1
|
Avetisov SE, Surnina ZV, Georgiev S. [Application of neural networks for improving the methods of assessment of corneal nerve fibers (preliminary report)]. Vestn Oftalmol 2025; 141:117-122. [PMID: 40353549 DOI: 10.17116/oftalma2025141021117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
Processing large datasets using artificial intelligence is a promising approach in disease diagnosis and monitoring that focuses on improving research algorithms for existing technologies. Interest in studying corneal nerve fibers (CNFs) arises not only from the need to understand the pathogenesis and progression of various ocular diseases but also from the potential for thin, unmyelinated corneal nerves to be used as biomarkers for systemic polyneuropathies. PURPOSE This study evaluates the preliminary results of using a neural network-based algorithm for analysis of confocal images of CNFs. MATERIAL AND METHODS The comparative study of CNFs was conducted in a group of 50 healthy volunteers (100 eyes) aged 25 to 55 years without concomitant ocular or systemic diseases. Confocal microscopy of the central cornea was performed to assess the state of CNFs. Image analysis and nerve recognition were carried out using special software (Liner calculate, Liner 1.2S) and a newly developed neural network-based algorithm. RESULTS The study considered suitable encoders for image processing, including ResNet_50, VGG_16, and InceptionResNetV2. Among these, images processed with the VGG_16 encoder in Imagenet mode demonstrated the highest quality. Quantitative CNF parameters (length and density of the main trunks, macrophage count, anisotropy and symmetry coefficients) were comparable between the regular software and the neural network-based algorithm. CONCLUSION The results indicate the potential of using neural networks, particularly the VGG_16 encoder family, for structural assessment of the CNFs. Key advantages of the proposed algorithm include improved quality of image interpretation and reduced time required for analysis.
Collapse
Affiliation(s)
- S E Avetisov
- Krasnov Research Institute of Eye Diseases, Moscow, Russia
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Z V Surnina
- Krasnov Research Institute of Eye Diseases, Moscow, Russia
| | - S Georgiev
- Krasnov Research Institute of Eye Diseases, Moscow, Russia
- Tula State University, Tula, Russia
| |
Collapse
|
2
|
Tur K. Multi-Modal Machine Learning Approach for COVID-19 Detection Using Biomarkers and X-Ray Imaging. Diagnostics (Basel) 2024; 14:2800. [PMID: 39767161 PMCID: PMC11674685 DOI: 10.3390/diagnostics14242800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
Background: Accurate and rapid detection of COVID-19 remains critical for clinical management, especially in resource-limited settings. Current diagnostic methods face challenges in terms of speed and reliability, creating a need for complementary AI-based models that integrate diverse data sources. Objectives: This study aimed to develop and evaluate a multi-modal machine learning model that combines clinical biomarkers and chest X-ray images to enhance diagnostic accuracy and provide interpretable insights. Methods: We used a dataset of 250 patients (180 COVID-19 positive and 70 negative cases) collected from clinical settings. Biomarkers such as CRP, ferritin, NLR, and albumin were included alongside chest X-ray images. Random Forest and Gradient Boosting models were used for biomarkers, and ResNet and VGG CNN architectures were applied to imaging data. A late-fusion strategy integrated predictions from these modalities. Stratified k-fold cross-validation ensured robust evaluation while preventing data leakage. Model performance was assessed using AUC-ROC, F1-score, Specificity, Negative Predictive Value (NPV), and Matthews Correlation Coefficient (MCC), with confidence intervals calculated via bootstrap resampling. Results: The Gradient Boosting + VGG fusion model achieved the highest performance, with an AUC-ROC of 0.94, F1-score of 0.93, Specificity of 93%, NPV of 96%, and MCC of 0.91. SHAP and LIME interpretability analyses identified CRP, ferritin, and specific lung regions as key contributors to predictions. Discussion: The proposed multi-modal approach significantly enhances diagnostic accuracy compared to single-modality models. Its interpretability aligns with clinical understanding, supporting its potential for real-world application.
Collapse
Affiliation(s)
- Kagan Tur
- Internal Medicine Department, Faculty of Medicine, Ahi Evran University, Kirsehir 40200, Turkey
| |
Collapse
|
3
|
Bennour A, Ben Aoun N, Khalaf OI, Ghabban F, Wong WK, Algburi S. Contribution to pulmonary diseases diagnostic from X-ray images using innovative deep learning models. Heliyon 2024; 10:e30308. [PMID: 38707425 PMCID: PMC11068804 DOI: 10.1016/j.heliyon.2024.e30308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/09/2024] [Accepted: 04/23/2024] [Indexed: 05/07/2024] Open
Abstract
Pulmonary disease identification and characterization are among the most intriguing research topics of recent years since they require an accurate and prompt diagnosis. Although pulmonary radiography has helped in lung disease diagnosis, the interpretation of the radiographic image has always been a major concern for doctors and radiologists to reduce diagnosis errors. Due to their success in image classification and segmentation tasks, cutting-edge artificial intelligence techniques like machine learning (ML) and deep learning (DL) are widely encouraged to be applied in the field of diagnosing lung disorders and identifying them using medical images, particularly radiographic ones. For this end, the researchers are concurring to build systems based on these techniques in particular deep learning ones. In this paper, we proposed three deep-learning models that were trained to identify the presence of certain lung diseases using thoracic radiography. The first model, named "CovCXR-Net", identifies the COVID-19 disease (two cases: COVID-19 or normal). The second model, named "MDCXR3-Net", identifies the COVID-19 and pneumonia diseases (three cases: COVID-19, pneumonia, or normal), and the last model, named "MDCXR4-Net", is destined to identify the COVID-19, pneumonia and the pulmonary opacity diseases (4 cases: COVID-19, pneumonia, pulmonary opacity or normal). These models have proven their superiority in comparison with the state-of-the-art models and reached an accuracy of 99,09 %, 97.74 %, and 90,37 % respectively with three benchmarks.
Collapse
Affiliation(s)
- Akram Bennour
- LAMIS Laboratiry, Echahid Cheikh Larbi Tebessi University, Tebessa, Algeria
| | - Najib Ben Aoun
- College of Computer Science and Information Technology, Al-Baha University, Al Baha, Saudi Arabia
- REGIM-Lab: Research Groups in Intelligent Machines, National School of Engineers of Sfax (ENIS), University of Sfax, Tunisia
| | - Osamah Ibrahim Khalaf
- Department of Solar, Al-Nahrain Research Center for Renewable Energy, Al-Nahrain University, Jadriya, Baghdad, Iraq
| | - Fahad Ghabban
- College of Computer Science and Engineering, Taibah University, Medina, Saudi Arabia
| | | | - Sameer Algburi
- Al-Kitab University, College of Engineering Techniques, Kirkuk, Iraq
| |
Collapse
|
4
|
Singh S, Kumar M, Kumar A, Verma BK, Abhishek K, Selvarajan S. Efficient pneumonia detection using Vision Transformers on chest X-rays. Sci Rep 2024; 14:2487. [PMID: 38291130 PMCID: PMC10827725 DOI: 10.1038/s41598-024-52703-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 01/22/2024] [Indexed: 02/01/2024] Open
Abstract
Pneumonia is a widespread and acute respiratory infection that impacts people of all ages. Early detection and treatment of pneumonia are essential for avoiding complications and enhancing clinical results. We can reduce mortality, improve healthcare efficiency, and contribute to the global battle against a disease that has plagued humanity for centuries by devising and deploying effective detection methods. Detecting pneumonia is not only a medical necessity but also a humanitarian imperative and a technological frontier. Chest X-rays are a frequently used imaging modality for diagnosing pneumonia. This paper examines in detail a cutting-edge method for detecting pneumonia implemented on the Vision Transformer (ViT) architecture on a public dataset of chest X-rays available on Kaggle. To acquire global context and spatial relationships from chest X-ray images, the proposed framework deploys the ViT model, which integrates self-attention mechanisms and transformer architecture. According to our experimentation with the proposed Vision Transformer-based framework, it achieves a higher accuracy of 97.61%, sensitivity of 95%, and specificity of 98% in detecting pneumonia from chest X-rays. The ViT model is preferable for capturing global context, comprehending spatial relationships, and processing images that have different resolutions. The framework establishes its efficacy as a robust pneumonia detection solution by surpassing convolutional neural network (CNN) based architectures.
Collapse
Affiliation(s)
| | - Manoj Kumar
- JSS Academy of Technical Education, Noida, India
| | - Abhay Kumar
- National Institute of Technology Patna, Patna, India
| | | | | | - Shitharth Selvarajan
- School of Built Environment, Engineering and Computing, Leeds Beckett University, LS1 3HE, Leeds, UK.
| |
Collapse
|
5
|
Huang X, Chen X, Zhong X, Tian T. The CNN model aided the study of the clinical value hidden in the implant images. J Appl Clin Med Phys 2023; 24:e14141. [PMID: 37656066 PMCID: PMC10562019 DOI: 10.1002/acm2.14141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 08/14/2023] [Accepted: 08/16/2023] [Indexed: 09/02/2023] Open
Abstract
PURPOSE This article aims to construct a new method to evaluate radiographic image identification results based on artificial intelligence, which can complement the limited vision of researchers when studying the effect of various factors on clinical implantation outcomes. METHODS We constructed a convolutional neural network (CNN) model using the clinical implant radiographic images. Moreover, we used gradient-weighted class activation mapping (Grad-CAM) to obtain thermal maps to present identification differences before performing statistical analyses. Subsequently, to verify whether these differences presented by the Grad-CAM algorithm would be of value to clinical practices, we measured the bone thickness around the identified sites. Finally, we analyzed the influence of the implant type on the implantation according to the measurement results. RESULTS The thermal maps showed that the sites with significant differences between Straumann BL and Bicon implants as identified by the CNN model were mainly the thread and neck area. (2) The heights of the mesial, distal, buccal, and lingual bone of the Bicon implant post-op were greater than those of Straumann BL (P < 0.05). (3) Between the first and second stages of surgery, the amount of bone thickness variation at the buccal and lingual sides of the Bicon implant platform was greater than that of the Straumann BL implant (P < 0.05). CONCLUSION According to the results of this study, we found that the identified-neck-area of the Bicon implant was placed deeper than the Straumann BL implant, and there was more bone resorption on the buccal and lingual sides at the Bicon implant platform between the first and second stages of surgery. In summary, this study proves that using the CNN classification model can identify differences that complement our limited vision.
Collapse
Affiliation(s)
- Xinxu Huang
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Xingyu Chen
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Xinnan Zhong
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Taoran Tian
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| |
Collapse
|
6
|
Zhang H, Ogasawara K. Grad-CAM-Based Explainable Artificial Intelligence Related to Medical Text Processing. Bioengineering (Basel) 2023; 10:1070. [PMID: 37760173 PMCID: PMC10525184 DOI: 10.3390/bioengineering10091070] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/28/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
The opacity of deep learning makes its application challenging in the medical field. Therefore, there is a need to enable explainable artificial intelligence (XAI) in the medical field to ensure that models and their results can be explained in a manner that humans can understand. This study uses a high-accuracy computer vision algorithm model to transfer learning to medical text tasks and uses the explanatory visualization method known as gradient-weighted class activation mapping (Grad-CAM) to generate heat maps to ensure that the basis for decision-making can be provided intuitively or via the model. The system comprises four modules: pre-processing, word embedding, classifier, and visualization. We used Word2Vec and BERT to compare word embeddings and use ResNet and 1Dimension convolutional neural networks (CNN) to compare classifiers. Finally, the Bi-LSTM was used to perform text classification for direct comparison. With 25 epochs, the model that used pre-trained ResNet on the formalized text presented the best performance (recall of 90.9%, precision of 91.1%, and an F1 score of 90.2% weighted). This study uses ResNet to process medical texts through Grad-CAM-based explainable artificial intelligence and obtains a high-accuracy classification effect; at the same time, through Grad-CAM visualization, it intuitively shows the words to which the model pays attention when making predictions.
Collapse
Affiliation(s)
| | - Katsuhiko Ogasawara
- Graduate School of Health Science, Hokkaido University, N12-W5, Kitaku, Sapporo 060-0812, Japan
| |
Collapse
|
7
|
Haennah JHJ, Christopher CS, King GRG. Prediction of the COVID disease using lung CT images by Deep Learning algorithm: DETS-optimized Resnet 101 classifier. Front Med (Lausanne) 2023; 10:1157000. [PMID: 37746067 PMCID: PMC10513469 DOI: 10.3389/fmed.2023.1157000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 08/18/2023] [Indexed: 09/26/2023] Open
Abstract
As a result of the COVID-19 (coronavirus) disease due to SARS-CoV2 becoming a pandemic, it has spread over the globe. It takes time to evaluate the results of the laboratory tests because of the rising number of cases each day. Therefore, there are restrictions in terms of both therapy and findings. A clinical decision-making system with predictive algorithms is needed to alleviate the pressure on healthcare systems via Deep Learning (DL) algorithms. With the use of DL and chest scans, this research intends to determine COVID-19 patients by utilizing the Transfer Learning (TL)-based Generative Adversarial Network (Pix 2 Pix-GAN). Moreover, the COVID-19 images are then classified as either positive or negative using a Duffing Equation Tuna Swarm (DETS)-optimized Resnet 101 classifier trained on synthetic and real images from the Kaggle lung CT Covid dataset. Implementation of the proposed technique is done using MATLAB simulations. Besides, is evaluated via accuracy, precision, F1-score, recall, and AUC. Experimental findings show that the proposed prediction model identifies COVID-19 patients with 97.2% accuracy, a recall of 95.9%, and a specificity of 95.5%, which suggests the proposed predictive model can be utilized to forecast COVID-19 infection by medical specialists for clinical prediction research and can be beneficial to them.
Collapse
Affiliation(s)
- J. H. Jensha Haennah
- St. Xavier’s Catholic College of Engineering, Affiliated to Anna University Chennai, Tamil Nadu, India
| | | | - G. R. Gnana King
- Sahrdaya College of Engineering and Technology, Thrissur, Kerala, India
| |
Collapse
|
8
|
Santosh KC, GhoshRoy D, Nakarmi S. A Systematic Review on Deep Structured Learning for COVID-19 Screening Using Chest CT from 2020 to 2022. Healthcare (Basel) 2023; 11:2388. [PMID: 37685422 PMCID: PMC10486542 DOI: 10.3390/healthcare11172388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/16/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
The emergence of the COVID-19 pandemic in Wuhan in 2019 led to the discovery of a novel coronavirus. The World Health Organization (WHO) designated it as a global pandemic on 11 March 2020 due to its rapid and widespread transmission. Its impact has had profound implications, particularly in the realm of public health. Extensive scientific endeavors have been directed towards devising effective treatment strategies and vaccines. Within the healthcare and medical imaging domain, the application of artificial intelligence (AI) has brought significant advantages. This study delves into peer-reviewed research articles spanning the years 2020 to 2022, focusing on AI-driven methodologies for the analysis and screening of COVID-19 through chest CT scan data. We assess the efficacy of deep learning algorithms in facilitating decision making processes. Our exploration encompasses various facets, including data collection, systematic contributions, emerging techniques, and encountered challenges. However, the comparison of outcomes between 2020 and 2022 proves intricate due to shifts in dataset magnitudes over time. The initiatives aimed at developing AI-powered tools for the detection, localization, and segmentation of COVID-19 cases are primarily centered on educational and training contexts. We deliberate on their merits and constraints, particularly in the context of necessitating cross-population train/test models. Our analysis encompassed a review of 231 research publications, bolstered by a meta-analysis employing search keywords (COVID-19 OR Coronavirus) AND chest CT AND (deep learning OR artificial intelligence OR medical imaging) on both the PubMed Central Repository and Web of Science platforms.
Collapse
Affiliation(s)
- KC Santosh
- 2AI: Applied Artificial Intelligence Research Lab, Vermillion, SD 57069, USA
| | - Debasmita GhoshRoy
- School of Automation, Banasthali Vidyapith, Tonk 304022, Rajasthan, India;
| | - Suprim Nakarmi
- Department of Computer Science, University of South Dakota, Vermillion, SD 57069, USA;
| |
Collapse
|
9
|
Chetoui M, Akhloufi MA, Bouattane EM, Abdulnour J, Roux S, Bernard CD. Explainable COVID-19 Detection Based on Chest X-rays Using an End-to-End RegNet Architecture. Viruses 2023; 15:1327. [PMID: 37376626 DOI: 10.3390/v15061327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
COVID-19,which is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is one of the worst pandemics in recent history. The identification of patients suspected to be infected with COVID-19 is becoming crucial to reduce its spread. We aimed to validate and test a deep learning model to detect COVID-19 based on chest X-rays. The recent deep convolutional neural network (CNN) RegNetX032 was adapted for detecting COVID-19 from chest X-ray (CXR) images using polymerase chain reaction (RT-PCR) as a reference. The model was customized and trained on five datasets containing more than 15,000 CXR images (including 4148COVID-19-positive cases) and then tested on 321 images (150 COVID-19-positive) from Montfort Hospital. Twenty percent of the data from the five datasets were used as validation data for hyperparameter optimization. Each CXR image was processed by the model to detect COVID-19. Multi-binary classifications were proposed, such as: COVID-19 vs. normal, COVID-19 + pneumonia vs. normal, and pneumonia vs. normal. The performance results were based on the area under the curve (AUC), sensitivity, and specificity. In addition, an explainability model was developed that demonstrated the high performance and high generalization degree of the proposed model in detecting and highlighting the signs of the disease. The fine-tuned RegNetX032 model achieved an overall accuracy score of 96.0%, with an AUC score of 99.1%. The model showed a superior sensitivity of 98.0% in detecting signs from CXR images of COVID-19 patients, and a specificity of 93.0% in detecting healthy CXR images. A second scenario compared COVID-19 + pneumonia vs. normal (healthy X-ray) patients. The model achieved an overall score of 99.1% (AUC) with a sensitivity of 96.0% and specificity of 93.0% on the Montfort dataset. For the validation set, the model achieved an average accuracy of 98.6%, an AUC score of 98.0%, a sensitivity of 98.0%, and a specificity of 96.0% for detection (COVID-19 patients vs. healthy patients). The second scenario compared COVID-19 + pneumonia vs. normal patients. The model achieved an overall score of 98.8% (AUC) with a sensitivity of 97.0% and a specificity of 96.0%. This robust deep learning model demonstrated excellent performance in detecting COVID-19 from chest X-rays. This model could be used to automate the detection of COVID-19 and improve decision making for patient triage and isolation in hospital settings. This could also be used as a complementary aid for radiologists or clinicians when differentiating to make smart decisions.
Collapse
Affiliation(s)
- Mohamed Chetoui
- Perception, Robotics, and Intelligent Machines (PRIME), Department of Computer Science, Université de Moncton, Moncton, NB E1A 3E9, Canada
| | - Moulay A Akhloufi
- Perception, Robotics, and Intelligent Machines (PRIME), Department of Computer Science, Université de Moncton, Moncton, NB E1A 3E9, Canada
| | - El Mostafa Bouattane
- Montfort Academic Hospital, Institut du Savoir Montfort, Ottawa, ON 61350, Canada
| | - Joseph Abdulnour
- Montfort Academic Hospital, Institut du Savoir Montfort, Ottawa, ON 61350, Canada
| | - Stephane Roux
- Montfort Academic Hospital, Institut du Savoir Montfort, Ottawa, ON 61350, Canada
| | | |
Collapse
|
10
|
Podder P, Das SR, Mondal MRH, Bharati S, Maliha A, Hasan MJ, Piltan F. LDDNet: A Deep Learning Framework for the Diagnosis of Infectious Lung Diseases. SENSORS (BASEL, SWITZERLAND) 2023; 23:480. [PMID: 36617076 PMCID: PMC9824583 DOI: 10.3390/s23010480] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/25/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
This paper proposes a new deep learning (DL) framework for the analysis of lung diseases, including COVID-19 and pneumonia, from chest CT scans and X-ray (CXR) images. This framework is termed optimized DenseNet201 for lung diseases (LDDNet). The proposed LDDNet was developed using additional layers of 2D global average pooling, dense and dropout layers, and batch normalization to the base DenseNet201 model. There are 1024 Relu-activated dense layers and 256 dense layers using the sigmoid activation method. The hyper-parameters of the model, including the learning rate, batch size, epochs, and dropout rate, were tuned for the model. Next, three datasets of lung diseases were formed from separate open-access sources. One was a CT scan dataset containing 1043 images. Two X-ray datasets comprising images of COVID-19-affected lungs, pneumonia-affected lungs, and healthy lungs exist, with one being an imbalanced dataset with 5935 images and the other being a balanced dataset with 5002 images. The performance of each model was analyzed using the Adam, Nadam, and SGD optimizers. The best results have been obtained for both the CT scan and CXR datasets using the Nadam optimizer. For the CT scan images, LDDNet showed a COVID-19-positive classification accuracy of 99.36%, a 100% precision recall of 98%, and an F1 score of 99%. For the X-ray dataset of 5935 images, LDDNet provides a 99.55% accuracy, 73% recall, 100% precision, and 85% F1 score using the Nadam optimizer in detecting COVID-19-affected patients. For the balanced X-ray dataset, LDDNet provides a 97.07% classification accuracy. For a given set of parameters, the performance results of LDDNet are better than the existing algorithms of ResNet152V2 and XceptionNet.
Collapse
Affiliation(s)
- Prajoy Podder
- Institute of Information and Communication Technology, Bangladesh University of Engineering and Technology, Dhaka 1205, Bangladesh
| | - Sanchita Rani Das
- Institute of Information and Communication Technology, Bangladesh University of Engineering and Technology, Dhaka 1205, Bangladesh
| | - M. Rubaiyat Hossain Mondal
- Institute of Information and Communication Technology, Bangladesh University of Engineering and Technology, Dhaka 1205, Bangladesh
| | - Subrato Bharati
- Institute of Information and Communication Technology, Bangladesh University of Engineering and Technology, Dhaka 1205, Bangladesh
| | - Azra Maliha
- Faculty of Engineering and IT, The British University in Dubai, Dubai P.O. Box 345015, United Arab Emirates
| | - Md Junayed Hasan
- National Subsea Centre, Robert Gordon University, Aberdeen AB10 7AQ, UK
| | - Farzin Piltan
- Ulsan Industrial Artificial Intelligence (UIAI) Lab, Department of Electrical, Electronics and Computer Engineering, University of Ulsan, Ulsan 44610, Republic of Korea
| |
Collapse
|
11
|
Han X, Hu Z, Wang S, Zhang Y. A Survey on Deep Learning in COVID-19 Diagnosis. J Imaging 2022; 9:1. [PMID: 36662099 PMCID: PMC9866755 DOI: 10.3390/jimaging9010001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/05/2022] [Accepted: 12/16/2022] [Indexed: 12/31/2022] Open
Abstract
According to the World Health Organization statistics, as of 25 October 2022, there have been 625,248,843 confirmed cases of COVID-19, including 65,622,281 deaths worldwide. The spread and severity of COVID-19 are alarming. The economy and life of countries worldwide have been greatly affected. The rapid and accurate diagnosis of COVID-19 directly affects the spread of the virus and the degree of harm. Currently, the classification of chest X-ray or CT images based on artificial intelligence is an important method for COVID-19 diagnosis. It can assist doctors in making judgments and reduce the misdiagnosis rate. The convolutional neural network (CNN) is very popular in computer vision applications, such as applied to biological image segmentation, traffic sign recognition, face recognition, and other fields. It is one of the most widely used machine learning methods. This paper mainly introduces the latest deep learning methods and techniques for diagnosing COVID-19 using chest X-ray or CT images based on the convolutional neural network. It reviews the technology of CNN at various stages, such as rectified linear units, batch normalization, data augmentation, dropout, and so on. Several well-performing network architectures are explained in detail, such as AlexNet, ResNet, DenseNet, VGG, GoogleNet, etc. We analyzed and discussed the existing CNN automatic COVID-19 diagnosis systems from sensitivity, accuracy, precision, specificity, and F1 score. The systems use chest X-ray or CT images as datasets. Overall, CNN has essential value in COVID-19 diagnosis. All of them have good performance in the existing experiments. If expanding the datasets, adding GPU acceleration and data preprocessing techniques, and expanding the types of medical images, the performance of CNN will be further improved. This paper wishes to make contributions to future research.
Collapse
Affiliation(s)
- Xue Han
- School of Mathematics and Information Science, Nanjing Normal University of Special Education, Nanjing 210038, China
- School of Computing and Mathematical Sciences, University of Leicester, Leicester LE1 7RH, UK
| | - Zuojin Hu
- School of Mathematics and Information Science, Nanjing Normal University of Special Education, Nanjing 210038, China
| | - Shuihua Wang
- School of Computing and Mathematical Sciences, University of Leicester, Leicester LE1 7RH, UK
| | - Yudong Zhang
- School of Computing and Mathematical Sciences, University of Leicester, Leicester LE1 7RH, UK
| |
Collapse
|
12
|
Ahila T, Subhajini AC. E-GCS: Detection of COVID-19 through classification by attention bottleneck residual network. ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE 2022; 116:105398. [PMID: 36158870 PMCID: PMC9485443 DOI: 10.1016/j.engappai.2022.105398] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/30/2022] [Accepted: 08/26/2022] [Indexed: 06/16/2023]
Abstract
Background Recently, the coronavirus disease 2019 (COVID-19) has caused mortality of many people globally. Thus, there existed a need to detect this disease to prevent its further spread. Hence, the study aims to predict COVID-19 infected patients based on deep learning (DL) and image processing. Objectives The study intends to classify the normal and abnormal cases of COVID-19 by considering three different medical imaging modalities namely ultrasound imaging, X-ray images and CT scan images through introduced attention bottleneck residual network (AB-ResNet). It also aims to segment the abnormal infected area from normal images for localizing localising the disease infected area through the proposed edge based graph cut segmentation (E-GCS). Methodology AB-ResNet is used for classifying images whereas E-GCS segment the abnormal images. The study possess various advantages as it rely on DL and possess capability for accelerating the training speed of deep networks. It also enhance the network depth leading to minimum parameters, minimising the impact of vanishing gradient issue and attaining effective network performance with respect to better accuracy. Results/Conclusion Performance and comparative analysis is undertaken to evaluate the efficiency of the introduced system and results explores the efficiency of the proposed system in COVID-19 detection with high accuracy (99%).
Collapse
Affiliation(s)
- T Ahila
- Department of Computer Applications, Noorul Islam Centre For Higher Education, Kumaracoil, 629180, India
| | - A C Subhajini
- Department of Computer Applications, Noorul Islam Centre For Higher Education, Kumaracoil, 629180, India
| |
Collapse
|
13
|
AI-Assisted Tuberculosis Detection and Classification from Chest X-Rays Using a Deep Learning Normalization-Free Network Model. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:2399428. [PMID: 36225551 PMCID: PMC9550434 DOI: 10.1155/2022/2399428] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/24/2022] [Accepted: 09/01/2022] [Indexed: 11/29/2022]
Abstract
Tuberculosis (TB) is an airborne disease caused by Mycobacterium tuberculosis. It is imperative to detect cases of TB as early as possible because if left untreated, there is a 70% chance of a patient dying within 10 years. The necessity for supplementary tools has increased in mid to low-income countries due to the rise of automation in healthcare sectors. The already limited resources are being heavily allocated towards controlling other dangerous diseases. Modern digital radiography (DR) machines, used for screening chest X-rays of potential TB victims are very practical. Coupled with computer-aided detection (CAD) with the aid of artificial intelligence, radiologists working in this field can really help potential patients. In this study, progressive resizing is introduced for training models to perform automatic inference of TB using chest X-ray images. ImageNet fine-tuned Normalization-Free Networks (NFNets) are trained for classification and the Score-Cam algorithm is utilized to highlight the regions in the chest X-Rays for detailed inference on the diagnosis. The proposed method is engineered to provide accurate diagnostics for both binary and multiclass classification. The models trained with this method have achieved 96.91% accuracy, 99.38% AUC, 91.81% sensitivity, and 98.42% specificity on a multiclass classification dataset. Moreover, models have also achieved top-1 inference metrics of 96% accuracy and 98% AUC for binary classification. The results obtained demonstrate that the proposed method can be used as a secondary decision tool in a clinical setting for assisting radiologists.
Collapse
|
14
|
Bharati S, Podder P, Thanh DNH, Prasath VBS. Dementia classification using MR imaging and clinical data with voting based machine learning models. MULTIMEDIA TOOLS AND APPLICATIONS 2022; 81:25971-25992. [DOI: 10.1007/s11042-022-12754-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 12/03/2021] [Accepted: 02/21/2022] [Indexed: 02/07/2023]
|
15
|
Durga R, Poovammal E. FLED-Block: Federated Learning Ensembled Deep Learning Blockchain Model for COVID-19 Prediction. Front Public Health 2022; 10:892499. [PMID: 35784262 PMCID: PMC9247602 DOI: 10.3389/fpubh.2022.892499] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/09/2022] [Indexed: 12/15/2022] Open
Abstract
With the SARS-CoV-2's exponential growth, intelligent and constructive practice is required to diagnose the COVID-19. The rapid spread of the virus and the shortage of reliable testing models are considered major issues in detecting COVID-19. This problem remains the peak burden for clinicians. With the advent of artificial intelligence (AI) in image processing, the burden of diagnosing the COVID-19 cases has been reduced to acceptable thresholds. But traditional AI techniques often require centralized data storage and training for the predictive model development which increases the computational complexity. The real-world challenge is to exchange data globally across hospitals while also taking into account of the organizations' privacy concerns. Collaborative model development and privacy protection are critical considerations while training a global deep learning model. To address these challenges, this paper proposes a novel framework based on blockchain and the federated learning model. The federated learning model takes care of reduced complexity, and blockchain helps in distributed data with privacy maintained. More precisely, the proposed federated learning ensembled deep five learning blockchain model (FLED-Block) framework collects the data from the different medical healthcare centers, develops the model with the hybrid capsule learning network, and performs the prediction accurately, while preserving the privacy and shares among authorized persons. Extensive experimentation has been carried out using the lung CT images and compared the performance of the proposed model with the existing VGG-16 and 19, Alexnets, Resnets-50 and 100, Inception V3, Densenets-121, 119, and 150, Mobilenets, SegCaps in terms of accuracy (98.2%), precision (97.3%), recall (96.5%), specificity (33.5%), and F1-score (97%) in predicting the COVID-19 with effectively preserving the privacy of the data among the heterogeneous users.
Collapse
|
16
|
Bharati S, Mondal MRH, Podder P, Prasath VS. Federated learning: Applications, challenges and future directions. INTERNATIONAL JOURNAL OF HYBRID INTELLIGENT SYSTEMS 2022; 18:19-35. [DOI: 10.3233/his-220006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Federated learning (FL) refers to a system in which a central aggregator coordinates the efforts of several clients to solve the issues of machine learning. This setting allows the training data to be dispersed in order to protect the privacy of each device. This paper provides an overview of federated learning systems, with a focus on healthcare. FL is reviewed in terms of its frameworks, architectures and applications. It is shown here that FL solves the preceding issues with a shared global deep learning (DL) model via a central aggregator server. Inspired by the rapid growth of FL research, this paper examines recent developments and provides a comprehensive list of unresolved issues. Several privacy methods including secure multiparty computation, homomorphic encryption, differential privacy and stochastic gradient descent are described in the context of FL. Moreover, a review is provided for different classes of FL such as horizontal and vertical FL and federated transfer learning. FL has applications in wireless communication, service recommendation, intelligent medical diagnosis system and healthcare, which we review in this paper. We also present a comprehensive review of existing FL challenges for example privacy protection, communication cost, systems heterogeneity, unreliable model upload, followed by future research directions.
Collapse
Affiliation(s)
- Subrato Bharati
- Institute of Information and Communication Technology, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
| | - M. Rubaiyat Hossain Mondal
- Institute of Information and Communication Technology, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
| | - Prajoy Podder
- Institute of Information and Communication Technology, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
| | - V.B. Surya Prasath
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Department of Biomedical Informatics, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
- Department of Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
17
|
Optimal scale combination selection for inconsistent multi-scale decision tables. Soft comput 2022; 26:6119-6129. [PMID: 35505939 PMCID: PMC9047633 DOI: 10.1007/s00500-022-07102-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/02/2022] [Indexed: 11/24/2022]
Abstract
Hierarchical structured data are very common for data mining and other tasks in real-life world. How to select the optimal scale combination from a multi-scale decision table is critical for subsequent tasks. At present, the models for calculating the optimal scale combination mainly include lattice model, complement model and stepwise optimal scale selection model, which are mainly based on consistent multi-scale decision tables. The optimal scale selection model for inconsistent multi-scale decision tables has not been given. Based on this, firstly, this paper introduces the concept of complement and lattice model proposed by Li and Hu. Secondly, based on the concept of positive region consistency of inconsistent multi-scale decision tables, the paper proposes complement model and lattice model based on positive region consistent and gives the algorithm. Finally, some numerical experiments are employed to verify that the model has the same properties in processing inconsistent multi-scale decision tables as the complement model and lattice model in processing consistent multi-scale decision tables. And for the consistent multi-scale decision table, the same results can be obtained by using the model based on positive region consistent. However, the lattice model based on positive region consistent is more time-consuming and costly. The model proposed in this paper provides a new theoretical method for the optimal scale combination selection of the inconsistent multi-scale decision table.
Collapse
|
18
|
Karabinov V, Georgiev GP. Lateral epicondylitis: New trends and challenges in treatment. World J Orthop 2022; 13:354-364. [PMID: 35582153 PMCID: PMC9048498 DOI: 10.5312/wjo.v13.i4.354] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 12/14/2021] [Accepted: 04/04/2022] [Indexed: 02/06/2023] Open
Abstract
Lateral epicondylitis (LE) is a chronic aseptic inflammatory condition caused by repetitive microtrauma and excessive overload of the extensor carpi radialis brevis muscle. This is the most common cause of musculoskeletal pain syndrome in the elbow, inducing significant pain and limitation of the function of the upper limb. It affects approximately 1-3% of the population and is frequently seen in racquet sports and sports associated with functional overload of the elbow, such as tennis, squash, gymnastics, acrobatics, fitness, and weight lifting. Typewriters, artists, musicians, electricians, mechanics, and other professions requiring frequent repetitive movements in the elbow and wrists are also affected. LE is a leading causation for absence from work and lower sport results in athletes. The treatment includes a variety of conservative measures, but if those fail, surgery is indicated. This review summarizes the knowledge about this disease, focusing on risk factors, expected course, prognosis, and conservative and surgical treatment approaches.
Collapse
Affiliation(s)
| | - Georgi P Georgiev
- Department of Orthopedics and Traumatology, University Hospital Queen Giovanna-ISUL, Medical University of Sofia, Sofia 1527, Bulgaria
| |
Collapse
|
19
|
Yang CH, Weng CY, Chen JY. High-fidelity reversible data hiding in encrypted image based on difference-preserving encryption. Soft comput 2022. [DOI: 10.1007/s00500-022-06745-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|