1
|
Feng Z, Lorenc N, O'Brien B, Sun G, Li Z, Jung D, Ronholm J. Deep culturing the fecal microbiota of healthy laying hens. Anim Microbiome 2025; 7:32. [PMID: 40148927 PMCID: PMC11951684 DOI: 10.1186/s42523-025-00395-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 03/08/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND The microbiota is implicated in several aspects of livestock health and disease. Understanding the structure and function of the poultry microbiota would be a valuable tool for improving their health and productivity since the microbiota can likely be optimized for metrics that are important to the industry such as improved feed conversion ratio, lower greenhouse gas emissions, and higher levels of competitive exclusion against pathogens. Most research into understanding the poultry microbiota has relied on culture-independent methods; however, the pure culture of bacteria is essential to elucidating the roles of individual bacteria in the microbiota and developing novel probiotic products for poultry production. RESULTS In this study, we have used a deep culturing approach consisting of 76 culture conditions to generate a culture collection of 1,240 bacterial isolates from healthy chickens. We then compared the taxonomy of cultured isolates to the taxonomic results of metagenomic sequencing to estimate what proportion of the microbiota was cultured. Metagenomic sequencing detected DNA from 545 bacterial species while deep culturing was able to produce isolates for 128 bacterial species. Some bacterial families, such as Comamonadaceae and Neisseriaceae were only detected via culturing - indicating that metagenomic analysis may not provide a complete taxonomic census of the microbiota. To further examine sub-species diversity in the poultry bacteriome, we whole genome sequenced 114 Escherichia coli isolates from 6 fecal samples and observed a great deal of diversity. CONCLUSIONS Deep culturing and metagenomic sequencing approaches to examine the diversity of the microbiota within an individual will yield different results. In this project we generated a culture collection of enteric bacteria from healthy laying hens that can be used to further understand the role of specific commensals within the broader microbiota context and have made this collection available to the community. Isolates from this collection can be requested by contacting the corresponding author and will be provided at cost.
Collapse
Affiliation(s)
- Zhixuan Feng
- Faculty of Agricultural and Environmental Sciences, Macdonald Campus, Mcgill University, Montreal, QC, Canada
| | - Natalia Lorenc
- Faculty of Agricultural and Environmental Sciences, Macdonald Campus, Mcgill University, Montreal, QC, Canada
| | - Bridget O'Brien
- Faculty of Agricultural and Environmental Sciences, Macdonald Campus, Mcgill University, Montreal, QC, Canada
| | - Guangwen Sun
- Faculty of Agricultural and Environmental Sciences, Macdonald Campus, Mcgill University, Montreal, QC, Canada
| | - Zhiwei Li
- Faculty of Agricultural and Environmental Sciences, Macdonald Campus, Mcgill University, Montreal, QC, Canada
| | - Dongyun Jung
- Faculty of Agricultural and Environmental Sciences, Macdonald Campus, Mcgill University, Montreal, QC, Canada
| | - Jennifer Ronholm
- Faculty of Agricultural and Environmental Sciences, Macdonald Campus, Mcgill University, Montreal, QC, Canada.
| |
Collapse
|
2
|
Liu Y, Wang Z, Xi W, Yuan J, Zhang K, Liu H, Zhao J, Wang Y. Lactiplantibacillus plantarum improves the growth performance and meat quality of broilers by regulating the cecal microbiota and metabolites. Front Microbiol 2025; 16:1519552. [PMID: 39935642 PMCID: PMC11811115 DOI: 10.3389/fmicb.2025.1519552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 01/14/2025] [Indexed: 02/13/2025] Open
Abstract
Gut microbiota can digest and ferment feed into metabolites to influence the meat quality. Probiotics are used to regulate the gut microbiota. In this study, a total of 360 broilers were assigned to 4 treatments (10 broilers per cage): control (Con), low dose of Lactiplantibacillus plantarum HW1 (Lp_L), medium dose of Lp (Lp_M) and high dose of Lp (Lp_H) for a 42-day experimental period. Results showed that the Lp treatments improved the growth performance, carcass traits, breast meat quality, and also influenced the fatty acids composition, including the decrease of n-6PUFA/n-3PUFA, and the increase of C18:3n3, ∑n-3PUFA and PUFA/SFA. The lipid metabolism-related gene expressions in the liver showed that Lp treatments increased the expression of AMPK, CPT-1α, PPARα, ATGL and also decreased the expression of PPARγ, SREBP-1c, ACC, FAS, LPL, and SCD. Moreover, the abundances of gut microbiota, such as Synergistaceae and Synergistes were influenced by the Lp treatments. Functional prediction of the gut microbiota indicated that pathways, including pancreatic secretion and spliceosome were enriched by the Lp treatments. Untargeted metabolomics revealed that the Lp treatments altered the content of metabolites, such as 6-ketomyristic acid and indole-3-acetamide. These metabolites were enriched in pathways including fatty acid metabolism. Correlation analyses revealed potential interactions between growth performance and meat quality, as well as gut microbiota (Synergistes, etc.) and metabolites (6-ketomyristic acid, etc.). Overall, our data show that the Lp treatments significantly improved the growth performance, carcass traits and meat quality of broilers by regulating fatty acids, gut microbiota and metabolites.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yang Wang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
3
|
Rubio LA. Intestinal microbiota composition in broilers fed protein-free or casein-based diets. Poult Sci 2024; 103:104365. [PMID: 39413701 PMCID: PMC11530906 DOI: 10.1016/j.psj.2024.104365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/18/2024] Open
Abstract
Growing broiler chickens of the Cobb500 strain were used to determine the effects on intestinal microbiota composition of a protein-free (PF) diet as compared to a diet based in casein (CAS) as the only protein source. CAS was formulated to contain the same amount of protein (190 g kg-1) as a commercial Maize-soy diet which was used as a practical reference. The ileal AA flow (g kg-1 dry matter intake) was significantly higher (P < 0.001) than PF in birds fed protein containing diets (CAS or Maize-soy). Taken as a whole (discriminant and ANOSIM analysis), the intestinal (ileal and caecal contents and ileal tissue) microbiota composition of PF and CAS were significantly (P < 0.001) different from Maize-soy and not different from each other in some cases. RT-qPCR and sequencing analysis of the ileal and caecal microbiota revealed significant (P < 0.05) differences in a number of bacterial groups between broilers fed PF, CAS or Maize-soy diets. The main result was that the lack of protein in the intestinal medium of PF birds resulted in a drop of Lactobacillus spp. counts (on average, 43 in PF vs 1,734 in the Maize-soy diet) and increased Enterobacteriaceae (on average, 419 in PF vs 172 in the Maize-soy diet) and other potentially pathogenic bacterial groups (in both intestinal contents and tissue). Thus, the lack of protein in the intestinal medium of PF birds resulted in a microbiota composition compatible with a pro-inflammatory state, and this effect was somewhat less marked in birds fed CAS. The results reported here suggest that the adverse effects on microbiota composition in broilers fed CAS were less marked than in those fed PF, which would be in line with a preferential use of a highly digestible protein containing diet to determine endogenous AA excretion instead of a PF diet.
Collapse
Affiliation(s)
- Luis A Rubio
- Department of Animal Nutrition and Sustainable Production, Estación Experimental del Zaidín, 18008 Granada, Spain.
| |
Collapse
|
4
|
Huang Q, Chen R, Wu W, Fan J, Ma X, Chen Z, Ye W, Qian L. Effects of various supplemental levels of multi-enzyme complex on amino acid profiles in egg yolk, antioxidant capacity, cecal microbial community and metabolites of laying hens. Front Microbiol 2024; 15:1466024. [PMID: 39669781 PMCID: PMC11634838 DOI: 10.3389/fmicb.2024.1466024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 11/18/2024] [Indexed: 12/14/2024] Open
Abstract
This study aimed to investigate the effects of multi-enzyme (alkaline protease, xylanase, glucanase, β-mannanase, cellulase, acid protease, glucoamylase, and α-galactosidase) on antioxidant capacity, egg quality, amino acid profiles in yolk, cecal microflora and metabolites in laying hens. A total of 384 Jingfen No.6 laying hens aged 65 weeks were randomly divided into 4 treatments groups (6 replicates per group) and fed diets containing 0, 150, 300, or 600 mg kg-1 multi-enzyme over an 8-week feeding duration. Our findings revealed that supplementation with 600 mg kg-1 of multi-enzyme significantly increased the albumen height (P < 0.05) and haugh unit (P < 0.05). Moreover, as the levels of multi-enzyme supplementation in the diet increased, there were significant increases in activities of total antioxidant capacity (T-AOC) in serum (P < 0.05) and glutathione peroxidase (GSH-Px) in the liver (P < 0.05). Different levels of multi-enzyme supplementation significantly affected the composition of amino acid profiles in the yolk. Furthermore, the results from 16S rRNA sequencing and untargeted metabolomics analysis of cecal content revealed that multi-enzyme supplementation altered the cecal microflora and metabolite profiles. We found the relative abundance of the Bacteroidota phyla in T600 group was significantly increased (P < 0.05) compared to CON and T150 groups, but the relative abundance of the Firmicutes phylum in T600 group were significantly lower than T150 group (P < 0.05). At the genus level, the relative abundance of the Parabacteroides genera in T300 group, the Faecalibacterium genera in T300 and T600 groups, the norank_f_Prevotellaceae genera in treatment groups (T150, T300 and T600), the norank_f_Peptococcaceae genera in T600 group, and the Monoglobus genera in T1 group were significantly increased. The KEGG pathway analysis showed that the common enrichment metabolic pathways of each treatment group compared to the CON group were glycine, serine and threonine metabolism, foxo signaling pathway and mTOR signaling pathway, and the enrichment metabolic pathways shared by T300 vs CON and T600 vs CON was galactose metabolism and glycolysis/gluconeogenesis pathways. Correlation analysis identified notable relationships between specific microbes and metabolites with T-AOC in serum, GSH-Px activity in the liver, amino acids in yolk, albumen height, and haugh units. Overall, this study suggests that multi-enzyme supplementation regulated the cecal microbial community and metabolism, potentially influencing amino acid profiles in yolk, antioxidant capacity, and egg quality.
Collapse
Affiliation(s)
- Qixin Huang
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Rui Chen
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
| | - Wenzi Wu
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
| | - Jinghui Fan
- Hangzhou Academy of Agricultural Sciences, Hangzhou, China
| | - Xin Ma
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Zhou Chen
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
| | - Wenxin Ye
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
| | - Lichun Qian
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
5
|
Sta. Cruz BG, Hong JS, Yu M, Oketch EO, Yun H, Jayasena DD, Heo JM. Xylanase supplementation in energy-deficient corn-based diets: impact on broiler growth, nutrient digestibility, chyme viscosity and carcass proximates. Anim Biosci 2024; 37:1246-1254. [PMID: 38575132 PMCID: PMC11222837 DOI: 10.5713/ab.23.0340] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/12/2023] [Accepted: 01/17/2024] [Indexed: 04/06/2024] Open
Abstract
OBJECTIVE The goal of the current study was to investigate the impact of various concentrations of xylanase in energy-deficient corn-based diets on the growth performance, carcass characteristics, nutrient digestibility, and digesta viscosity in broilers from 7 to 35 days of age. METHODS A total of 280 seven-day-old Ross 308 broilers were randomly allocated to one of the five dietary treatments following a completely randomized design with 8 replicates and 7 birds per cage. The treatments were: i) positive control (PC, without xylanase); ii) NC-1 (80 kcal/kg ME reduced from PC); iii) NC-2 (100 kcal/kg ME reduced from PC); iv) NCX-1 (NC-1 + 2,000 U/kg xylanase); and v) NCX-2 (NC-2 + 3,000 U/kg xylanase). Body weight, weight gain, feed intake, and feed conversion ratio were determined weekly to evaluate growth performance. One bird per pen was sacrificed for ileal digesta collection to determine the viscosity and digestibility of energy, dry matter, crude protein on days 24 and 35, however breast and leg meat samples were obtained for proximate analysis (moisture, crude protein, fat, and ash) on day 35. RESULTS Birds fed diets supplemented with xylanase regardless of the amount had higher (p<0.05) body weights, daily gains, and improved feed efficiency compared to NC diets all throughout the experimental period. Feed intake was not affected (p>0.05) by the addition of xylanase. Moreover, lowered (p<0.05) viscosity of the ileal digesta were observed upon xylanase inclusion in the diets compared to the birds fed NC diets on day 24. Ileal nutrient digestibility and meat proximate composition were not affected (p>0.05) by xylanase. CONCLUSION The present study indicated that the xylanase at 2,000 U/kg and 3,000 U/kg levels compensates for the 80 kcal/kg and 100 kcal/kg dietary energy levels, respectively, without having adverse effects on the growth performance, carcass characteristics, nutrient digestibility, and digesta viscosity of broilers.
Collapse
Affiliation(s)
| | - Jun Seon Hong
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon 34134,
Korea
| | - Myunghwan Yu
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon 34134,
Korea
| | - Elijah Ogola Oketch
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon 34134,
Korea
| | - Hyeonho Yun
- Technical Marketing, Protein Solution Division, CJ CheilJedang Bio, Seoul 04560,
Korea
| | - Dinesh D. Jayasena
- Department of Animal Science, Uva Wellassa University, Badulla 90000,
Sri Lanka
| | - Jung-Min Heo
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon 34134,
Korea
| |
Collapse
|
6
|
Wealleans AL, Ashour RA, Abu Ishmais MA, Al-Amaireh S, Gonzalez-Sanchez D. Comparative effects of proteases on performance, carcass traits and gut structure of broilers fed diets reduced in protein and amino acids. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2024; 66:457-470. [PMID: 38975585 PMCID: PMC11222113 DOI: 10.5187/jast.2023.e20] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/20/2022] [Accepted: 02/19/2023] [Indexed: 07/09/2024]
Abstract
This study aimed to evaluate the effect of supplementing different protease enzymes on growth performance, intestinal morphology, and selected carcass traits in broilers fed diets reduced 3.5% in crude protein (CP) and amino acids (AA). One thousand one-day-old Ross 308 broilers (41 g) were assigned to five dietary treatments with ten replicates of 20 birds each: a positive control (PC) diet formulated to meet Ross 308 AA requirements, a negative control (NC) diet reformulated to provide 3.5% lower CP and AA compared to PC, NC supplemented with a multi-protease (PR1) solution, containing 3 different coated proteases produced from Aspergillus niger, Bacillus subtilis and Bacillus licheniformis, NC supplemented with a serine protease (PR2) produced from Bacillus licheniformis, and NC supplemented with an alkaline protease (PR3) produced from Bacillus licheniformis. At slaughter, 40 birds per treatment were used to assess the effect of the different treatments on carcass traits. At 32 days, samples of the duodenum, jejunum, and ileum of 10 birds per treatment were collected for intestinal morphology evaluation. Birds fed PC and NC supplemented with multi-protease exhibited better (p < 0.05) feed efficiency compared to NC and NC supplemented with all the other protease enzymes. Multi-protease supplementation was linked to the highest (p < 0.05) carcass weight and yield. There were significant differences (p < 0.05) between treatments in all gut segments, with PC, PR1, PR2, and PR3 exhibiting longer villi height (VH) compared to NC. This study demonstrates that 3.5% reduction of CP and AA negatively affected for the overall period feed efficiency, carcass yield, and intestinal morphology. The supplementation of the multi-protease restored feed efficiency and improved carcass yield.
Collapse
Affiliation(s)
| | | | - Majdi A. Abu Ishmais
- Department of Animal Production, Faculty of Agriculture, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Sadiq Al-Amaireh
- Suliman Al-Amaireh & Partners Co., Tabarbor 11731, Amman, Jordan
| | | |
Collapse
|
7
|
Karunaratne ND, Classen HL, van Kessel AG, Bedford MR, Ames NP, Newkirk RW. Diet medication and beta-glucanase affect ileal digesta soluble beta-glucan molecular weight, carbohydrate fermentation, and performance of coccidiosis vaccinated broiler chickens given wheat-based diets. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2023; 15:288-296. [PMID: 38033604 PMCID: PMC10684992 DOI: 10.1016/j.aninu.2023.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/09/2023] [Accepted: 03/21/2023] [Indexed: 12/02/2023]
Abstract
Exogenous enzymes as alternatives to feed antibiotics in poultry has become an emerging research area with the emergence of antibiotic resistance. The objective was to evaluate the effects of diet medication (antibiotics) and β-glucanase (BGase) on digesta soluble β-glucan depolymerization, carbohydrate fermentation, and performance of coccidiosis-vaccinated broiler chickens fed wheat-based diets. A total of 1,782 broilers were raised on litter floor pens, and each treatment was assigned to 1 pen in each of the 9 rooms. The 3 dietary treatments were based on wheat as the sole grain (control, control + medication and control + 0.1% BGase), and the birds were fed the respective treatments ad libitum from 0 to 33 d. Treatments were arranged in a randomized complete block design and analyzed as a one-way ANOVA. Beta-glucanase reduced the peak molecular weight, weight average molecular weight (Mw) and maximum molecular weight for the smallest 10% β-glucan molecules (MW-10%) in ileal digesta at d 11 and 33, whereas diet medication reduced Mw and MW-10% at d 33 compared to the control (P < 0.01). Beta-glucanase and medication reduced the ileal viscosity at d 11 compared to the control (P = 0.010). Ileal propionic acid concentration at d 11 and caecal total SCFA, acetic, and butyric acid concentrations at d 33 were lower in the BGase-supplemented diet than in the control (P < 0.05). The BGase-added diet had higher duodenal pH compared to the control at d 33 (P = 0.026). The effect of medication on carbohydrate fermentation was minimal. Diet medication increased weight gain after d 11, whereas BGase increased the gain for the total trial period compared to the control (P < 0.001). Feed intake was not affected by the dietary treatment. Medication and BGase improved feed efficiency after d 11 compared to the control (P < 0.001). The response to diet medication was larger than BGase, considering weight gain and feed efficiency after d 11 (P < 0.001). In conclusion, diet medication and BGase depolymerized high molecular weight ileal soluble β-glucan and increased overall bird performance. Dietary BGase may benefit bird health in broilers fed wheat-based diets without medication.
Collapse
Affiliation(s)
- Namalika D. Karunaratne
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK S7N5A8, Canada
| | - Henry L. Classen
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK S7N5A8, Canada
| | - Andrew G. van Kessel
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK S7N5A8, Canada
| | | | - Nancy P. Ames
- Agriculture and Agri-Food Canada, Winnipeg, R3T 2E1, Manitoba, Canada
| | - Rex W. Newkirk
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK S7N5A8, Canada
| |
Collapse
|
8
|
El-Gendi H, Badawy AS, Bakhiet EK, Rawway M, Ali SG. Valorization of lignocellulosic wastes for sustainable xylanase production from locally isolated Bacillus subtilis exploited for xylooligosaccharides' production with potential antimicrobial activity. Arch Microbiol 2023; 205:315. [PMID: 37605001 PMCID: PMC10442310 DOI: 10.1007/s00203-023-03645-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 06/21/2023] [Accepted: 07/30/2023] [Indexed: 08/23/2023]
Abstract
The worldwide availability of lignocellulosic wastes represents a serious environmental challenge with potential opportunities. Xylanases are crucial in lignocellulosic bio-hydrolysis, but the low enzyme productivity and stability are still challenges. In the current study, Bacillus subtilis (coded ARSE2) revealed potent xylanase activity among other local isolates. The enzyme production optimization revealed that maximum enzyme production (490.58 U/mL) was achieved with 1% xylan, 1.4% peptone, and 5% NaCl at 30 °C and pH 9. Furthermore, several lignocellulosic wastes were exploited for sustainable xylanase production, where sugarcane bagasse (16%) under solid-state fermentation and woody sawdust (2%) under submerged fermentation supported the maximum enzyme titer of about 472.03 and 485.7 U/mL, respectively. The partially purified enzyme revealed two protein bands at 42 and 30 kDa. The partially purified enzyme revealed remarkable enzyme activity and stability at 50-60 °C and pH 8-9. The enzyme also revealed significant stability toward tween-80, urea, DTT, and EDTA with Vmax and Km values of 1481.5 U/mL and 0.187 mM, respectively. Additionally, the purified xylanase was applied for xylooligosaccharides production, which revealed significant antimicrobial activity toward Staphylococcus aureus with lower activity against Escherichia coli. Hence, the locally isolated Bacillus subtilis ARSE2 could fulfill the xylanase production requirements in terms of economic production at a high titer with promising enzyme characteristics. Additionally, the resultant xylooligosaccharides revealed a promising antimicrobial potential, which paves the way for other medical applications.
Collapse
Affiliation(s)
- Hamada El-Gendi
- Bioprocess Development Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria, 21934, Egypt.
| | - Ahmed S Badawy
- Botany and Microbiology Department, Faculty of Science, AL-Azhar University, Assiut, Egypt
| | - Elsayed K Bakhiet
- Botany and Microbiology Department, Faculty of Science, AL-Azhar University, Assiut, Egypt
| | - Mohammed Rawway
- Botany and Microbiology Department, Faculty of Science, AL-Azhar University, Assiut, Egypt
| | - Salah G Ali
- Botany and Microbiology Department, Faculty of Science, AL-Azhar University, Assiut, Egypt
| |
Collapse
|
9
|
Cao Z, Liu Z, Zhang N, Bao C, Li X, Liu M, Yuan W, Wu H, Shang H. Effects of dietary dandelion (Taraxacum mongolicum Hand.-Mazz.) polysaccharides on the performance and gut microbiota of laying hens. Int J Biol Macromol 2023; 240:124422. [PMID: 37068539 DOI: 10.1016/j.ijbiomac.2023.124422] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/06/2023] [Accepted: 04/08/2023] [Indexed: 04/19/2023]
Abstract
This experiment was designed to evaluate the influences of dietary dandelion polysaccharides (DP) on the performance and cecum microbiota of laying hens. Three hundred laying hens were assigned to five treatment groups: the basal diet group (CK group), three DP groups (basal diets supplemented with 0.5, 1.0, and 1.5 % DP), and the inulin group (IN group, basal diet supplemented with 1.5 % inulin). Increased daily egg weight and a decreased feed conversion rate were observed when the diets were supplemented with inulin or DP. The calcium metabolism rate in the 0.5 % and 1.0 % DP groups was greater than that in the CK group. The DP groups increased the short-chain fatty acid concentration, decreased pH, and enhanced the relative abundances of Parabacteroides, Alloprevotella, and Romboutsia in the cecum. These results showed that DP supplementation in the diets of laying hens can improve their performance, which might be associated with the regulation of the cecal microbiota.
Collapse
Affiliation(s)
- Zihang Cao
- College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China; Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, Jilin Agricultural University, Changchun 130118, China
| | - Zhenhua Liu
- The Third Affiliated Clinical Hospital of Changchun University of Chinese Medicine, Changchun 130118, China
| | - Nanyi Zhang
- College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China; Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, Jilin Agricultural University, Changchun 130118, China
| | - Chenguang Bao
- College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China
| | - Xinyu Li
- College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China
| | - Mengxue Liu
- College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China
| | - Wei Yuan
- College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China
| | - Hongxin Wu
- Institute of Grassland Research, CAAS, Hohhot 010010, China
| | - Hongmei Shang
- College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China; Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
10
|
Morgan NK, Wallace A, Bedford MR, González-Ortiz G. Impact of fermentable fiber, xylo-oligosaccharides and xylanase on laying hen productive performance and nutrient utilization. Poult Sci 2022; 101:102210. [PMID: 36334432 PMCID: PMC9627098 DOI: 10.1016/j.psj.2022.102210] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/18/2022] [Accepted: 09/22/2022] [Indexed: 11/29/2022] Open
Abstract
This study evaluated the impact of feeding xylo-oligosaccharides (XOS), fermentable fiber in the form of wheat bran (WB), and xylanase (XYL) on laying hen productive performance and nutrient digestibility. The hypothesis was that the WB would provide the microbiota in the hindgut with fermentable dietary xylan, and the XOS and XYL would further upregulate xylan fermentation pathways, resulting in improved nutrient utilization. Isa Brown hens (n = 96) were obtained at 39 wk of age. They were fed 12 dietary treatments, 8 hens per treatment, for 56 d. A commercial laying hen ration was fed, and for half of the treatments 10% of this ration was directly replaced with WB. The diets were then supplemented with either 1) no supplements; 2) XOS 50 g/t; 3) XOS 2000 g/t; 4) XYL (16,000 BXU/kg); 5) XYL + XOS 50 g/t, or 6) XYL + XOS 2,000 g/t. Hen performance and egg quality were measured every 14 d. On d56, ileum digesta samples were collected for determination of starch, nonstarch polysaccharide (NSP), XOS, protein, energy, and starch digestibility. Ceca digesta samples were also collected for analysis of XOS, short chain fatty acid (SCFA), xylanase and cellulase activity and microbial counts. Feeding 2,000 g/t XOS increased ileal protein digestibility. Combined 2,000 g/t XOS and XYL increased cecal Bifidobacteria concentration. This combination also increased cecal xylanase activity in birds fed the control diet. Cecal cellulase activity was improved by feeding WB, XYL, and 2,000 g/t XOS. XYL increased cecal lactate production. Feeding 2,000 g/t XOS with WB increased insoluble NSP degradability and shell breaking strength at d56. In summary, supplementing laying hen diets with fermentable fiber, XYL and XOS increases utilization of dietary xylan, improving nutrient utilization, performance, and gastrointestinal health.
Collapse
Affiliation(s)
- N K Morgan
- University of New England, School of Environmental and Rural Science, Armidale, New South Wales, 2351, Australia; Curtin University, School of Molecular and Life Sciences, Bentley, Western Australia, 6152, Australia.
| | - A Wallace
- University of New England, School of Environmental and Rural Science, Armidale, New South Wales, 2351, Australia
| | - M R Bedford
- AB Vista, Woodstock Court, Blenheim Road, Marlborough Business Park, Marlborough, Wiltshire, United Kingdom
| | - G González-Ortiz
- AB Vista, Woodstock Court, Blenheim Road, Marlborough Business Park, Marlborough, Wiltshire, United Kingdom
| |
Collapse
|
11
|
Bio-Fermented Malic Acid Facilitates the Production of High-Quality Chicken via Enhancing Muscle Antioxidant Capacity of Broilers. Antioxidants (Basel) 2022; 11:antiox11122309. [PMID: 36552518 PMCID: PMC9774538 DOI: 10.3390/antiox11122309] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 11/24/2022] Open
Abstract
Malic acid, an intermediate of the tricarboxylic acid (TCA) cycle, is a promising acidifier with strong antioxidant capacity. This study aimed to evaluate the effects of bio-fermented malic acid (BFMA) on promoting the body health, performance and meat quality of broilers. A total of 288 one-day-old Arbor Acres male broiler chicks were randomly divided into four treatments with six replicates in each. Every replicate had 12 chicks. Four experimental diets contained 0, 4, 8, and 12 g/kg BFMA, respectively. During the 42-day trial, mortality was recorded daily, feed intake and body weight of each replicate being recorded every week. Blood samples were collected on days 21 and 42 for chemical analysis. After slaughter at the age of 42 days, the carcass traits and meat quality of the broilers were measured, breast muscle samples were collected for the determination of antioxidant capacity, and cecal digesta were pretreated for microbiota analysis. Dietary BFMA significantly increased feed intake and daily gain, and decreased feed conversion ratio and death and culling ratio of the broilers at the earlier stage. The water-holding capacity of breast muscle indicated by the indexes of dripping loss and cooking loss was significantly increased by BFMA, especially at the addition level of 8 g/kg. Dietary BFMA significantly decreased the activity of superoxide dismutase and contents of immunoglobulin A and glutathione, and increased contents of immunoglobulin G and M in serum of the broilers. The contents of glutathione, inosinic acid, and total antioxidant capacity and the activities of glutathione-Px and superoxide dismutase were significantly increased by dietary BFMA, with the level of 8 g/kg best. The diversity of cecal microbiota of broilers was obviously altered by BFMA. In conclusion, as one of several acidifiers, addition of BFMA in diets could improve the performance and body health of broilers, probably by reinforcing immunity and perfecting cecal microbiota structure. As one of the intermediates of the TCA cycle, BFMA increases the water-holding capacity of breast muscle of broilers, probably through reducing lactate accumulates and enhancing antioxidant capacity.
Collapse
|
12
|
Boontiam W, Phaenghairee P, Van Hoeck V, Vasanthakumari BL, Somers I, Wealleans A. Xylanase Impact beyond Performance: Effects on Gut Structure, Faecal Volatile Fatty Acid Content and Ammonia Emissions in Weaned Piglets Fed Diets Containing Fibrous Ingredients. Animals (Basel) 2022; 12:3043. [PMID: 36359167 PMCID: PMC9654035 DOI: 10.3390/ani12213043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/20/2022] [Accepted: 10/27/2022] [Indexed: 11/09/2022] Open
Abstract
The addition of xylanase to piglet diets is known to improve performance and nutrient digestibility. The present study aimed to assess the impact of new xylanase on the growth performance, nutrient digestibility, and gut function of weaned piglets. A total of 144 pigs, weaned at 28 days (7.48 kg initial body weight, IBW), were assigned to 36 pens and 9 pens per treatment. Dietary treatments were a basal complex control diet, and the basal diet supplemented with 45,000, 90,000 and 135,000 U/kg xylanase. Performance was measured at days 0, 14 and 35. At day 35, samples were collected for assessment of intestinal histology, and volatile fatty acid and ammonia concentrations. After two weeks post-weaning, additional 12 piglets (11.34 kg IBW) were placed in metabolic crates for assessment of apparent total tract nutrient digestibility using a dietary marker. The addition of xylanase at 90,000 and 135,000 U/kg significantly improved average daily gain (333.6 g/day control, 364.86 g/day, 90,000 U/kg, 405.89 g/day, 135,000 U/kg, p < 0.05), G:F (0.557 control, 0.612 90,000 U/kg, 0.692 135,000 U/kg, p < 0.05), and reduced diarrhoea. This was driven improved nutrient digestibility and villus height in the jejunum (372.87 µm control, 432.53 µm 45,000 U/kg, 465.80 µm 90,000 U/kg, 491.28 µm 135,000 U/kg, p < 0.05). Xylanase supplementation also linearly increased faecal butyrate levels and had a quadratic relationship with propionate concentrations. 135,000 U/kg xylanase also reduced ammonia emissions. In conclusion, dietary supplementation with xylanase improved growth performance and feed efficiency in weaning piglets, likely driven by improvements to gut structure and function.
Collapse
Affiliation(s)
- Waewaree Boontiam
- Faculty of Agriculture, Division of Animal Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Pheeraphong Phaenghairee
- Faculty of Agriculture, Division of Animal Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Veerle Van Hoeck
- Kemin Europa N.V., Animal Nutrition and Health EMENA, Toekomstlaan 42, 2200 Herentals, Belgium
| | | | - Ingrid Somers
- Kemin Europa N.V., Animal Nutrition and Health EMENA, Toekomstlaan 42, 2200 Herentals, Belgium
| | - Alexandra Wealleans
- Kemin Europa N.V., Animal Nutrition and Health EMENA, Toekomstlaan 42, 2200 Herentals, Belgium
| |
Collapse
|
13
|
A new monocomponent xylanase improves performance, ileal digestibility of energy and nutrients, intestinal morphology, and intestinal microbiota in young broilers. J APPL POULTRY RES 2022. [DOI: 10.1016/j.japr.2022.100301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|