1
|
Wang G, Li Z, Yang B, Yang H, Zhang Y, Zeng Q, Yan C, He Y, Peng Y, Wang W, Chen B, Du G. The effect of white grub (Maladera Verticalis) larvae feeding on rhizosphere microbial characterization of aerobic rice (Oryza sativa L.) in Puer City, Yunnan Province, China. BMC Microbiol 2024; 24:123. [PMID: 38622504 PMCID: PMC11017655 DOI: 10.1186/s12866-024-03265-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/17/2024] [Indexed: 04/17/2024] Open
Abstract
BACKGROUND Rhizosphere microorganisms are vital in plants' growth and development and these beneficial microbes are recruited to the root-zone soil when experiencing various environmental stresses. However, the effect of white grub (Maladera verticalis) larvae feeding on the structure and function of rhizosphere microbial communities of aerobic rice (Oryza sativa L.) is unclear. RESULTS In this study, we compared physicochemical properties, enzyme activities, and microbial communities using 18 samples under healthy and M. verticalis larvae-feeding aerobic rice rhizosphere soils at the Yunnan of China. 16 S rRNA and ITS amplicons were sequenced using Illumina high throughput sequencing. M. verticalis larvae feeding on aerobic rice can influence rhizosphere soil physicochemical properties and enzyme activities, which also change rhizosphere microbial communities. The healthy and M. verticalis larvae-feeding aerobic rice rhizosphere soil microorganisms had distinct genus signatures, such as possible_genus_04 and Knoellia genera in healthy aerobic rice rhizosphere soils and norank_f__SC - I-84 and norank_f__Roseiflexaceae genera in M. verticalis larvae-feeding aerobic rice rhizosphere soils. The pathway of the metabolism of terpenoids and polyketides and carbohydrate metabolism in rhizosphere bacteria were significantly decreased after M. verticalis larvae feeding. Fungal parasite-wood saprotroph and fungal parasites were significantly decreased after M. verticalis larvae feeding, and plant pathogen-wood saprotroph and animal pathogen-undefined saprotroph were increased after larvae feeding. Additionally, the relative abundance of Bradyrhizobium and Talaromyces genera gradually increased with the elevation of the larvae density. Bacterial and fungal communities significantly correlated with soil physicochemical properties and enzyme activities, respectively. CONCLUSIONS Based on the results we provide new insight for understanding the adaptation of aerobic rice to M. verticalis larvae feeding via regulating the rhizosphere environment, which would allow us to facilitate translation to more effective measures.
Collapse
Affiliation(s)
- Guang Wang
- State Key Laboratory of Conservation and Utilization of Biological Resources of Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China
| | - Zhengfei Li
- State Key Laboratory of Conservation and Utilization of Biological Resources of Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China
| | - Baoyun Yang
- State Key Laboratory of Conservation and Utilization of Biological Resources of Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China
| | - Huquan Yang
- State Key Laboratory of Conservation and Utilization of Biological Resources of Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China
| | - Yujie Zhang
- State Key Laboratory of Conservation and Utilization of Biological Resources of Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China
| | - Qingping Zeng
- State Key Laboratory of Conservation and Utilization of Biological Resources of Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China
| | - Chaojianping Yan
- State Key Laboratory of Conservation and Utilization of Biological Resources of Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China
| | - Yanyan He
- State Key Laboratory of Conservation and Utilization of Biological Resources of Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China
- School of Agriculture, Yunnan University, Kunming, 650500, China
| | - Yuejin Peng
- State Key Laboratory of Conservation and Utilization of Biological Resources of Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China
| | - Wenqian Wang
- State Key Laboratory of Conservation and Utilization of Biological Resources of Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China
| | - Bin Chen
- State Key Laboratory of Conservation and Utilization of Biological Resources of Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China
| | - Guangzu Du
- State Key Laboratory of Conservation and Utilization of Biological Resources of Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China.
| |
Collapse
|
2
|
Pan Y, Kang P, Zhang Y, Li X. Kalidium cuspidatum colonization changes the structure and function of salt crust microbial communities. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:19764-19778. [PMID: 38363505 DOI: 10.1007/s11356-024-32364-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 02/03/2024] [Indexed: 02/17/2024]
Abstract
The changes of soil moisture, salinity, and nutrients by halophyte colonization in high-salinity environment profoundly affect the assembly and structure of microbial communities. However, salt marshes in arid region have received little attention. This study was conducted in Lianhuachi Lake, a typical inland salt marsh wetland in China, to determine the physicochemical characteristics of salt crusts in [Kalidium cuspidatum (Ung.-Sternb.) Grub.] colonization areas and bulk soil, respectively, and to analyze the microbial community structure of salt crusts by high-throughput sequencing. Kalidium cuspidatum colonization significantly decreased total salinity, soil water content, and water-soluble ions of salt crusts and increased total carbon, total nitrogen, and total phosphorus content. At the same time, changes in physicochemical properties caused by Kalidium cuspidatum colonization affect the ecological processes of bacterial, fungal, and archaeal community assemblies in salt crusts. In addition, cross-kingdom network analysis showed that Kalidium cuspidatum colonization increased the complexity and stability of microbial networks in salt crust soils. Functional projections further showed that bacterial diversity had a potential driving effect on the nitrogen cycle function of salt crust. Our study further demonstrated the different ecological strategies of microorganisms for halophyte colonization in extreme environments and contributed to the understanding of restoration and management of salt marsh wetlands in arid region.
Collapse
Affiliation(s)
- Yaqing Pan
- Shapotou Desert Research and Experimental Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, Gansu, China.
| | - Peng Kang
- School of Biological Sciences and Engineering, North Minzu University, Yinchuan, 750021, Ningxia, China
| | - Yaqi Zhang
- School of Biological Sciences and Engineering, North Minzu University, Yinchuan, 750021, Ningxia, China
| | - Xinrong Li
- Shapotou Desert Research and Experimental Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, Gansu, China
| |
Collapse
|
3
|
Iqbal A, Maqsood Ur Rehman M, Sajjad W, Degen AA, Rafiq M, Jiahuan N, Khan S, Shang Z. Patterns of bacterial communities in the rhizosphere and rhizoplane of alpine wet meadows. ENVIRONMENTAL RESEARCH 2024; 241:117672. [PMID: 37980986 DOI: 10.1016/j.envres.2023.117672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/18/2023] [Accepted: 11/13/2023] [Indexed: 11/21/2023]
Abstract
Wet meadows, a type of wetland, are vulnerable to climate change and human activity, impacting soil properties and microorganisms that are crucial to the ecosystem processes of wet meadows. To decipher the ecological mechanisms and processes involved in wet meadows, it is necessary to examine the bacterial communities associated with plant roots. To gain valuable insight into the microbial dynamics of alpine wet meadows, we used Illumina MiSeq sequencing to investigate how environmental factors shape the bacterial communities thriving in the rhizosphere and rhizoplane of three plant species: Cremanthodium ellisii, Caltha scaposa, and Cremanthodium lineare. The most abundant bacterial phyla in rhizosphere and rhizoplane were Proteobacteria > Firmicutes > Actinobacteria, while Macrococcus, Lactococcus, and Exiguobacterium were the most abundant bacterial genera between rhizosphere and rhizoplane. The mantel test, network, and structure equation models revealed that bacterial communities of rhizosphere were shaped by total nitrogen (TN), soil water content (SWC), soil organic carbon (SOC), microbial biomass carbon (MBC), microbial biomass nitrogen (MBN), pH, however, rhizoplane bacterial communities exhibited varying results. The bacterial communities exhibited significant heterogeneity, with stochastic process predominating in both the rhizosphere and rhizoplane. PICRUSt2 and FAPROTAX analysis revealed substantial differences in key biogeochemical cycles and metabolic functional predictions. It was concluded that root compartments significantly influenced the bacterial communities, although plant species and elevation asserted varying effects. This study portrays how physicochemical properties, plant species, and elevations can shift the overall structure and functional repertoire of bacterial communities in alpine wet meadows.
Collapse
Affiliation(s)
- Awais Iqbal
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Muhammad Maqsood Ur Rehman
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Wasim Sajjad
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Abraham Allan Degen
- Desert Animal Adaptations and Husbandry, Wyler Department of Dryland Agriculture, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beer Sheva, 8410500, Israel
| | - Muhammad Rafiq
- Department of Microbiology, Faculty of Life Sciences and Informatics, Baluchistan University of IT, Engineering and Management Sciences, Quetta, Pakistan
| | - Niu Jiahuan
- Department of Health and Environmental Sciences, Xian Jiaotong-Liverpool University, Suzhou, 215123, China
| | - Salman Khan
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Zhanhuan Shang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
4
|
Liu L, Chen Y, Zhang L, Bi X, Meng F, Luo Q. Effects of NaHCO 3 Stress on Black Locust ( Robinia pseudoacacia L.) Physiology, Biochemistry, and Rhizosphere Bacterial Communities. Microorganisms 2023; 11:2941. [PMID: 38138085 PMCID: PMC10745695 DOI: 10.3390/microorganisms11122941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/02/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Soil salinization has become an ecological and environmental problem that cannot be ignored. Tetraploid black locust (Robinia pseudoacacia L.) is a leguminous tree with characteristics of drought and saline-alkali tolerance. Rhizosphere bacteria are the primary functional microorganisms within the plant root system, and they play a crucial role in regulating plant growth and enhancing stress tolerance. However, there is still a lack of research on the effect of saline-alkali stress on the bacterial community structure in the rhizosphere of black locusts. In this study, we applied 0, 50, 100, and 150 mM NaHCO3 stress to diploid (2×) and tetraploid (4×) black locusts for 16 days. We used 16S rDNA sequencing to investigate the changes in the rhizosphere bacterial communities. Furthermore, we evaluated soil enzyme activity and plant physiological characteristics to explore the response of rhizosphere bacteria to NaHCO3 stress. The results demonstrated that the 4× plant exhibited superior alkali resistance compared to its 2× plant counterpart under NaHCO3 stress. Simultaneously, it was observed that low concentrations of NaHCO3 stress notably increased the abundance of rhizosphere bacteria in both plant types, while reducing their diversity. The impact of stress on the rhizosphere bacterial community weakened as the stress concentration increased. The application of NaHCO3 stress caused a significant change in the composition of the bacterial community in the rhizosphere. Additionally, alkaline salt stress influences the diversity of rhizosphere bacterial communities, which are linked to soil enzyme activities. These data will help us better understand the relationship between the dominant rhizosphere bacterial community and black locust. They will also provide a reference for further improving the alkali resistance of black locust by enhancing the soil bacterial community.
Collapse
Affiliation(s)
| | | | | | | | - Fanjuan Meng
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, College of Life Sciences, Ministry of Education, Northeast Forestry University, Harbin 150040, China; (L.L.); (Y.C.); (L.Z.); (X.B.)
| | - Qiuxiang Luo
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, College of Life Sciences, Ministry of Education, Northeast Forestry University, Harbin 150040, China; (L.L.); (Y.C.); (L.Z.); (X.B.)
| |
Collapse
|