1
|
Leighton GRM, Froneman PW, Serieys LEK, Bishop JM. Sustained use of marine subsidies promotes niche expansion in a wild felid. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169912. [PMID: 38184259 DOI: 10.1016/j.scitotenv.2024.169912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/18/2023] [Accepted: 01/02/2024] [Indexed: 01/08/2024]
Abstract
The use of marine subsidies by terrestrial predators can facilitate substantial transfer of nutrients between marine and terrestrial ecosystems. Marine resource subsidies may have profound effects on predator ecology, influencing population and niche dynamics. Expanding niches of top consumers can impact ecosystem resilience and interspecific interactions, affecting predator-prey dynamics and competition. We investigate the occurrence, importance, and impact of marine resources on trophic ecology and niche dynamics in a highly generalist predator, the caracal (Caracal caracal), on the Cape Peninsula, South Africa. Caracals have flexible diets, feeding across a wide range of terrestrial and aquatic prey. We use carbon and nitrogen stable isotope analysis of fur samples (n = 75) to understand trophic position and niche shifts in coastal and inland foragers, as well as the implications of a diet rich in marine resources. We found significant differences in isotope signatures between these groups, with higher δ13C (P < 0.05) and δ15N values (P < 0.01) in coastal foragers. Isotope mixing models reveal that these elevated signatures were due to non-terrestrial food subsidies, where approximately a third of coastal foraging caracal diet comprised marine prey. The addition of marine prey species to diet increased both the trophic level and isotope niche size of coastal foraging caracals, with potential impacts on prey populations and competition. Our results suggest that marine prey are an important dietary resource for coastal foraging caracals, where seabirds, including two endangered species, are a major component of their diet. However, there are likely risks associated with these resource benefits, as routine consumption of seabirds is linked with higher pollutant burdens, particularly metals. Increased encounters between this terrestrial predator and seabirds may be a result of increased mainland colonies due to changes in habitat availability and the highly opportunistic and generalist foraging behaviour of a native predator.
Collapse
Affiliation(s)
- Gabriella R M Leighton
- Department of Zoology and Entomology, Rhodes University, PO Box 94, Grahamstown 6140, South Africa; Institute for Communities and Wildlife in Africa, Department of Biological Sciences, University of Cape Town, Rondebosch, Cape Town 7701, South Africa.
| | - P William Froneman
- Department of Zoology and Entomology, Rhodes University, PO Box 94, Grahamstown 6140, South Africa
| | - Laurel E K Serieys
- Institute for Communities and Wildlife in Africa, Department of Biological Sciences, University of Cape Town, Rondebosch, Cape Town 7701, South Africa; Panthera, NY, New York, USA; Cape Leopard Trust, Cape Town, South Africa
| | - Jacqueline M Bishop
- Institute for Communities and Wildlife in Africa, Department of Biological Sciences, University of Cape Town, Rondebosch, Cape Town 7701, South Africa
| |
Collapse
|
2
|
Pasciullo Boychuck S, Brenner LJ, Gagorik CN, Schamel JT, Baker S, Tran E, vonHoldt BM, Koepfli K, Maldonado JE, DeCandia AL. The gut microbiomes of Channel Island foxes and island spotted skunks exhibit fine-scale differentiation across host species and island populations. Ecol Evol 2024; 14:e11017. [PMID: 38362164 PMCID: PMC10867392 DOI: 10.1002/ece3.11017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/09/2023] [Accepted: 12/11/2023] [Indexed: 02/17/2024] Open
Abstract
California's Channel Islands are home to two endemic mammalian carnivores: island foxes (Urocyon littoralis) and island spotted skunks (Spilogale gracilis amphiala). Although it is rare for two insular terrestrial carnivores to coexist, these known competitors persist on both Santa Cruz Island and Santa Rosa Island. We hypothesized that examination of their gut microbial communities would provide insight into the factors that enable this coexistence, as microbial symbionts often reflect host evolutionary history and contemporary ecology. Using rectal swabs collected from island foxes and island spotted skunks sampled across both islands, we generated 16S rRNA amplicon sequencing data to characterize their gut microbiomes. While island foxes and island spotted skunks both harbored the core mammalian microbiome, host species explained the largest proportion of variation in the dataset. We further identified intraspecific variation between island populations, with greater differentiation observed between more specialist island spotted skunk populations compared to more generalist island fox populations. This pattern may reflect differences in resource utilization following fine-scale niche differentiation. It may further reflect evolutionary differences regarding the timing of intraspecific separation. Considered together, this study contributes to the growing catalog of wildlife microbiome studies, with important implications for understanding how eco-evolutionary processes enable the coexistence of terrestrial carnivores-and their microbiomes-in island environments.
Collapse
Affiliation(s)
| | | | | | | | | | - Elton Tran
- Ecology and Evolutionary BiologyPrinceton UniversityPrincetonNew JerseyUSA
| | | | - Klaus‐Peter Koepfli
- Center for Species SurvivalSmithsonian's National Zoo & Conservation Biology InstituteFront RoyalVirginiaUSA
- Smithsonian‐Mason School of ConservationGeorge Mason UniversityFront RoyalVirginiaUSA
| | - Jesús E. Maldonado
- Center for Conservation GenomicsSmithsonian's National Zoo & Conservation Biology InstituteWashingtonDCUSA
| | - Alexandra L. DeCandia
- Biology, Georgetown UniversityWashingtonDCUSA
- Center for Conservation GenomicsSmithsonian's National Zoo & Conservation Biology InstituteWashingtonDCUSA
| |
Collapse
|
3
|
Walter JA, Emery KA, Dugan JE, Hubbard DM, Bell TW, Sheppard LW, Karatayev VA, Cavanaugh KC, Reuman DC, Castorani MCN. Spatial synchrony cascades across ecosystem boundaries and up food webs via resource subsidies. Proc Natl Acad Sci U S A 2024; 121:e2310052120. [PMID: 38165932 PMCID: PMC10786303 DOI: 10.1073/pnas.2310052120] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/28/2023] [Indexed: 01/04/2024] Open
Abstract
Cross-ecosystem subsidies are critical to ecosystem structure and function, especially in recipient ecosystems where they are the primary source of organic matter to the food web. Subsidies are indicative of processes connecting ecosystems and can couple ecological dynamics across system boundaries. However, the degree to which such flows can induce cross-ecosystem cascades of spatial synchrony, the tendency for system fluctuations to be correlated across locations, is not well understood. Synchrony has destabilizing effects on ecosystems, adding to the importance of understanding spatiotemporal patterns of synchrony transmission. In order to understand whether and how spatial synchrony cascades across the marine-terrestrial boundary via resource subsidies, we studied the relationship between giant kelp forests on rocky nearshore reefs and sandy beach ecosystems that receive resource subsidies in the form of kelp wrack (detritus). We found that synchrony cascades from rocky reefs to sandy beaches, with spatiotemporal patterns mediated by fluctuations in live kelp biomass, wave action, and beach width. Moreover, wrack deposition synchronized local abundances of shorebirds that move among beaches seeking to forage on wrack-associated invertebrates, demonstrating that synchrony due to subsidies propagates across trophic levels in the recipient ecosystem. Synchronizing resource subsidies likely play an underappreciated role in the spatiotemporal structure, functioning, and stability of ecosystems.
Collapse
Affiliation(s)
- Jonathan A. Walter
- Department of Environmental Sciences, University of Virginia, Charlottesville, VA22904
- Center for Watershed Sciences, University of California, Davis, CA95616
| | - Kyle A. Emery
- Department of Geography, University of California, Los Angeles, CA90095
- Marine Science Institute, University of California, Santa Barbara, CA93106
| | - Jenifer E. Dugan
- Marine Science Institute, University of California, Santa Barbara, CA93106
| | - David M. Hubbard
- Marine Science Institute, University of California, Santa Barbara, CA93106
| | - Tom W. Bell
- Department of Applied Ocean Physics and Engineering, Woods Hole Oceanographic Institution, Woods Hole, MA02543
| | - Lawrence W. Sheppard
- Marine Biological Association of the United Kingdom, PlymouthPL1 2PB, United Kingdom
- Department of Ecology and Evolutionary Biology and Kansas Biological Survey and Center for Ecological Research, University of Kansas, Lawrence, KS66047
| | - Vadim A. Karatayev
- Department of Ecology and Evolutionary Biology and Kansas Biological Survey and Center for Ecological Research, University of Kansas, Lawrence, KS66047
| | - Kyle C. Cavanaugh
- Department of Geography, University of California, Los Angeles, CA90095
| | - Daniel C. Reuman
- Department of Ecology and Evolutionary Biology and Kansas Biological Survey and Center for Ecological Research, University of Kansas, Lawrence, KS66047
| | - Max C. N. Castorani
- Department of Environmental Sciences, University of Virginia, Charlottesville, VA22904
| |
Collapse
|
4
|
Duke BM, Emery KA, Dugan JE, Hubbard DM, Joab BM. Uptake of polycyclic aromatic hydrocarbons via high-energy water accommodated fraction (HEWAF) by beach hoppers (Amphipoda, Talitridae) using different sandy beach exposure pathways. MARINE POLLUTION BULLETIN 2023; 190:114835. [PMID: 37023547 DOI: 10.1016/j.marpolbul.2023.114835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 02/13/2023] [Accepted: 03/10/2023] [Indexed: 06/19/2023]
Abstract
Sandy beach ecosystems are highly dynamic coastal environments subject to a variety of anthropogenic pressures and impacts. Pollution from oil spills can damage beach ecosystems through the toxic effects of hydrocarbons on organisms and the disruptive nature of large-scale clean-up practices. On temperate sandy beaches, intertidal talitrid amphipods are primary consumers of macrophyte wrack subsidies and serve as prey for higher trophic level consumers, such as birds and fish. These integral organisms of the beach food web can be exposed to hydrocarbons by direct contact with oiled sand through burrowing and by the consumption of oiled wrack. We experimentally evaluated the primary polycyclic aromatic hydrocarbon (PAH) exposure pathway via high-energy water accommodated fraction (HEWAF) for a species of talitrid amphipod (Megalorchestia pugettensis). Our results indicated that tissue PAH concentrations in talitrids were six-fold higher in treatments that included oiled sand compared to those with only oiled kelp and the controls.
Collapse
Affiliation(s)
- Bryand M Duke
- National Oceanic and Atmospheric Administration, St. Petersburg, FL 33701, United States of America.
| | - Kyle A Emery
- Marine Science Institute, UC Santa Barbara, Santa Barbara, CA 93106, United States of America; Department of Geography, UC Los Angeles, Los Angeles, CA 90095, United States of America
| | - Jenifer E Dugan
- Marine Science Institute, UC Santa Barbara, Santa Barbara, CA 93106, United States of America
| | - David M Hubbard
- Marine Science Institute, UC Santa Barbara, Santa Barbara, CA 93106, United States of America
| | - Bruce M Joab
- Office of Spill Prevention and Response (OSPR), California Department of Fish and Wildlife, 95605, United States of America
| |
Collapse
|
5
|
Christie ALM, Lee MXY, Evenhuis JV, Rickert SS, Kass PH, Verstraete FJM. Dental and temporomandibular joint pathology of the island fox (Urocyon littoralis). J Comp Pathol 2023; 200:23-34. [PMID: 36630854 DOI: 10.1016/j.jcpa.2022.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/07/2022] [Accepted: 11/30/2022] [Indexed: 01/11/2023]
Abstract
Museum skull specimens from 318 island foxes (Urocyon littoralis) were examined macroscopically according to predefined criteria. The study population included males (n = 129, 40.6%), females (n = 93, 29.3%) and animals of unknown sex (n = 96, 30.2%), and comprised 182 (57.2%) adults, 118 (37.1%) young adults and 18 (5.7%) individuals of unknown age, with juveniles and neonates excluded. The number of teeth present for examination was 11,438 (85.6%) with 1918 (14.4%) absent artefactually, 4 (0.03%) absent congenitally and 243 (1.82%) lost ante mortem through acquired tooth loss. There were seven persistent deciduous teeth (0.05%) in three specimens and 11 supernumerary teeth (0.08%) in 10 specimens. Teeth with extra roots were found in 38 skulls (11.9%) with 0.48% of all teeth affected. Two (0.63%) specimens had one tooth with an abnormal form. Fifty-eight (18.2%) specimens had bone fenestrations. Of the alveoli examined, 5361 (46.9%) displayed bony changes suggestive of periodontitis, with 315 (99.1%) of skulls affected. Of the teeth available for examination in 310 specimens (97.5%), most (n = 6,040, 52.8%) had some degree of attrition or abrasion. Fractures affected 1217 (11.0%) of the teeth present in 266 specimens (83.6%). Twenty-three periapical lesions (0.20%) were present in 16 skulls (5.03%). Evidence of temporomandibular joint osteoarthritis was found in seven specimens (0.02%) on either the mandibular head of the condylar process or on the mandibular fossa of the temporal bone.
Collapse
Affiliation(s)
- Anneka L M Christie
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, California, USA
| | - Michelle X Y Lee
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, California, USA
| | - Janny V Evenhuis
- William R. Pritchard Veterinary Medical Teaching Hospital, School of Veterinary Medicine, University of California, Davis, California, USA
| | - Siobhan S Rickert
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, California, USA
| | - Philip H Kass
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, California, USA
| | - Frank J M Verstraete
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, California, USA.
| |
Collapse
|
6
|
Hyndes GA, Berdan EL, Duarte C, Dugan JE, Emery KA, Hambäck PA, Henderson CJ, Hubbard DM, Lastra M, Mateo MA, Olds A, Schlacher TA. The role of inputs of marine wrack and carrion in sandy-beach ecosystems: a global review. Biol Rev Camb Philos Soc 2022; 97:2127-2161. [PMID: 35950352 PMCID: PMC9804821 DOI: 10.1111/brv.12886] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 06/26/2022] [Accepted: 06/29/2022] [Indexed: 01/09/2023]
Abstract
Sandy beaches are iconic interfaces that functionally link the ocean with the land via the flow of organic matter from the sea. These cross-ecosystem fluxes often comprise uprooted seagrass and dislodged macroalgae that can form substantial accumulations of detritus, termed 'wrack', on sandy beaches. In addition, the tissue of the carcasses of marine animals that regularly wash up on beaches form a rich food source ('carrion') for a diversity of scavenging animals. Here, we provide a global review of how wrack and carrion provide spatial subsidies that shape the structure and functioning of sandy-beach ecosystems (sandy beaches and adjacent surf zones), which typically have little in situ primary production. We also examine the spatial scaling of the influence of these processes across the broader land- and seascape, and identify key gaps in our knowledge to guide future research directions and priorities. Large quantities of detrital kelp and seagrass can flow into sandy-beach ecosystems, where microbial decomposers and animals process it. The rates of wrack supply and its retention are influenced by the oceanographic processes that transport it, the geomorphology and landscape context of the recipient beaches, and the condition, life history and morphological characteristics of the macrophyte taxa that are the ultimate source of wrack. When retained in beach ecosystems, wrack often creates hotspots of microbial metabolism, secondary productivity, biodiversity, and nutrient remineralization. Nutrients are produced during wrack breakdown, and these can return to coastal waters in surface flows (swash) and aquifers discharging into the subtidal surf. Beach-cast kelp often plays a key trophic role, being an abundant and preferred food source for mobile, semi-aquatic invertebrates that channel imported algal matter to predatory invertebrates, fish, and birds. The role of beach-cast marine carrion is likely to be underestimated, as it can be consumed rapidly by highly mobile scavengers (e.g. foxes, coyotes, raptors, vultures). These consumers become important vectors in transferring marine productivity inland, thereby linking marine and terrestrial ecosystems. Whilst deposits of organic matter on sandy-beach ecosystems underpin a range of ecosystem functions and services, they can be at variance with aesthetic perceptions resulting in widespread activities, such as 'beach cleaning and grooming'. This practice diminishes the energetic base of food webs, intertidal fauna, and biodiversity. Global declines in seagrass beds and kelp forests (linked to global warming) are predicted to cause substantial reductions in the amounts of marine organic matter reaching many beach ecosystems, likely causing flow-on effects for food webs and biodiversity. Similarly, future sea-level rise and increased storm frequency are likely to alter profoundly the physical attributes of beaches, which in turn can change the rates at which beaches retain and process the influxes of wrack and animal carcasses. Conservation of the multi-faceted ecosystem services that sandy beaches provide will increasingly need to encompass a greater societal appreciation and the safeguarding of ecological functions reliant on beach-cast organic matter on innumerable ocean shores worldwide.
Collapse
Affiliation(s)
- Glenn A. Hyndes
- Centre for Marine Ecosystems Research, School of ScienceEdith Cowan UniversityJoondalupWestern AustraliaAustralia
| | - Emma L. Berdan
- Department of Marine SciencesUniversity of GothenburgGöteborgSweden
| | - Cristian Duarte
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la VidaUniversidad Andres BelloSantiagoChile
| | - Jenifer E. Dugan
- Marine Science InstituteUniversity of CaliforniaSanta BarbaraCA93106USA
| | - Kyle A. Emery
- Marine Science InstituteUniversity of CaliforniaSanta BarbaraCA93106USA
| | - Peter A. Hambäck
- Department of Ecology, Environment and Plant SciencesStockholm UniversityStockholmSweden
| | - Christopher J. Henderson
- School of Science, Technology, and EngineeringUniversity of the Sunshine CoastMaroochydoreQueenslandAustralia
| | - David M. Hubbard
- Marine Science InstituteUniversity of CaliforniaSanta BarbaraCA93106USA
| | - Mariano Lastra
- Centro de Investigación Mariña, Edificio CC ExperimentaisUniversidade de Vigo, Campus de Vigo36310VigoSpain
| | - Miguel A. Mateo
- Centre for Marine Ecosystems Research, School of ScienceEdith Cowan UniversityJoondalupWestern AustraliaAustralia
- Centro de Estudios Avanzados de Blanes, Consejo Superior de Investigaciones CientíficasBlanesSpain
| | - Andrew Olds
- School of Science, Technology, and EngineeringUniversity of the Sunshine CoastMaroochydoreQueenslandAustralia
| | - Thomas A. Schlacher
- School of Science, Technology, and EngineeringUniversity of the Sunshine CoastMaroochydoreQueenslandAustralia
| |
Collapse
|