1
|
Liu H, Xu T, Ye W, Li Y, He K, Zhu Y, Zou X, Ruan H. Urbanisation Affects Millipede Gut Microbiota Communities by Impeding Host Gene Flow. Mol Ecol 2025:e17792. [PMID: 40347019 DOI: 10.1111/mec.17792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 04/11/2025] [Accepted: 04/28/2025] [Indexed: 05/12/2025]
Abstract
Urbanisation leads to the alteration of the living environment of soil fauna and isolates them, significantly influencing the evolutionary processes of soil fauna. Faunal gut microbiota serves to bridge hosts with changing environments; thus, they are viable indicators of host adaptation. For this study, we investigated how urbanisation affects the gut microbiota and population genetics of Spirobolus bungii. The results revealed that urbanisation did not affect the genetic diversity of S. bungii populations but acted as a barrier, which hindered its gene flow. Genetic differentiation was associated with the compositional similarity of gut microbiota among populations; however, environmental distinctions had no impact. Our findings highlighted that gene flow between populations was a critical factor, which supported the premise that urbanisation influences the gut microbiota compositions of species. This study contributes to a deeper understanding of the mechanisms that underlie changes in faunal gut microbiota driven by gene flow in the context of urbanisation.
Collapse
Affiliation(s)
- Hongyi Liu
- College of Life Sciences, Nanjing Forestry University, Nanjing, China
- College of Ecology and Environment, Nanjing Forestry University, Nanjing, China
| | - Tangjun Xu
- College of Life Sciences, Nanjing Forestry University, Nanjing, China
| | - Wentao Ye
- College of Life Sciences, Nanjing Forestry University, Nanjing, China
| | - Yuanyuan Li
- School of Food Science, Nanjing Xiaozhuang University, Nanjing, China
| | - Ke He
- College of Animal Science and Technology, Zhejiang A&F University, Lin'an, China
| | - Ying Zhu
- Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, China
| | - Xiaoming Zou
- Department of Environmental Science, College of Natural Sciences, University of Puerto Rico, San Juan, Puerto Rico, USA
| | - Honghua Ruan
- College of Ecology and Environment, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
2
|
Lettoof DC, Nguyen TV, Richmond WR, Nice HE, Gagnon MM, Beale DJ. Bioaccumulation and metabolic impact of environmental PFAS residue on wild-caught urban wetland tiger snakes (Notechis scutatus). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:165260. [PMID: 37400030 DOI: 10.1016/j.scitotenv.2023.165260] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/05/2023] [Accepted: 06/30/2023] [Indexed: 07/05/2023]
Abstract
PFAS contamination of urban waters is widespread but understanding the biological impact of its accumulation is limited to humans and common ecotoxicological model organisms. Here, we combine PFAS exposure and bioaccumulation patterns with whole organism responses and omics-based ecosurveillance methods to investigate the potential impacts of PFAS on a top predator of wetlands, the tiger snake (Notechis scutatus). Tiger snakes (18 male and 17 female) were collected from four wetlands with varying PFAS chemical profiles and concentrations in Perth, Western Australia. Tiger snake livers were tested for 28 known PFAS compounds, and Σ28PFAS in liver tissues ranged between 322 ± 193 μg/kg at the most contaminated site to 1.31 ± 0.86 μg/kg at the least contaminated site. The dominant PFAS compound detected in liver tissues was PFOS. Lower body condition was associated with higher liver PFAS, and male snakes showed signs of high bioaccumulation whereas females showed signs of maternal offloading. Biochemical profiles of snake muscle, fat (adipose tissue), and gonads were analysed using a combination of liquid chromatography triple quadrupole (QqQ) and quadrupole time-of-flight (QToF) mass spectrometry methodologies. Elevated PFAS was associated with enriched energy production and maintenance pathways in the muscle, and had weak associations with energy-related lipids in the fat tissue, and lipids associated with cellular genesis and spermatogenesis in the gonads. These findings demonstrate the bioavailability of urban wetland PFAS in higher-order reptilian predators and suggest a negative impact on snake health and metabolic processes. This research expands on omics-based ecosurveillance tools for informing mechanistic toxicology and contributes to our understanding of the impact of PFAS residue on wildlife health to improve risk management and regulation.
Collapse
Affiliation(s)
- D C Lettoof
- School of Molecular and Life Sciences, Curtin University, Brand Drive, Bentley, WA 6102, Australia; Environment, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Centre for Environment and Life Sciences, Floreat, WA 6014, Australia.
| | - T V Nguyen
- Environment, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Ecosciences Precinct, Dutton Park, Qld 4102, Australia; NTT Institute of High Technology, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 700000, Viet Nam
| | - W R Richmond
- Department of Water and Environmental Regulation, Government of Western Australia, Joondalup, WA 6027, Australia
| | - H E Nice
- Department of Water and Environmental Regulation, Government of Western Australia, Joondalup, WA 6027, Australia
| | - M M Gagnon
- School of Molecular and Life Sciences, Curtin University, Brand Drive, Bentley, WA 6102, Australia
| | - D J Beale
- Environment, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Ecosciences Precinct, Dutton Park, Qld 4102, Australia
| |
Collapse
|
3
|
Snake life history traits and their association with urban habitat use in a tropical city. Urban Ecosyst 2023. [DOI: 10.1007/s11252-023-01327-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
AbstractUrbanisation changes landscapes, often simplifying and homogenising natural ecosystems while introducing novel environments. Although this transformation often adversely impacts native wildlife, generalist species that exhibit broad dietary and habitat requirements can persist and take advantage of urban environments. To understand which life history traits most influence the occurrence of a diverse snake assemblage in an urban environment, we leveraged a dataset of 5102 detection records for 12 snake species in the tropical city of Darwin, Australia. By building ecological niche models, calculating urban niche hypervolume, and compiling life history data, we analysed the diversity of environments occupied by each species and determined which landscape components were most associated with occurrence data. In keeping with our hypothesis that generalist species would be more successful, we found that species with broader habitat and dietary preferences, as well as a penchant for arboreality, were associated with larger urban niche hypervolumes and more frequent human–snake interactions. Additionally, we found that colubrid snakes had significantly larger urban niche hypervolumes than elapid species. These findings contribute to understanding how life history traits aid wildlife persistence in, and adaptation to, urban ecosystems, and have implications for landscape design and conservation management.
Collapse
|
4
|
Lettoof DC, Cornelis J, Jolly CJ, Aubret F, Gagnon MM, Hyndman TH, Barton DP, Bateman PW. Metal(loid) pollution, not urbanisation nor parasites predicts low body condition in a wetland bioindicator snake. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 295:118674. [PMID: 34906591 DOI: 10.1016/j.envpol.2021.118674] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 11/15/2021] [Accepted: 12/10/2021] [Indexed: 06/14/2023]
Abstract
Urban ecosystems and remnant habitat 'islands' therein, provide important strongholds for many wildlife species including those of conservation significance. However, the persistence of these habitats can be undermined if their structure and function are too severely disrupted. Urban wetlands, specifically, are usually degraded by a monoculture of invasive vegetation, disrupted hydrology, and chronic-contamination from a suite of anthropogenic pollutants. Top predators-as bioindicators-can be used to assess and monitor the health of these ecosystems. We measured eight health parameters (e.g., parasites, wounds and scars, tail loss and body condition) in a wetland top predator, the western tiger snake, Notechis scutatus occidentalis. For three years, snakes were sampled across four wetlands along an urban gradient. For each site, we used GIS software to measure the area of different landscapes and calculate an urbanisation-landscape score. Previously published research on snake contamination informed our calculations of a metal-pollution index for each site. We used generalised linear mixed models to assess the relationship between all health parameters and site variables. We found the metal-pollution index to have the most significant association with poor body condition. Although parasitism, tail loss and wounds differed among sites, none of these parameters influenced body condition. Additionally, the suite of health parameters suggested differing health status among sites; however, our measure of contemporary landscape urbanisation was never a significant predictor variable. Our results suggest that the health of wetland predators surrounding a rapidly growing city may be offset by higher levels of environmental pollution.
Collapse
Affiliation(s)
- Damian C Lettoof
- School of Molecular and Life Sciences, Curtin University, Bentley, WA, 6102, Australia.
| | - Jari Cornelis
- School of Molecular and Life Sciences, Curtin University, Bentley, WA, 6102, Australia
| | - Christopher J Jolly
- Institute of Land, Water and Society, School of Environmental Science, Charles Sturt University, Albury, NSW, 2640, Australia; Australian Museum Research Institute, Australian Museum, Sydney, NSW, 2010, Australia
| | - Fabien Aubret
- School of Molecular and Life Sciences, Curtin University, Bentley, WA, 6102, Australia; Station D'Ecologie Theorique et Experimentale Du CNRS a Moulis, UMR 5321 CNRS, 09200, Moulis, France
| | - Marthe Monique Gagnon
- School of Molecular and Life Sciences, Curtin University, Bentley, WA, 6102, Australia
| | - Timothy H Hyndman
- School of Veterinary Medicine, Murdoch University, Murdoch, WA, 6150, Australia; Harry Butler Institute, Murdoch University, Murdoch, WA, 6150, Australia
| | - Diane P Barton
- School of Animal & Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW, 2678, Australia
| | - Philip W Bateman
- School of Molecular and Life Sciences, Curtin University, Bentley, WA, 6102, Australia
| |
Collapse
|