of Type 1 Diabetes: A Systematic Review. Int J Mol Sci 2025; 26:3935. [PMID: 40362176 PMCID: PMC12072172 DOI: 10.3390/ijms26093935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/14/2025] [Accepted: 04/17/2025] [Indexed: 05/15/2025] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune condition characterized by the destruction of insulin-producing pancreatic beta cells, leading to lifelong insulin dependence and significant complications. Early detection of T1D is essential to delay disease onset and improve outcomes. Recent advancements in artificial intelligence (AI) and machine learning (ML) have provided powerful tools for predicting and diagnosing T1D. This systematic review evaluates the current landscape of AI/ML-based approaches for early T1D detection. A comprehensive search across PubMed, EMBASE, Science Direct, and Scopus identified 1447 studies, of which 10 met the inclusion criteria for narrative synthesis after screening and full-text review. The studies utilized diverse ML models, including logistic regression, support vector machines, random forests, and artificial neural networks. The datasets encompassed clinical parameters, genetic risk markers, continuous glucose monitoring (CGM) data, and proteomic and metabolomic biomarkers. The included studies involved a total of 49,172 participants and employed case-control, retrospective cohort, and prospective cohort designs. Models integrating multimodal data achieved the highest predictive accuracy, with area under the curve (AUC) values reaching up to 0.993 in sex-specific models. CGM data and plasma biomarkers, such as CXCL10 and IL-1RA, also emerged as valuable tools for identifying at-risk individuals. While the results highlight the potential of AI/ML in revolutionizing T1D risk stratification and diagnosis, challenges remain. Data heterogeneity and limited model generalizability present barriers to widespread implementation. Future research should prioritize the development of universal frameworks and real-world validation to enhance the reliability and clinical integration of these tools. Ultimately, AI/ML technologies hold transformative potential for clinical practice by enabling earlier diagnosis, guiding targeted interventions, and improving long-term patient outcomes. These advancements could support clinicians in making more informed, timely decisions, thus reducing diagnostic delays and paving the way for personalized prevention strategies in both pediatric and adult populations.
Collapse
Affiliation(s)
- Rahul Mittal
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (M.B.W.); (A.R.); (J.R.N.L.)
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Matthew B. Weiss
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (M.B.W.); (A.R.); (J.R.N.L.)
- School of Medicine, New York Medical College, Valhalla, NY 10595, USA
| | - Alexa Rendon
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (M.B.W.); (A.R.); (J.R.N.L.)
- School of Medicine, New York Medical College, Valhalla, NY 10595, USA
| | - Shirin Shafazand
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
| | - Joana R N Lemos
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (M.B.W.); (A.R.); (J.R.N.L.)
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Khemraj Hirani
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (M.B.W.); (A.R.); (J.R.N.L.)
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
2
|
Alzaabi AA, Alzaabi FM, Al Tarawneh DJ, Al Tarawneh YJ, Khan A, Khan MAM, Siddiqui TW, Siddiqui RW, Nishat SMH, Siddiqui SW. The Impact of Stress on Autoimmune Disorders: Type 1 Diabetes Mellitus and Systemic Lupus Erythematosus. Cureus 2025; 17:e81228. [PMID: 40291227 PMCID: PMC12025346 DOI: 10.7759/cureus.81228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2025] [Indexed: 04/30/2025] Open
Abstract
Autoimmune disorders, including type 1 diabetes mellitus (T1DM) and systemic lupus erythematosus (SLE), are influenced by a combination of genetic, environmental, and immunological factors. Among these, stress, both physical and psychological, has been increasingly recognized as a significant contributor to disease onset and progression. This review explores the current literature on the relationship between stress and autoimmune diseases, focusing on the neuroendocrine pathways, such as the hypothalamic-pituitary-adrenal (HPA) axis, and the effects of glucocorticoids on immune modulation. These mechanisms contribute to clinical manifestations, such as disease flares or progression, highlighting the impact of stress on patient outcomes. Evidence suggests that psychological stress can precipitate the onset of T1DM in genetically predisposed individuals, with immune disruptions occurring before diagnosis. In SLE, both acute and chronic stress, particularly trauma-induced stress, has been linked to increased disease activity and flare-ups, largely due to stress-induced immune dysregulation that disrupts the balance between pro-inflammatory and anti-inflammatory cytokines. Despite the substantial evidence supporting the role of stress in autoimmune disease exacerbation, further research is necessary to fully understand the mechanisms by which stress influences autoimmune diseases and to develop effective stress management.
Collapse
Affiliation(s)
- Asma A Alzaabi
- Internal Medicine, RAK Medical and Health Sciences University, Ras Al Khaimah, ARE
| | - Fatema M Alzaabi
- Internal Medicine, RAK Medical and Health Sciences University, Ras Al Khaimah, ARE
| | - Dana J Al Tarawneh
- Internal Medicine, RAK Medical and Health Sciences University, Ras Al Khaimah, ARE
| | - Yusuf J Al Tarawneh
- Internal Medicine, RAK Medical and Health Sciences University, Ras Al Khaimah, ARE
| | - Abdallah Khan
- Internal Medicine, RAK Medical and Health Sciences University, Ras Al Khaimah, ARE
| | | | - Tabish W Siddiqui
- Internal Medicine, RAK Medical and Health Sciences University, Ras Al Khaimah, ARE
| | - Raqshan W Siddiqui
- Internal Medicine, RAK Medical and Health Sciences University, Ras Al Khaimah, ARE
| | | | | |
Collapse
|
3
|
Yu Y, Yang X, Deng J, Wu J, Bai S, Yu R. How do immune cells shape type 1 diabetes? Insights from Mendelian randomization. Front Endocrinol (Lausanne) 2024; 15:1402956. [PMID: 39777226 PMCID: PMC11703746 DOI: 10.3389/fendo.2024.1402956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 11/30/2024] [Indexed: 01/11/2025] Open
Abstract
Objective The role of immune cells in type 1 diabetes (T1D) is unclear. The aim of this study was to assess the causal effect of different immune cells on T1D using Mendelian randomization (MR). Methods A dataset of immune cell phenotypes (numbered from GCST0001391 to GCST0002121) was obtained from the European Bioinformatics Institute, while a T1D dataset (numbered finngen_R10_T1D) was obtained from FinnGen. Single nucleotide polymorphisms meeting the conditions were screened stepwise according to the assumptions of association, independence, and exclusivity. Inverse variance weighted was used as the main method for the MR analysis. MR-Egger was used to assess the horizontal pleiotropy of the results. Cochran's Q and the leave-one-out method were respectively used for the heterogeneity analysis and the sensitivity analysis of the results. Results MR analysis showed that effector memory (EM) double-negative (DN) (CD4-CD8-) %T cells [odds ratio (OR) = 1.157, 95% confidence interval (95% CI) = 1.016-1.318, p = 0.028, false discovery rate (FDR) = 0.899], EM CD8br %T cells (OR = 1.049, 95% CI = 1.003-1.098, p = 0.037, FDR = 0.902), CD28 on CD28+CD45RA+CD8br (OR = 1.334, 95% CI = 1.132-1.571, p = 0.001, FDR = 0.044), IgD+CD38dim %lymphocytes (OR = 1.045, 95% CI = 1.002-1.089, p = 0.039, FDR = 0.902), CD80 on monocytes (OR = 1.084, 95% CI = 1.013-1.161, p = 0.020, FDR = 0.834), SSC-A on plasmacytoid dendritic cells (pDCs) (OR = 1.174, 95% CI = 1.004-1.372, p = 0.044, FDR = 0.902), and FSC-A on pDCs (OR = 1.182, 95% CI = 1.011-1.382, p = 0.036, FDR = 0.902) were associated with an increased genetic susceptibility to T1D. Cochran's Q showed that there was heterogeneity for CD28 on the CD28+CD45RA+CD8br results (p = 0.043), whereas there was no heterogeneity for the other results (p ≥ 0.05). The sensitivity analysis showed that the MR analysis results were robust. Conclusion The MR analysis demonstrated that seven immune cell phenotypes were associated with an increased genetic susceptibility to T1D. These findings provide a new direction for the pathogenesis of and the drug development for T1D.
Collapse
Affiliation(s)
- Yunfeng Yu
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Department of Endocrinology, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Xinyu Yang
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Juan Deng
- Department of Endocrinology, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jingyi Wu
- The Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Siyang Bai
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Rong Yu
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Department of Endocrinology, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
4
|
Dabravolski SA, Churov AV, Starodubtseva IA, Beloyartsev DF, Kovyanova TI, Sukhorukov VN, Orekhov NA. Vitamin D in Primary Sjogren's Syndrome (pSS) and the Identification of Novel Single-Nucleotide Polymorphisms Involved in the Development of pSS-Associated Diseases. Diagnostics (Basel) 2024; 14:2035. [PMID: 39335717 PMCID: PMC11431467 DOI: 10.3390/diagnostics14182035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/03/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Sjögren's syndrome (SS) is a chronic autoimmune disorder characterised by lymphocytic infiltration of the exocrine glands, which leads to dryness of the eyes and mouth; systemic manifestations such as arthritis, vasculitis, and interstitial lung disease; and increased risks of lymphoma and cardiovascular diseases. SS predominantly affects women, with a strong genetic component linked to sex chromosomes. Genome-wide association studies (GWASs) have identified numerous single-nucleotide polymorphisms (SNPs) associated with primary SS (pSS), revealing insights into its pathogenesis. The adaptive and innate immune systems are crucial to SS's development, with viral infections implicated as environmental triggers that exacerbate autoimmune responses in genetically susceptible individuals. Moreover, recent research has highlighted the role of vitamin D in modulating immune responses in pSS patients, suggesting its potential therapeutic implications. In this review, we focus on the recently identified SNPs in genes like OAS1, NUDT15, LINC00243, TNXB, and THBS1, which have been associated with increased risks of developing more severe symptoms and other diseases such as fatigue, lymphoma, neuromyelitis optica spectrum disorder (NMOSD), dry eye syndrome (DES), and adverse drug reactions. Future studies should focus on larger, multi-ethnic cohorts with standardised protocols to validate findings and identify new associations. Integrating genetic testing into clinical practise holds promise for improving SS management and treatment strategies, enabling personalised interventions based on comprehensive genetic profiles. By focusing on specific SNPs, vitamin D, and their implications, future research can lead to more effective and personalised approaches for managing pSS and its complications.
Collapse
Affiliation(s)
- Siarhei A. Dabravolski
- Department of Biotechnology Engineering, Braude Academic College of Engineering, Snunit 51, Karmiel 2161002, Israel
| | - Alexey V. Churov
- Institute of General Pathology and Pathophysiology, 8 Baltiyskaya Street, 125315 Moscow, Russia; (A.V.C.); (T.I.K.); (V.N.S.); (N.A.O.)
- Institute on Aging Research, Russian Gerontology Clinical Research Center, Pirogov Russian National Research Medical University, 16 1st Leonova Street, 129226 Moscow, Russia
| | - Irina A. Starodubtseva
- Department of Polyclinic Therapy, NN Burdenko Voronezh State Medical University, 10 Studencheskaya Street, 394036 Voronezh, Russia;
| | - Dmitry F. Beloyartsev
- Vascular Surgery Department, A. V. Vishnevsky National Medical Research Center of Surgery, 27 Bolshaya Serpukhovskaya Street, 117997 Moscow, Russia;
| | - Tatiana I. Kovyanova
- Institute of General Pathology and Pathophysiology, 8 Baltiyskaya Street, 125315 Moscow, Russia; (A.V.C.); (T.I.K.); (V.N.S.); (N.A.O.)
- Institute for Atherosclerosis Research, Osennyaya Street 4-1-207, 121609 Moscow, Russia
| | - Vasily N. Sukhorukov
- Institute of General Pathology and Pathophysiology, 8 Baltiyskaya Street, 125315 Moscow, Russia; (A.V.C.); (T.I.K.); (V.N.S.); (N.A.O.)
| | - Nikolay A. Orekhov
- Institute of General Pathology and Pathophysiology, 8 Baltiyskaya Street, 125315 Moscow, Russia; (A.V.C.); (T.I.K.); (V.N.S.); (N.A.O.)
| |
Collapse
|
5
|
Kokori E, Olatunji G, Ogieuhi IJ, Aboje JE, Olatunji D, Aremu SA, Igwe SC, Moradeyo A, Ajayi YI, Aderinto N. Teplizumab's immunomodulatory effects on pancreatic β-cell function in type 1 diabetes mellitus. Clin Diabetes Endocrinol 2024; 10:23. [PMID: 39123252 PMCID: PMC11316332 DOI: 10.1186/s40842-024-00181-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/09/2024] [Indexed: 08/12/2024] Open
Abstract
This review explores the immunomodulatory potential of Teplizumab and its impact on pancreatic β-cell function in T1D. Characterized by the autoimmune destruction of insulin-producing beta cells, T1D's management involves maintaining glycemic control through exogenous insulin. Teplizumab, a humanized monoclonal antibody targeting the CD3 antigen, has shown promise in delaying T1D onset and preserving residual β-cell function. The review employs a narrative approach, synthesizing evidence from diverse clinical trials and studies gathered through a meticulous literature search. It scrutinizes Teplizumab's mechanisms of action, including its influence on autoreactive CD8 + T cells and regulatory T cells, offering insights into its immunological pathways. The synthesis of findings from various trials demonstrates Teplizumab's efficacy in preserving C-peptide levels and reducing exogenous insulin requirements, particularly in recent-onset T1D. Considering Teplizumab's real-world implications, the paper addresses potential obstacles, including side effects, patient selection criteria, and logistical challenges. It also emphasizes exploring combination therapies and personalized treatment strategies to maximize Teplizumab's benefits. The review contributes a nuanced perspective on Teplizumab's clinical implications and future directions in T1D management, bridging theoretical understanding with practical considerations.
Collapse
Affiliation(s)
- Emmanuel Kokori
- Department of Medicine and Surgery, University of Ilorin, Ilorin, Nigeria
| | - Gbolahan Olatunji
- Department of Medicine and Surgery, University of Ilorin, Ilorin, Nigeria
| | | | - John Ehi Aboje
- Department of Medicine, College of Health Sciences, Benue State University, Benue, Nigeria
| | - Doyin Olatunji
- Department of Health Sciences, Western Illinois University, Macomb, USA
| | | | | | - Abdulrahmon Moradeyo
- Department of Medicine and Surgery, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - Yusuf Ismaila Ajayi
- Department of Medicine and Surgery, Obafemi Awolowo University, Ife, Nigeria
| | - Nicholas Aderinto
- Department of Medicine and Surgery, Ladoke Akintola University of Technology, Ogbomoso, Nigeria.
| |
Collapse
|
6
|
Arhire AI, Ioacara S, Papuc T, Chiper MS, Dutescu IM, Moise A, Badea IR, Florea S, Vlad A, Fica S. Association of HLA Haplotypes with Autoimmune Pathogenesis in Newly Diagnosed Type 1 Romanian Diabetic Children: A Pilot, Single-Center Cross-Sectional Study. Life (Basel) 2024; 14:781. [PMID: 38929763 PMCID: PMC11205248 DOI: 10.3390/life14060781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/16/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND The increasing incidence of autoimmune diseases in type 1 diabetes mellitus (T1DM) patients highlights the influence of human leukocyte antigen (HLA) haplotypes on their development. This study aims to determine genetic predisposition to autoimmune diseases in T1DM patients, including thyroid disease and celiac diseases, and explore its correlation with vitamin D deficiency. METHODS A cross-sectional study involving thirty-six T1DM children was conducted. Typing was performed for the HLA A, B, C, DP, DR, and DQ loci. Regression analysis linked DR-DQ haplotypes to T1DM and the associated conditions. RESULTS The most frequent predisposing alleles and haplotypes were HLA-DR3 (70.27%), DQ2 (70.27%), DR3-DQ2 (70.27%), DQB1*02:01 (70.27%), A02 (54.05%), whereas the most prevalent protecting allele was DPB1*04:01 (52.63%). Positive correlations were observed between positive anti-thyroid peroxidase antibodies and the absence of protective alleles (DPB1*04:02, p = 0.036; DPB1*04:01, p = 0.002). Associations were found between the absence of DPB1*04:01 and anti-thyroglobulin antibodies (p = 0.03). HLA allele DPB1*03:01 was linked with vitamin D deficiency (p = 0.021). Positive anti-transglutaminase antibodies correlated with C03:03 (p = 0.026) and DRB1*04:01-DQA1*03-DQB1*03:01 (p < 0.0001) and the lack of DQA1*01:03-DQB1*06:03-DRB1*13:01 (p < 0.0001). CONCLUSIONS The predisposing T1DM haplotypes were associated with the presence of anti-transglutaminase and anti-thyroid antibodies, indicating a genetic predisposition to autoimmune diseases.
Collapse
Affiliation(s)
- Amalia Ioana Arhire
- General Medicine Faculty, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (A.I.A.); (A.V.); (S.F.)
- Department of Pediatric Endocrinology and Diabetes, Elias Emergency University Hospital, 011461 Bucharest, Romania; (T.P.); (M.S.C.)
| | - Sorin Ioacara
- General Medicine Faculty, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (A.I.A.); (A.V.); (S.F.)
- Department of Pediatric Endocrinology and Diabetes, Elias Emergency University Hospital, 011461 Bucharest, Romania; (T.P.); (M.S.C.)
| | - Teodora Papuc
- Department of Pediatric Endocrinology and Diabetes, Elias Emergency University Hospital, 011461 Bucharest, Romania; (T.P.); (M.S.C.)
| | - Miruna Sânziana Chiper
- Department of Pediatric Endocrinology and Diabetes, Elias Emergency University Hospital, 011461 Bucharest, Romania; (T.P.); (M.S.C.)
| | - Irina Monica Dutescu
- HLA Laboratory, “C.T. Nicolau” National Institute of Blood Transfusion, 011154 Bucharest, Romania; (I.M.D.); (A.M.); (I.R.B.)
| | - Ana Moise
- HLA Laboratory, “C.T. Nicolau” National Institute of Blood Transfusion, 011154 Bucharest, Romania; (I.M.D.); (A.M.); (I.R.B.)
| | - Ioana Roxana Badea
- HLA Laboratory, “C.T. Nicolau” National Institute of Blood Transfusion, 011154 Bucharest, Romania; (I.M.D.); (A.M.); (I.R.B.)
| | - Suzana Florea
- Immunology Laboratory, Elias Emergency University Hospital, 011461 Bucharest, Romania;
| | - Adelina Vlad
- General Medicine Faculty, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (A.I.A.); (A.V.); (S.F.)
| | - Simona Fica
- General Medicine Faculty, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (A.I.A.); (A.V.); (S.F.)
- Department of Pediatric Endocrinology and Diabetes, Elias Emergency University Hospital, 011461 Bucharest, Romania; (T.P.); (M.S.C.)
| |
Collapse
|
7
|
Minniakhmetov I, Yalaev B, Khusainova R, Bondarenko E, Melnichenko G, Dedov I, Mokrysheva N. Genetic and Epigenetic Aspects of Type 1 Diabetes Mellitus: Modern View on the Problem. Biomedicines 2024; 12:399. [PMID: 38398001 PMCID: PMC10886892 DOI: 10.3390/biomedicines12020399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Omics technologies accumulated an enormous amount of data that advanced knowledge about the molecular pathogenesis of type 1 diabetes mellitus and identified a number of fundamental problems focused on the transition to personalized diabetology in the future. Among them, the most significant are the following: (1) clinical and genetic heterogeneity of type 1 diabetes mellitus; (2) the prognostic significance of DNA markers beyond the HLA genes; (3) assessment of the contribution of a large number of DNA markers to the polygenic risk of disease progress; (4) the existence of ethnic population differences in the distribution of frequencies of risk alleles and genotypes; (5) the infancy of epigenetic research into type 1 diabetes mellitus. Disclosure of these issues is one of the priorities of fundamental diabetology and practical healthcare. The purpose of this review is the systemization of the results of modern molecular genetic, transcriptomic, and epigenetic investigations of type 1 diabetes mellitus in general, as well as its individual forms. The paper summarizes data on the role of risk HLA haplotypes and a number of other candidate genes and loci, identified through genome-wide association studies, in the development of this disease and in alterations in T cell signaling. In addition, this review assesses the contribution of differential DNA methylation and the role of microRNAs in the formation of the molecular pathogenesis of type 1 diabetes mellitus, as well as discusses the most currently central trends in the context of early diagnosis of type 1 diabetes mellitus.
Collapse
Affiliation(s)
- Ildar Minniakhmetov
- Endocrinology Research Centre, Dmitry Ulyanov Street, 11, 117292 Moscow, Russia; (R.K.); (E.B.); (G.M.); (I.D.); (N.M.)
| | - Bulat Yalaev
- Endocrinology Research Centre, Dmitry Ulyanov Street, 11, 117292 Moscow, Russia; (R.K.); (E.B.); (G.M.); (I.D.); (N.M.)
| | | | | | | | | | | |
Collapse
|
8
|
Wit M, Belykh A, Sumara G. Protein kinase D (PKD) on the crossroad of lipid absorption, synthesis and utilization. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119653. [PMID: 38104800 DOI: 10.1016/j.bbamcr.2023.119653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 10/19/2023] [Accepted: 11/30/2023] [Indexed: 12/19/2023]
Abstract
Inappropriate lipid levels in the blood, as well as its content and composition in different organs, underlie multiple metabolic disorders including obesity, non-alcoholic fatty liver disease, type 2 diabetes, and atherosclerosis. Multiple processes contribute to the complex metabolism of triglycerides (TGs), fatty acids (FAs), and other lipid species. These consist of digestion and absorption of dietary lipids, de novo FAs synthesis (lipogenesis), uptake of TGs and FAs by peripheral tissues, TGs storage in the intracellular depots as well as lipid utilization for β-oxidation and their conversion to lipid-derivatives. A majority of the enzymatic reactions linked to lipogenesis, TGs synthesis, lipid absorption, and transport are happening at the endoplasmic reticulum, while β-oxidation takes place in mitochondria and peroxisomes. The Golgi apparatus is a central sorting, protein- and lipid-modifying organelle and hence is involved in lipid metabolism as well. However, the impact of the processes taking part in the Golgi apparatus are often overseen. The protein kinase D (PKD) family (composed of three members, PKD1, 2, and 3) is the master regulator of Golgi dynamics. PKDs are also a sensor of different lipid species in distinct cellular compartments. In this review, we discuss the roles of PKD family members in the regulation of lipid metabolism including the processes executed by PKDs at the Golgi apparatus. We also discuss the role of PKDs-dependent signaling in different cellular compartments and organs in the context of the development of metabolic disorders.
Collapse
Affiliation(s)
- Magdalena Wit
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warszawa, Poland
| | - Andrei Belykh
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warszawa, Poland
| | - Grzegorz Sumara
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warszawa, Poland.
| |
Collapse
|
9
|
Thakkar S, Chopra A, Nagendra L, Kalra S, Bhattacharya S. Teplizumab in Type 1 Diabetes Mellitus: An Updated Review. TOUCHREVIEWS IN ENDOCRINOLOGY 2023; 19:22-30. [PMID: 38187075 PMCID: PMC10769466 DOI: 10.17925/ee.2023.19.2.7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/01/2023] [Indexed: 01/09/2024]
Abstract
Type 1 diabetes mellitus (T1DM) is a chronic autoimmune condition characterized by the irreversible destruction of the β cells of the pancreas, which leads to a lifelong dependency on exogenous insulin. Despite the advancements in insulin delivery methods, the suboptimal outcomes of these methods have triggered the search for therapies that may prevent or reverse the disease. Given the autoimmune aetiology of T1DM, therapies counteracting the immune-mediated destruction of the β-cells are the obvious target. Although several treatment strategies have been attempted to target cellular, humoral and innate immunity, very few have had a clinically meaningful impact. Of all the available immunomodulatory agents, cluster of differentiation (CD) 3 antibodies have exhibited the most promising preclinical and clinical results. Muromonab-CD3, which also happened to be a murine CD3 antibody, was the first monoclonal antibody approved for clinical use and was primarily indicated for graft rejection. The adverse effects associated with muromonab-CD3 led to its withdrawal. Teplizumab, a newer CD3 antibody, has a better side-effect profile because of its humanized nature and non-Fc-receptor-binding domain. In November 2022, teplizumab became the first immunomodulatory agent to be licensed by the US Food and Drug Administration for delaying the onset of T1DM in high-risk adults and children over 8 years old. The mechanism seems to be enhancing regulatory T-cell activity and promoting immune tolerance. This article reviews the mechanism of action and the clinical trials of teplizumab in individuals with T1DM or at risk of developing the disease.
Collapse
Affiliation(s)
- Simran Thakkar
- Department of Endocrinology, Indraprastha Apollo Hospitals, New Delhi, India
| | - Aditi Chopra
- Department of Endocrinology, Manipal Hospital, Bengaluru, India
| | | | - Sanjay Kalra
- Department of Endocrinology, Bharti Hospital, Karnal, Haryana, India
| | | |
Collapse
|
10
|
Raugh A, Allard D, Bettini M. Nature vs. nurture: FOXP3, genetics, and tissue environment shape Treg function. Front Immunol 2022; 13:911151. [PMID: 36032083 PMCID: PMC9411801 DOI: 10.3389/fimmu.2022.911151] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 07/11/2022] [Indexed: 12/11/2022] Open
Abstract
The importance of regulatory T cells (Tregs) in preventing autoimmunity has been well established; however, the precise alterations in Treg function in autoimmune individuals and how underlying genetic associations impact the development and function of Tregs is still not well understood. Polygenetic susceptibly is a key driving factor in the development of autoimmunity, and many of the pathways implicated in genetic association studies point to a potential alteration or defect in regulatory T cell function. In this review transcriptomic control of Treg development and function is highlighted with a focus on how these pathways are altered during autoimmunity. In combination, observations from autoimmune mouse models and human patients now provide insights into epigenetic control of Treg function and stability. How tissue microenvironment influences Treg function, lineage stability, and functional plasticity is also explored. In conclusion, the current efficacy and future direction of Treg-based therapies for Type 1 Diabetes and other autoimmune diseases is discussed. In total, this review examines Treg function with focuses on genetic, epigenetic, and environmental mechanisms and how Treg functions are altered within the context of autoimmunity.
Collapse
Affiliation(s)
- Arielle Raugh
- Department of Pathology, Microbiology and Immunology, University of Utah, Salt Lake City, UT, United States
- Translational Biology and Molecular Medicine Graduate Program, Baylor College of Medicine, Houston, TX, United States
| | - Denise Allard
- Department of Pathology, Microbiology and Immunology, University of Utah, Salt Lake City, UT, United States
| | - Maria Bettini
- Department of Pathology, Microbiology and Immunology, University of Utah, Salt Lake City, UT, United States
- *Correspondence: Maria Bettini,
| |
Collapse
|
11
|
Chatenoud L, Marquet C, Valette F, Scott L, Quan J, Bu CH, Hildebrand S, Moresco EMY, Bach JF, Beutler B. Modulation of autoimmune diabetes by N-ethyl-N-nitrosourea- induced mutations in non-obese diabetic mice. Dis Model Mech 2022; 15:275575. [PMID: 35502705 PMCID: PMC9178510 DOI: 10.1242/dmm.049484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/21/2022] [Indexed: 11/20/2022] Open
Abstract
Genetic association studies of type 1 diabetes (T1D) in humans, and in congenic non-obese diabetic (NOD) mice harboring DNA segments from T1D-resistant mice, face the challenge of assigning causation to specific gene variants among many within loci that affect disease risk. Here, we created random germline mutations in NOD/NckH mice and used automated meiotic mapping to identify mutations modifying T1D incidence and age of onset. In contrast with association studies in humans or congenic NOD mice, we analyzed a relatively small number of genetic changes in each pedigree, permitting implication of specific mutations as causative. Among 844 mice from 14 pedigrees bearing 594 coding/splicing changes, we identified seven mutations that accelerated T1D development, and five that delayed or suppressed T1D. Eleven mutations affected genes not previously known to influence T1D (Xpnpep1, Herc1, Srrm2, Rapgef1, Ppl, Zfp583, Aldh1l1, Col6a1, Ccdc13, Cd200r1, Atrnl1). A suppressor mutation in Coro1a validated the screen. Mutagenesis coupled with automated meiotic mapping can detect genes in which allelic variation influences T1D susceptibility in NOD mice. Variation of some of the orthologous/paralogous genes may influence T1D susceptibility in humans.
Collapse
Affiliation(s)
- Lucienne Chatenoud
- Université Paris Cité, Institut Necker Enfants Malades, F-75015 Paris, France.,INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, F-75015 Paris, France
| | - Cindy Marquet
- Université Paris Cité, Institut Necker Enfants Malades, F-75015 Paris, France.,INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, F-75015 Paris, France
| | - Fabrice Valette
- Université Paris Cité, Institut Necker Enfants Malades, F-75015 Paris, France.,INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, F-75015 Paris, France
| | - Lindsay Scott
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jiexia Quan
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Chun Hui Bu
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sara Hildebrand
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Eva Marie Y Moresco
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jean-François Bach
- Université Paris Cité, Institut Necker Enfants Malades, F-75015 Paris, France.,INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, F-75015 Paris, France
| | - Bruce Beutler
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
12
|
Prediction of Drug Targets for Specific Diseases Leveraging Gene Perturbation Data: A Machine Learning Approach. Pharmaceutics 2022; 14:pharmaceutics14020234. [PMID: 35213968 PMCID: PMC8878225 DOI: 10.3390/pharmaceutics14020234] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/08/2022] [Accepted: 01/14/2022] [Indexed: 12/15/2022] Open
Abstract
Identification of the correct targets is a key element for successful drug development. However, there are limited approaches for predicting drug targets for specific diseases using omics data, and few have leveraged expression profiles from gene perturbations. We present a novel computational approach for drug target discovery based on machine learning (ML) models. ML models are first trained on drug-induced expression profiles with outcomes defined as whether the drug treats the studied disease. The goal is to “learn” the expression patterns associated with treatment. Then, the fitted ML models were applied to expression profiles from gene perturbations (overexpression (OE)/knockdown (KD)). We prioritized targets based on predicted probabilities from the ML model, which reflects treatment potential. The methodology was applied to predict targets for hypertension, diabetes mellitus (DM), rheumatoid arthritis (RA), and schizophrenia (SCZ). We validated our approach by evaluating whether the identified targets may ‘re-discover’ known drug targets from an external database (OpenTargets). Indeed, we found evidence of significant enrichment across all diseases under study. A further literature search revealed that many candidates were supported by previous studies. For example, we predicted PSMB8 inhibition to be associated with the treatment of RA, which was supported by a study showing that PSMB8 inhibitors (PR-957) ameliorated experimental RA in mice. In conclusion, we propose a new ML approach to integrate the expression profiles from drugs and gene perturbations and validated the framework. Our approach is flexible and may provide an independent source of information when prioritizing drug targets.
Collapse
|
13
|
Gokuladhas S, Zaied RE, Schierding W, Farrow S, Fadason T, O'Sullivan JM. Integrating Multimorbidity into a Whole-Body Understanding of Disease Using Spatial Genomics. Results Probl Cell Differ 2022; 70:157-187. [PMID: 36348107 DOI: 10.1007/978-3-031-06573-6_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Multimorbidity is characterized by multidimensional complexity emerging from interactions between multiple diseases across levels of biological (including genetic) and environmental determinants and the complex array of interactions between and within cells, tissues and organ systems. Advances in spatial genomic research have led to an unprecedented expansion in our ability to link alterations in genome folding with changes that are associated with human disease. Studying disease-associated genetic variants in the context of the spatial genome has enabled the discovery of transcriptional regulatory programmes that potentially link dysregulated genes to disease development. However, the approaches that have been used have typically been applied to uncover pathological molecular mechanisms occurring in a specific disease-relevant tissue. These forms of reductionist, targeted investigations are not appropriate for the molecular dissection of multimorbidity that typically involves contributions from multiple tissues. In this perspective, we emphasize the importance of a whole-body understanding of multimorbidity and discuss how spatial genomics, when integrated with additional omic datasets, could provide novel insights into the molecular underpinnings of multimorbidity.
Collapse
Affiliation(s)
| | - Roan E Zaied
- Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - William Schierding
- Liggins Institute, The University of Auckland, Auckland, New Zealand
- The Maurice Wilkins Centre, The University of Auckland, Auckland, New Zealand
| | - Sophie Farrow
- Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - Tayaza Fadason
- Liggins Institute, The University of Auckland, Auckland, New Zealand
- The Maurice Wilkins Centre, The University of Auckland, Auckland, New Zealand
| | - Justin M O'Sullivan
- Liggins Institute, The University of Auckland, Auckland, New Zealand.
- The Maurice Wilkins Centre, The University of Auckland, Auckland, New Zealand.
- Australian Parkinson's Mission, Garvan Institute of Medical Research, Sydney, NSW, Australia.
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK.
| |
Collapse
|
14
|
Gauthier BR, Cobo-Vuilleumier N, López-Noriega L. Roles of extracellular vesicles associated non-coding RNAs in Diabetes Mellitus. Front Endocrinol (Lausanne) 2022; 13:1057407. [PMID: 36619588 PMCID: PMC9814720 DOI: 10.3389/fendo.2022.1057407] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
Extracellular vesicles (EVs), especially exosomes (50 to 150 nm), have been shown to play important roles in a wide range of physiological and pathological processes, including metabolic diseases such as Diabetes Mellitus (DM). In the last decade, several studies have demonstrated how EVs are involved in cell-to-cell communication. EVs are enriched in proteins, mRNAs and non-coding RNAs (miRNAs, long non-coding RNAs and circRNAS, among others) which are transferred to recipient cells and may have a profound impact in either their survival or functionality. Several studies have pointed out the contribution of exosomal miRNAs, such as miR-l42-3p and miR-26, in the development of Type 1 and Type 2 DM (T1DM and T2DM), respectively. In addition, some miRNA families such as miR-let7 and miR-29 found in exosomes have been associated with both types of diabetes, suggesting that they share common etiological features. The knowledge about the role of exosomal long non-coding RNAs in this group of diseases is more immature, but the exosomal lncRNA MALAT1 has been found to be elevated in the plasma of individuals with T2DM, while more than 169 lncRNAs were reported to be differentially expressed between healthy donors and people with T1DM. Here, we review the current knowledge about exosomal non-coding RNAs in DM and discuss their potential as novel biomarkers and possible therapeutic targets.
Collapse
Affiliation(s)
- Benoit R. Gauthier
- Andalusian Center for Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-Consejo Superior de Investigaciones Científicas (CSIC), Seville, Spain
- Centro de Investigacion Biomedica en Red de Diabetes y Enfermedades Metabolicas Asociadas (CIBERDEM), Madrid, Spain
- *Correspondence: Benoit R. Gauthier, ; Livia López-Noriega,
| | - Nadia Cobo-Vuilleumier
- Andalusian Center for Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-Consejo Superior de Investigaciones Científicas (CSIC), Seville, Spain
| | - Livia López-Noriega
- Andalusian Center for Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-Consejo Superior de Investigaciones Científicas (CSIC), Seville, Spain
- *Correspondence: Benoit R. Gauthier, ; Livia López-Noriega,
| |
Collapse
|