1
|
Xiao J, Wang F, Yan H, Wang B, Su B, Lu X, Zhang T. Memory stem CD8 +T cells in HIV/Mtb mono- and co-infection: characteristics, implications, and clinical significance. Front Cell Infect Microbiol 2024; 14:1485825. [PMID: 39720790 PMCID: PMC11666416 DOI: 10.3389/fcimb.2024.1485825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 11/13/2024] [Indexed: 12/26/2024] Open
Abstract
Human immunodeficiency Virus (HIV) and Mycobacterium tuberculosis (Mtb) co-infection presents a significant public health challenge worldwide. Comprehensive assessment of the immune response in HIV/Mtb co-infection is complex and challenging. CD8+T cells play a pivotal role in the adaptive immune response to both HIV and Mtb. The differentiation of CD8+T cells follow a hierarchical pattern, with varying degrees of exhaustion throughout the process. Memory stem T cells (TSCM cells) is at the apex of the memory T lymphocyte system, which has recently emerged as a promising target in immunotherapy. In this context, we discuss the alterations of CD8+TSCM cells in HIV/Mtb mono- and co-infection, their implications and clinical significance, and potential for improving immunotherapy.
Collapse
Affiliation(s)
- Jing Xiao
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Fuchun Wang
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Hongxia Yan
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Bo Wang
- Department of Respiratory Medicine, Beijing Fengtai Hospital of Integrated Traditional and Western Medicine, Beijing, China
| | - Bin Su
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Xiaofan Lu
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Tong Zhang
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
2
|
Mathias K, Machado RS, Stork S, Martins CD, da Silva Kursancew AC, de Rezende VL, Gonçalves CL, Barichello T, Prophiro JS, Petronilho F. Bacillus Calmette-Guérin (BCG)-Induced Protection in Brain Disorders. Inflammation 2024; 47:1902-1917. [PMID: 38664351 DOI: 10.1007/s10753-024-02018-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/29/2024] [Accepted: 04/01/2024] [Indexed: 08/11/2024]
Abstract
The Bacille Calmette-Guerin (BCG) vaccine is one of the most widely used vaccines in the world for the prevention of tuberculosis. Its immunological capacity also includes epigenetic reprogramming, activation of T cells and inflammatory responses. Although the main usage of the vaccine is the prevention of tuberculosis, different works have shown that the effect of BCG can go beyond the peripheral immune response and be linked to the central nervous system by modulating the immune system at the level of the brain. This review therefore aims to describe the BCG vaccine, its origin, its relationship with the immune system, and its involvement at the brain level.
Collapse
Affiliation(s)
- Khiany Mathias
- Laboratory of Immunoparasitology, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubãrao, Santa Catarina, Brazil
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, Santa Catarina, Brazil
| | - Richard Simon Machado
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, Santa Catarina, Brazil
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubãrao, Santa Catarina, Brazil
| | - Solange Stork
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, Santa Catarina, Brazil
| | - Carla Damasio Martins
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, Santa Catarina, Brazil
| | - Amanda Christine da Silva Kursancew
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, Santa Catarina, Brazil
| | - Victória Linden de Rezende
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, Santa Catarina, Brazil
| | - Cinara Ludvig Gonçalves
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, Santa Catarina, Brazil
| | - Tatiana Barichello
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, Santa Catarina, Brazil
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston (UTHealth), Houston, TX, 77054, USA
| | - Josiane Somariva Prophiro
- Laboratory of Immunoparasitology, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubãrao, Santa Catarina, Brazil
| | - Fabricia Petronilho
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, Santa Catarina, Brazil.
- Laboratory of Experimental Neurology, University of Extremo Sul Catarinense, Criciuma, SC, Brazil.
| |
Collapse
|
3
|
Pandiarajan AN, Kumar NP, Rajamanickam A, Bhavani PK, Jeyadeepa B, Selvaraj N, Asokan D, Tripathy S, Padmapriyadarsini C, Babu S. Enhanced Antimicrobial Peptide Response Following Bacillus Calmette-Guerin Vaccination in Elderly Individuals. Vaccines (Basel) 2024; 12:1065. [PMID: 39340094 PMCID: PMC11436028 DOI: 10.3390/vaccines12091065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Antimicrobial peptides are an important component of host defense against Mycobacterium tuberculosis. However, the ability of BCG to induce AMPs as part of its mechanism of action has not been investigated in detail. METHODS We investigated the impact of Bacillus Calmette-Guerin (BCG) vaccination on circulating plasma levels and TB-antigen stimulated plasma levels of AMPs in a healthy elderly population. We assessed the association of AMPs, including Human Beta Defensin 2 (HBD-2), Human Neutrophil Peptide 1-3 (HNP1-3), Granulysin, and Cathelicidin (LL37), in circulating plasma and TB-antigen stimulated plasma (using IGRA supernatants) at baseline (pre-vaccination) and at Month 1 and Month 6 post vaccination. RESULTS Post BCG vaccination, both circulating plasma levels and TB-antigen stimulated plasma levels of AMPs significantly increased at Month 1 and Month 6 compared to pre-vaccination levels in the elderly population. However, the association of AMP levels with latent TB (LTB) status did not exhibit statistical significance. CONCLUSION Our findings indicate that BCG vaccination is linked to heightened circulating levels of AMPs in the elderly population, which are also TB-antigen-specific. This suggests a potential mechanism underlying the immune effects of BCG in enhancing host defense against TB.
Collapse
Affiliation(s)
| | | | | | | | - Bharathi Jeyadeepa
- International Center for Excellence in Research, NIAID, Chennai 600031, India
| | - Nandhini Selvaraj
- International Center for Excellence in Research, NIAID, Chennai 600031, India
| | - Dinesh Asokan
- ICMR-National Institute for Research in Tuberculosis, Chennai 600031, India
| | - Srikanth Tripathy
- ICMR-National Institute for Research in Tuberculosis, Chennai 600031, India
| | | | - Subash Babu
- International Center for Excellence in Research, NIAID, Chennai 600031, India
- Laboratory of Parasitic Diseases (LPD), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| |
Collapse
|
4
|
Banoo S, Yadav Y, Tyagi R, Manna A, Sagar R. Recent efforts in the development of glycoconjugate vaccine and available treatment for tuberculosis. Bioorg Chem 2024; 150:107610. [PMID: 38991488 DOI: 10.1016/j.bioorg.2024.107610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/23/2024] [Accepted: 06/30/2024] [Indexed: 07/13/2024]
Abstract
Tuberculosis (TB) continues to pose a grave threat to global health, despite relentless eradication efforts. In 1882, Robert Koch discovered that Mycobacterium tuberculosis (Mtb) is the bacterium responsible for causing tuberculosis. It is a fact that tuberculosis has claimed the lives of more than one billion people in the last few decades. It is imperative that we must take immediate and effective action to increase resources for TB research and treatment. Effective TB treatments demand an extensive investment of both time and finances, often requiring 6-9 months of rigorous antibiotic therapy. The most efficient way to control tuberculosis is by receiving a childhood Bacillus Calmette-Guérin (BCG) vaccination. Despite years of research on vaccine development, we still do not have any new approved vaccine for tuberculosis, except BCG, which is partially effective in young children. This review discusses briefly the available treatment for tuberculosis and remarkable advancements in glycoconjugate-based TB vaccine developments in recent years (2013-2024) and offers valuable direction for future research priorities.
Collapse
Affiliation(s)
- Sajida Banoo
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Yogesh Yadav
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Rajdeep Tyagi
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Arunava Manna
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India.
| | - Ram Sagar
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India; Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
5
|
Fazeli P, Kalani M, Mahdavi M, Hosseini M. The significance of stem cell-like memory T cells in viral and bacterial vaccines: A mini review. Int Immunopharmacol 2024; 137:112441. [PMID: 38852525 DOI: 10.1016/j.intimp.2024.112441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/01/2024] [Accepted: 06/05/2024] [Indexed: 06/11/2024]
Abstract
Vaccination has become a widely used method to induce immune protection against microbial pathogens, including viral and bacterial microorganisms. Both humoral and cellular immunity serve a critical role in neutralizing and eliminating these pathogens. An effective vaccine should be able to induce a long-lasting immune memory response. Recent investigations on different subsets of T cells have identified a new subset of T cells using multi-parameter flow cytometry, which possess stem cell-like properties and the ability to mount a rapid immune response upon re-exposure to antigens known as stem cell-like memory T cells (TSCM). One of the major challenges with current vaccines is their limited ability to maintain long-term memory in the adaptive immune system. Recent evidence suggests that a specific subgroup of memory T cells has the unique ability to retain their longevity for up to 25 years, as observed in the case of the yellow fever vaccine. Therefore, in this study, we tried to explore and discuss the potential role of this new T cell memory subset in the development of viral and bacterial vaccines.
Collapse
Affiliation(s)
- Pooria Fazeli
- Truama Research Center, Rajaee (Emtiaz) Trauma Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Kalani
- Department of Immunology, Prof. Alborzi Clinical Microbiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Maryam Hosseini
- Truama Research Center, Emtiaz Trauma Hospital, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
6
|
Nathella PK, Padmapriyadarsini C, Nancy A, Karunanithi K, Selvaraj N, Renji RM, Shrinivasa B, Babu S. BCG vaccination is associated with longitudinal changes in systemic eicosanoid levels in elderly individuals: A secondary outcome analysis. Heliyon 2024; 10:e32643. [PMID: 38975122 PMCID: PMC11226842 DOI: 10.1016/j.heliyon.2024.e32643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/06/2024] [Accepted: 06/06/2024] [Indexed: 07/09/2024] Open
Abstract
We investigated how BCG vaccination affects the levels of certain eicosanoids, namely Leukotriene B4, 15-epimer of LXA4, prostaglandin F2, Lipoxin A4, Prostaglandin E2 and Resolvin D1 in the plasma of healthy elderly individuals (aged 60-80) before vaccination, one month post-vaccination (M1), and six months post-vaccination (M6). This study is part of the clinical trial "BCG Vaccine Study: Reducing COVID-19 Impact on the Elderly in Indian Hotspots," registered in the clinical trial registry (NCT04475302). While some primary outcomes have been previously reported, this analysis delves into the immunological outcomes. Our findings indicate that BCG vaccination leads to reduced plasma levels of 15-epi-LXA4, LXA4, PGE2, and Resolvin D1 at both M1 and M6. In contrast, there is a notable increase in circulating levels of LTB4 at these time points following BCG vaccination. This underscores the immunomodulatory effects of BCG vaccination and hints at its potential to modulate immune responses by dampening inflammatory reactions.
Collapse
Affiliation(s)
| | | | - Arul Nancy
- ICMR-National Institute for Research in Tuberculosis-International Center for Excellence in Research, Chennai, India
| | | | - Nandhini Selvaraj
- ICMR-National Institute for Research in Tuberculosis-International Center for Excellence in Research, Chennai, India
| | - Rachel Mariam Renji
- ICMR-National Institute for Research in Tuberculosis-International Center for Excellence in Research, Chennai, India
| | - B.M. Shrinivasa
- ICMR-National Institute for Research in Tuberculosis, Chennai, India
| | - Subash Babu
- ICMR-National Institute for Research in Tuberculosis-International Center for Excellence in Research, Chennai, India
| |
Collapse
|
7
|
Aniagyei W, Mohayideen S, Sarfo-Kantanka O, Bittner S, Vivekanandan MM, Arthur JF, Boateng AO, Yeboah A, Ahor HS, Asibey SO, Owusu E, Herebian D, Huttasch M, Burkart V, Wagner R, Roden M, Adankwah E, Owusu DO, Mayatepek E, Jacobsen M, Phillips RO, Seyfarth J. BCG Vaccination-Associated Lower HbA1c and Increased CD25 Expression on CD8 + T Cells in Patients with Type 1 Diabetes in Ghana. Vaccines (Basel) 2024; 12:452. [PMID: 38793703 PMCID: PMC11125916 DOI: 10.3390/vaccines12050452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/13/2024] [Accepted: 04/18/2024] [Indexed: 05/26/2024] Open
Abstract
BCG vaccination affects other diseases beyond tuberculosis by unknown-potentially immunomodulatory-mechanisms. Recent studies have shown that BCG vaccination administered during overt type 1 diabetes (T1D) improved glycemic control and affected immune and metabolic parameters. Here, we comprehensively characterized Ghanaian T1D patients with or without routine neonatal BCG vaccination to identify vaccine-associated alterations. Ghanaian long-term T1D patients (n = 108) and matched healthy controls (n = 214) were evaluated for disease-related clinical, metabolic, and immunophenotypic parameters and compared based on their neonatal BCG vaccination status. The majority of study participants were BCG-vaccinated at birth and no differences in vaccination rates were detected between the study groups. Notably, glycemic control metrics, i.e., HbA1c and IDAA1c, showed significantly lower levels in BCG-vaccinated as compared to unvaccinated patients. Immunophenotype comparisons identified higher expression of the T cell activation marker CD25 on CD8+ T cells from BCG-vaccinated T1D patients. Correlation analysis identified a negative correlation between HbA1c levels and CD25 expression on CD8+ T cells. In addition, we observed fractional increases in glycolysis metabolites (phosphoenolpyruvate and 2/3-phosphoglycerate) in BCG-vaccinated T1D patients. These results suggest that neonatal BCG vaccination is associated with better glycemic control and increased activation of CD8+ T cells in T1D patients.
Collapse
Affiliation(s)
- Wilfred Aniagyei
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
- Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR), Kumasi 00233, Ghana (A.Y.); (D.O.O.)
| | - Sumaya Mohayideen
- Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR), Kumasi 00233, Ghana (A.Y.); (D.O.O.)
| | - Osei Sarfo-Kantanka
- Komfo Anokye Teaching Hospital, Kumasi 00233, Ghana
- School of Medicine and Dentistry, College of Health Sciences, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi 00233, Ghana
| | - Sarah Bittner
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Monika M. Vivekanandan
- Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR), Kumasi 00233, Ghana (A.Y.); (D.O.O.)
| | - Joseph F. Arthur
- Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR), Kumasi 00233, Ghana (A.Y.); (D.O.O.)
| | | | - Augustine Yeboah
- Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR), Kumasi 00233, Ghana (A.Y.); (D.O.O.)
| | - Hubert S. Ahor
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | | | | | - Diran Herebian
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Maximilian Huttasch
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, 85764 Neuherberg, Germany
| | - Volker Burkart
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, 85764 Neuherberg, Germany
| | - Robert Wagner
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, 85764 Neuherberg, Germany
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, 85764 Neuherberg, Germany
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Ernest Adankwah
- Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR), Kumasi 00233, Ghana (A.Y.); (D.O.O.)
| | - Dorcas O. Owusu
- Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR), Kumasi 00233, Ghana (A.Y.); (D.O.O.)
| | - Ertan Mayatepek
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Marc Jacobsen
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Richard O. Phillips
- Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR), Kumasi 00233, Ghana (A.Y.); (D.O.O.)
- School of Medicine and Dentistry, College of Health Sciences, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi 00233, Ghana
| | - Julia Seyfarth
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
8
|
Eggenhuizen PJ, Ooi JD. The Influence of Cross-Reactive T Cells in COVID-19. Biomedicines 2024; 12:564. [PMID: 38540178 PMCID: PMC10967880 DOI: 10.3390/biomedicines12030564] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 02/28/2024] [Accepted: 03/01/2024] [Indexed: 01/22/2025] Open
Abstract
Memory T cells form from the adaptive immune response to historic infections or vaccinations. Some memory T cells have the potential to recognise unrelated pathogens like severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and generate cross-reactive immune responses. Notably, such T cell cross-reactivity has been observed between SARS-CoV-2 and other human coronaviruses. T cell cross-reactivity has also been observed between SARS-CoV-2 variants from unrelated microbes and unrelated vaccinations against influenza A, tuberculosis and measles, mumps and rubella. Extensive research and debate is underway to understand the mechanism and role of T cell cross-reactivity and how it relates to Coronavirus disease 2019 (COVID-19) outcomes. Here, we review the evidence for the ability of pre-existing memory T cells to cross-react with SARS-CoV-2. We discuss the latest findings on the impact of T cell cross-reactivity and the extent to which it can cross-protect from COVID-19.
Collapse
Affiliation(s)
- Peter J. Eggenhuizen
- Centre for Inflammatory Diseases, Department of Medicine, School of Clinical Sciences, Monash University, Clayton, VIC 3800, Australia
| | | |
Collapse
|
9
|
Sarno A, Leite A, Augusto C, Muller I, de Ângelis L, Pimentel L, Queiroz A, Arruda S. Impaired macrophage and memory T-cell responses to Bacillus Calmette-Guerin nonpolar lipid extract. Front Immunol 2024; 14:1263352. [PMID: 38274831 PMCID: PMC10808680 DOI: 10.3389/fimmu.2023.1263352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 12/26/2023] [Indexed: 01/27/2024] Open
Abstract
Introduction The attenuation of BCG has led to the loss of not only immunogenic proteins but also lipid antigens. Methods Thus, we compared the macrophage and T-cell responses to nonpolar lipid extracts harvested from BCG and Mycobacterium tuberculosis (Mtb) to better understand the role of BCG lipids in the already known diminished responses of the vaccine strain. Results Relative to Mtb, nonpolar lipid extract from BCG presented a reduced capacity to trigger the expression of the genes encoding TNF, IL-1b, IL-6 and IL-10 in RAW 264.7 macrophages. Immunophenotyping of PBMCs isolated from healthy individuals revealed that lipids from both BCG and Mtb were able to induce an increased frequency of CD4+ and CD8+ T cells, but only the lipid extract from Mtb enhanced the frequency of CD4-CD8-double-negative, γσ+, CD4+HLA-DR+, and γσ+HLA-DR+ T cells relative to the nonstimulated control. Interestingly, only the Mtb lipid extract was able to increase the frequency of CD4+ memory (CD45RO+) T cells, whereas the BCG lipid extract induced a diminished frequency of CD4+ central memory (CD45RO+CCR7-) T cells after 48 h of culture compared to Mtb. Discussion These findings show that the nonpolar lipids of the BCG bacilli presented diminished ability to trigger both proinflammatory and memory responses and suggest a potential use of Mtb lipids as adjuvants to increase the BCG vaccine efficacy.
Collapse
Affiliation(s)
- Alice Sarno
- Advanced Laboratory of Public Health, Gonçalo Moniz Institute, Fiocruz, Salvador, Brazil
- Department of Pathology and Forensic Medicine, Faculty of Medicine, Federal University of Bahia, Salvador, Brazil
| | - Avelina Leite
- Advanced Laboratory of Public Health, Gonçalo Moniz Institute, Fiocruz, Salvador, Brazil
| | - Carlos Augusto
- Advanced Laboratory of Public Health, Gonçalo Moniz Institute, Fiocruz, Salvador, Brazil
| | - Igor Muller
- Advanced Laboratory of Public Health, Gonçalo Moniz Institute, Fiocruz, Salvador, Brazil
| | - Luanna de Ângelis
- Laboratory of Immunoepidemiology, Aggeu Magalhães Institute, Fiocruz, Recife, Brazil
| | - Lilian Pimentel
- Laboratory of Immunoepidemiology, Aggeu Magalhães Institute, Fiocruz, Recife, Brazil
| | - Adriano Queiroz
- Advanced Laboratory of Public Health, Gonçalo Moniz Institute, Fiocruz, Salvador, Brazil
| | - Sergio Arruda
- Advanced Laboratory of Public Health, Gonçalo Moniz Institute, Fiocruz, Salvador, Brazil
- Department of Life Sciences, State University of Bahia, Salvador, Brazil
| |
Collapse
|
10
|
Wen Z, Fang C, Liu X, Liu Y, Li M, Yuan Y, Han Z, Wang C, Zhang T, Sun C. A recombinant Mycobacterium smegmatis-based surface display system for developing the T cell-based COVID-19 vaccine. Hum Vaccin Immunother 2023; 19:2171233. [PMID: 36785935 PMCID: PMC10012901 DOI: 10.1080/21645515.2023.2171233] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Abstract
The immune escape mutations of SARS-CoV-2 variants emerged frequently, posing a new challenge to weaken the protective efficacy of current vaccines. Thus, the development of novel SARS-CoV-2 vaccines is of great significance for future epidemic prevention and control. We herein reported constructing the attenuated Mycobacterium smegmatis (M. smegmatis) as a bacterial surface display system to carry the spike (S) and nucleocapsid (N) of SARS-CoV-2. To mimic the native localization on the surface of viral particles, the S or N antigen was fused with truncated PE_PGRS33 protein, which is a transportation component onto the cell wall of Mycobacterium tuberculosis (M.tb). The sub-cellular fraction analysis demonstrated that S or N protein was exactly expressed onto the surface (cell wall) of the recombinant M. smegmatis. After the immunization of the M. smegmatis-based COVID-19 vaccine candidate in mice, S or N antigen-specific T cell immune responses were effectively elicited, and the subsets of central memory CD4+ T cells and CD8+ T cells were significantly induced. Further analysis showed that there were some potential cross-reactive CTL epitopes between SARS-CoV-2 and M.smegmatis. Overall, our data provided insights that M. smegmatis-based bacterial surface display system could be a suitable vector for developing T cell-based vaccines against SARS-CoV-2 and other infectious diseases.
Collapse
Affiliation(s)
- Ziyu Wen
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Cuiting Fang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, China.,University of Chinese Academy of Sciences (UCAS), Beijing, China.,Guangdong-Hong Kong-Macau Joint Laboratory of Respiratory Infectious Diseases, Guangzhou, China.,China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou, China
| | - Xinglai Liu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Yan Liu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, China.,University of Chinese Academy of Sciences (UCAS), Beijing, China.,Guangdong-Hong Kong-Macau Joint Laboratory of Respiratory Infectious Diseases, Guangzhou, China
| | - Minchao Li
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Yue Yuan
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Zirong Han
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Congcong Wang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Tianyu Zhang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, China.,University of Chinese Academy of Sciences (UCAS), Beijing, China.,Guangdong-Hong Kong-Macau Joint Laboratory of Respiratory Infectious Diseases, Guangzhou, China.,China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou, China
| | - Caijun Sun
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China.,Ministry of Education, Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Guangzhou, China
| |
Collapse
|
11
|
Elkoshi Z. The Eradication of Carcinogenic Viruses in Established Solid Cancers. J Inflamm Res 2023; 16:6227-6239. [PMID: 38145011 PMCID: PMC10749098 DOI: 10.2147/jir.s430315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 12/12/2023] [Indexed: 12/26/2023] Open
Abstract
Carcinogenic viruses (oncoviruses) can initiate cancer, but their impact on established cancer varies. Some of these viruses prolong survival while others shorten it. This study classifies oncoviruses into two categories: viruses which induce a strong CD8+T cell reaction in non-cancerous tissues, and viruses which induce a weak CD8+ T cell reaction in non-cancerous tissues. The classification proves useful in predicting the effect of oncoviruses on the prognosis of solid cancers. Therefore, while eliminating carcinogenic viruses in healthy individuals (for example by immunization) may be important for cancer prevention, this study suggests that only viruses which induce a weak CD8+ T cell reaction should be eradicated in established solid tumors. The model correctly predicts the effect of oncoviruses on survival for six out of seven known oncoviruses, indicating that immune modulation by oncoviruses has a prominent effect on prognosis. It seems that CD8+ T cell response to oncoviruses observed in infected benign tissues is retained in infected tumors. Clinical significance: the effect of oncoviruses on solid cancer prognosis can be predicted with confidence based on immunological responses when clinical data are unavailable.
Collapse
Affiliation(s)
- Zeev Elkoshi
- Research and Development Department, Taro Pharmaceutical Industries Ltd, Haifa, Israel
| |
Collapse
|
12
|
Chengalroyen MD. Current Perspectives and Challenges of MAIT Cell-Directed Therapy for Tuberculosis Infection. Pathogens 2023; 12:1343. [PMID: 38003807 PMCID: PMC10675005 DOI: 10.3390/pathogens12111343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/27/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Mucosal-associated invariant T (MAIT) cells are a distinct population of non-conventional T cells that have been preserved through evolution and possess properties of both innate and adaptive immune cells. They are activated through the recognition of antigens presented by non-polymorphic MR1 proteins or, alternately, can be stimulated by specific cytokines. These cells are multifaceted and exert robust antimicrobial activity against bacterial and viral infections, direct the immune response through the modulation of other immune cells, and exhibit a specialized tissue homeostasis and repair function. These distinct characteristics have instigated interest in MAIT cell biology for immunotherapy and vaccine development. This review describes the current understanding of MAIT cell activation, their role in infections and diseases with an emphasis on tuberculosis (TB) infection, and perspectives on the future use of MAIT cells in immune-mediated therapy.
Collapse
Affiliation(s)
- Melissa D Chengalroyen
- Molecular Mycobacteriology Research Unit, Institute of Infectious Disease and Molecular Medicine, Department of Pathology, University of Cape Town, Cape Town 7700, South Africa
| |
Collapse
|
13
|
Shapiro MR, Dong X, Perry DJ, McNichols JM, Thirawatananond P, Posgai AL, Peters LD, Motwani K, Musca RS, Muir A, Concannon P, Jacobsen LM, Mathews CE, Wasserfall CH, Haller MJ, Schatz DA, Atkinson MA, Brusko MA, Bacher R, Brusko TM. Human immune phenotyping reveals accelerated aging in type 1 diabetes. JCI Insight 2023; 8:e170767. [PMID: 37498686 PMCID: PMC10544250 DOI: 10.1172/jci.insight.170767] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/19/2023] [Indexed: 07/29/2023] Open
Abstract
The proportions and phenotypes of immune cell subsets in peripheral blood undergo continual and dramatic remodeling throughout the human life span, which complicates efforts to identify disease-associated immune signatures in type 1 diabetes (T1D). We conducted cross-sectional flow cytometric immune profiling on peripheral blood from 826 individuals (stage 3 T1D, their first-degree relatives, those with ≥2 islet autoantibodies, and autoantibody-negative unaffected controls). We constructed an immune age predictive model in unaffected participants and observed accelerated immune aging in T1D. We used generalized additive models for location, shape, and scale to obtain age-corrected data for flow cytometry and complete blood count readouts, which can be visualized in our interactive portal (ImmScape); 46 parameters were significantly associated with age only, 25 with T1D only, and 23 with both age and T1D. Phenotypes associated with accelerated immunological aging in T1D included increased CXCR3+ and programmed cell death 1-positive (PD-1+) frequencies in naive and memory T cell subsets, despite reduced PD-1 expression levels on memory T cells. Phenotypes associated with T1D after age correction were predictive of T1D status. Our findings demonstrate advanced immune aging in T1D and highlight disease-associated phenotypes for biomarker monitoring and therapeutic interventions.
Collapse
Affiliation(s)
- Melanie R. Shapiro
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, and
- Diabetes Institute and
| | - Xiaoru Dong
- Diabetes Institute and
- Department of Biostatistics, College of Public Health and Health Professions, University of Florida, Gainesville, Florida, USA
| | - Daniel J. Perry
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, and
- Diabetes Institute and
| | - James M. McNichols
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, and
- Diabetes Institute and
| | - Puchong Thirawatananond
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, and
- Diabetes Institute and
| | - Amanda L. Posgai
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, and
- Diabetes Institute and
| | - Leeana D. Peters
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, and
- Diabetes Institute and
| | - Keshav Motwani
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, and
- Diabetes Institute and
| | - Richard S. Musca
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, and
- Diabetes Institute and
| | - Andrew Muir
- Department of Pediatrics, Emory University, Atlanta, Georgia, USA
| | - Patrick Concannon
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, and
- Diabetes Institute and
- Genetics Institute and
| | - Laura M. Jacobsen
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, and
- Diabetes Institute and
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Clayton E. Mathews
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, and
- Diabetes Institute and
| | - Clive H. Wasserfall
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, and
- Diabetes Institute and
| | - Michael J. Haller
- Diabetes Institute and
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Desmond A. Schatz
- Diabetes Institute and
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Mark A. Atkinson
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, and
- Diabetes Institute and
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Maigan A. Brusko
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, and
- Diabetes Institute and
| | - Rhonda Bacher
- Diabetes Institute and
- Department of Biostatistics, College of Public Health and Health Professions, University of Florida, Gainesville, Florida, USA
| | - Todd M. Brusko
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, and
- Diabetes Institute and
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
14
|
Netea MG, Ziogas A, Benn CS, Giamarellos-Bourboulis EJ, Joosten LAB, Arditi M, Chumakov K, van Crevel R, Gallo R, Aaby P, van der Meer JWM. The role of trained immunity in COVID-19: Lessons for the next pandemic. Cell Host Microbe 2023; 31:890-901. [PMID: 37321172 PMCID: PMC10265767 DOI: 10.1016/j.chom.2023.05.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 05/03/2023] [Accepted: 05/08/2023] [Indexed: 06/17/2023]
Abstract
Trained immunity is a long-term increase in responsiveness of innate immune cells, induced by certain infections and vaccines. During the last 3 years of the COVID-19 pandemic, vaccines that induce trained immunity, such as BCG, MMR, OPV, and others, have been investigated for their capacity to protect against COVID-19. Further, trained immunity-inducing vaccines have been shown to improve B and T cell responsiveness to both mRNA- and adenovirus-based anti-COVID-19 vaccines. Moreover, SARS-CoV-2 infection itself induces inappropriately strong programs of trained immunity in some individuals, which may contribute to the long-term inflammatory sequelae. In this review, we detail these and other aspects of the role of trained immunity in SARS-CoV-2 infection and COVID-19. We also examine the learnings from the trained immunity studies conducted in the context of this pandemic and discuss how they may help us in preparing for future infectious outbreaks.
Collapse
Affiliation(s)
- Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Immunology and Metabolism, Life & Medical Sciences Institute, University of Bonn, Bonn, Germany.
| | - Athanasios Ziogas
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Christine Stabell Benn
- Bandim Health Project, OPEN, Department of Clinical Research, University of Southern Denmark, Copenhagen, Denmark; Danish Institute for Advanced Study, University of Southern Denmark, Odense, Denmark
| | | | - Leo A B Joosten
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Medical Genetics, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Moshe Arditi
- Departments of Pediatrics and Biomedical Sciences, Guerin Children's and Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, USA
| | - Konstantin Chumakov
- Office of Vaccines Research and Review, Food and Drug Administration, Global Virus Network Center of Excellence, Silver Spring, MD, USA
| | - Reinout van Crevel
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Robert Gallo
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Global Virus Network, Baltimore, MD, USA
| | - Peter Aaby
- Bandim Health Project, OPEN, Department of Clinical Research, University of Southern Denmark, Copenhagen, Denmark
| | - Jos W M van der Meer
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
15
|
Yoshida M, Kobashi Y, Kawamura T, Shimazu Y, Nishikawa Y, Omata F, Saito H, Yamamoto C, Zhao T, Takita M, Ito N, Tatsuno K, Kaneko Y, Nakayama A, Kodama T, Wakui M, Takahashi K, Tsubokura M. Association of systemic adverse reaction patterns with long-term dynamics of humoral and cellular immunity after coronavirus disease 2019 third vaccination. Sci Rep 2023; 13:9264. [PMID: 37286720 PMCID: PMC10246541 DOI: 10.1038/s41598-023-36429-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/03/2023] [Indexed: 06/09/2023] Open
Abstract
The objective of this study was to clarify the impact of adverse reactions on immune dynamics. We investigated the pattern of systemic adverse reactions after the second and third coronavirus disease 2019 (COVID-19) vaccinations and their relationship with immunoglobulin G against severe acute respiratory syndrome coronavirus 2 spike 1 protein titers, neutralizing antibody levels, peak cellular responses, and the rate of decrease after the third vaccination in a large-scale community-based cohort in Japan. Participants who received a third vaccination with BNT162b2 (Pfizer/BioNTech) or mRNA-1273 (Moderna), had two blood samples, had not had COVID-19, and had information on adverse reactions after the second and third vaccinations (n = 2198) were enrolled. We collected data on sex, age, adverse reactions, comorbidities, and daily medicine using a questionnaire survey. Participants with many systemic adverse reactions after the second and third vaccinations had significantly higher humoral and cellular immunity in the peak phase. Participants with multiple systemic adverse reactions after the third vaccination had small changes in the geometric values of humoral immunity and had the largest geometric mean of cellar immunity in the decay phase. Systemic adverse reactions after the third vaccination helped achieve high peak values and maintain humoral and cellular immunity. This information may help promote uptake of a third vaccination, even among those who hesitate due to adverse reactions.
Collapse
Affiliation(s)
- Makoto Yoshida
- Faculty of Medicine, Teikyo University School of Medicine, Itabashi-ku, Tokyo, 173-8605, Japan
- Department of Radiation Health Management, Fukushima Medical University School of Medicine, Fukushima, Fukushima, 960-1247, Japan
| | - Yurie Kobashi
- Department of Radiation Health Management, Fukushima Medical University School of Medicine, Fukushima, Fukushima, 960-1247, Japan
- Department of Internal Medicine, Serireikai Group Hirata Central Hospital, Ishikawa Country, Fukushima, 963-8202, Japan
| | - Takeshi Kawamura
- Isotope Science Centre, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0032, Japan
- Laboratory for Systems Biology and Medicine, Research Centre for Advanced Science and Technology (RCAST), The University of Tokyo, Meguro-ku, Tokyo, 153-8904, Japan
| | - Yuzo Shimazu
- Department of Radiation Health Management, Fukushima Medical University School of Medicine, Fukushima, Fukushima, 960-1247, Japan
| | - Yoshitaka Nishikawa
- Department of Internal Medicine, Serireikai Group Hirata Central Hospital, Ishikawa Country, Fukushima, 963-8202, Japan
| | - Fumiya Omata
- Department of Internal Medicine, Serireikai Group Hirata Central Hospital, Ishikawa Country, Fukushima, 963-8202, Japan
| | - Hiroaki Saito
- Department of Radiation Health Management, Fukushima Medical University School of Medicine, Fukushima, Fukushima, 960-1247, Japan
| | - Chika Yamamoto
- Department of Radiation Health Management, Fukushima Medical University School of Medicine, Fukushima, Fukushima, 960-1247, Japan
| | - Tianchen Zhao
- Department of Radiation Health Management, Fukushima Medical University School of Medicine, Fukushima, Fukushima, 960-1247, Japan
| | - Morihiro Takita
- Department of Radiation Health Management, Fukushima Medical University School of Medicine, Fukushima, Fukushima, 960-1247, Japan
| | - Naomi Ito
- Department of Radiation Health Management, Fukushima Medical University School of Medicine, Fukushima, Fukushima, 960-1247, Japan
| | - Kenji Tatsuno
- Genome Science & Medicine Laboratory, Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Meguro-ku, Tokyo, 153-8904, Japan
| | - Yudai Kaneko
- Laboratory for Systems Biology and Medicine, Research Centre for Advanced Science and Technology (RCAST), The University of Tokyo, Meguro-ku, Tokyo, 153-8904, Japan
- Medical & Biological Laboratories Co., Ltd, Minato-ku, Tokyo, 105-0012, Japan
| | - Aya Nakayama
- Isotope Science Centre, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Tatsuhiko Kodama
- Laboratory for Systems Biology and Medicine, Research Centre for Advanced Science and Technology (RCAST), The University of Tokyo, Meguro-ku, Tokyo, 153-8904, Japan
| | - Masatoshi Wakui
- Department of Laboratory Medicine, Keio University School of Medicine, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Kenzo Takahashi
- Teikyo University Graduate School of Public Health, Itabashi-ku, Tokyo, 173-8605, Japan
- Department of Pediatrics, Jyoban Hospital, Iwaki, Fukushima, 972-8322, Japan
| | - Masaharu Tsubokura
- Department of Radiation Health Management, Fukushima Medical University School of Medicine, Fukushima, Fukushima, 960-1247, Japan.
- Department of Internal Medicine, Serireikai Group Hirata Central Hospital, Ishikawa Country, Fukushima, 963-8202, Japan.
- Minamisoma Municipal General Hospital, Minamisoma, Fukushima, 975-0033, Japan.
| |
Collapse
|
16
|
Kumar NP, Padmapriyadarsini C, Rajamanickam A, Bhavani PK, Nancy A, Jeyadeepa B, Renji RM, Babu S. BCG vaccination induces enhanced humoral responses in elderly individuals. Tuberculosis (Edinb) 2023; 139:102320. [PMID: 36758395 DOI: 10.1016/j.tube.2023.102320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/16/2023] [Accepted: 01/29/2023] [Indexed: 02/02/2023]
Abstract
BACKGROUND Studies have reported the beneficial effects of Bacillus Calmette Guerin (BCG) vaccination, including non-specific cross-protection against other infectious diseases. METHODS We investigated the impact of BCG vaccination on the frequencies of B cell subsets as well as total antibody levels in healthy elderly individuals at one month post vaccination. We also compared the above-mentioned parameters in post-vaccinated individuals to unvaccinated controls. RESULTS Our results demonstrate that BCG vaccination induced enhanced frequencies of immature, classical and activated memory B cells and plasma cells and diminished frequencies of naïve and atypical memory B cells. BCG vaccination induced significantly increased levels of total IgG subclass isotypes compared to baseline. Similarly, all of the above parameters were significantly higher in vaccinated individuals compared to unvaccinated controls. CONCLUSION BCG vaccination was associated with enhanced B cell subsets, suggesting its potential utility by enhancing heterologous immunity.
Collapse
Affiliation(s)
| | | | - Anuradha Rajamanickam
- ICMR-National Institute for Research in Tuberculosis-International Center for Excellence in Research, Chennai, India
| | | | - Arul Nancy
- ICMR-National Institute for Research in Tuberculosis-International Center for Excellence in Research, Chennai, India
| | - B Jeyadeepa
- ICMR-National Institute for Research in Tuberculosis, Chennai, India
| | - Rachel Mariam Renji
- ICMR-National Institute for Research in Tuberculosis-International Center for Excellence in Research, Chennai, India
| | - Subash Babu
- ICMR-National Institute for Research in Tuberculosis-International Center for Excellence in Research, Chennai, India
| |
Collapse
|
17
|
Fiction and Facts about BCG Imparting Trained Immunity against COVID-19. Vaccines (Basel) 2022; 10:vaccines10071006. [PMID: 35891168 PMCID: PMC9316941 DOI: 10.3390/vaccines10071006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 02/05/2023] Open
Abstract
The Bacille Calmette-Guérin or BCG vaccine, the only vaccine available against Mycobacterium tuberculosis can induce a marked Th1 polarization of T-cells, characterized by the antigen-specific secretion of IFN-γ and enhanced antiviral response. A number of studies have supported the concept of protection by non-specific boosting of immunity by BCG and other microbes. BCG is a well-known example of a trained immunity inducer since it imparts ‘non-specific heterologous’ immunity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for the recent pandemic. SARS-CoV-2 continues to inflict an unabated surge in morbidity and mortality around the world. There is an urgent need to devise and develop alternate strategies to bolster host immunity against the coronavirus disease of 2019 (COVID-19) and its continuously emerging variants. Several vaccines have been developed recently against COVID-19, but the data on their protective efficacy remains doubtful. Therefore, urgent strategies are required to enhance system immunity to adequately defend against newly emerging infections. The concept of trained immunity may play a cardinal role in protection against COVID-19. The ability of trained immunity-based vaccines is to promote heterologous immune responses beyond their specific antigens, which may notably help in defending against an emergency situation such as COVID-19 when the protective ability of vaccines is suspicious. A growing body of evidence points towards the beneficial non-specific boosting of immune responses by BCG or other microbes, which may protect against COVID-19. Clinical trials are underway to consider the efficacy of BCG vaccination against SARS-CoV-2 on healthcare workers and the elderly population. In this review, we will discuss the role of BCG in eliciting trained immunity and the possible limitations and challenges in controlling COVID-19 and future pandemics.
Collapse
|