1
|
Karamian A, Seifi A. Diagnostic Accuracy of Deep Learning for Intracranial Hemorrhage Detection in Non-Contrast Brain CT Scans: A Systematic Review and Meta-Analysis. J Clin Med 2025; 14:2377. [PMID: 40217828 PMCID: PMC11989428 DOI: 10.3390/jcm14072377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 03/24/2025] [Accepted: 03/28/2025] [Indexed: 04/14/2025] Open
Abstract
Background: Intracranial hemorrhage (ICH) is a life-threatening medical condition that needs early detection and treatment. In this systematic review and meta-analysis, we aimed to update our knowledge of the performance of deep learning (DL) models in detecting ICH on non-contrast computed tomography (NCCT). Methods: The study protocol was registered with PROSPERO (CRD420250654071). PubMed/MEDLINE and Google Scholar databases and the reference section of included studies were searched for eligible studies. The risk of bias in the included studies was assessed using the QUADAS-2 tool. Required data was collected to calculate pooled sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) with the corresponding 95% CI using the random effects model. Results: Seventy-three studies were included in our qualitative synthesis, and fifty-eight studies were selected for our meta-analysis. A pooled sensitivity of 0.92 (95% CI 0.90-0.94) and a pooled specificity of 0.94 (95% CI 0.92-0.95) were achieved. Pooled PPV was 0.84 (95% CI 0.78-0.89) and pooled NPV was 0.97 (95% CI 0.96-0.98). A bivariate model showed a pooled AUC of 0.96 (95% CI 0.95-0.97). Conclusions: This meta-analysis demonstrates that DL performs well in detecting ICH from NCCTs, highlighting a promising potential for the use of AI tools in various practice settings. More prospective studies are needed to confirm the potential clinical benefit of implementing DL-based tools and reveal the limitations of such tools for automated ICH detection and their impact on clinical workflow and outcomes of patients.
Collapse
Affiliation(s)
- Armin Karamian
- School of Medicine, University of Texas Health at San Antonio, San Antonio, TX 78229, USA;
| | - Ali Seifi
- Division of Neurocritical Care, Department of Neurosurgery, University of Texas Health at San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
2
|
Kang DW, Kim M, Park GH, Kim YS, Han MK, Lee M, Kim D, Ryu WS, Jeong HG. Deep learning-assisted detection of intracranial hemorrhage: validation and impact on reader performance. Neuroradiology 2025:10.1007/s00234-025-03560-x. [PMID: 40116947 DOI: 10.1007/s00234-025-03560-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 02/09/2025] [Indexed: 03/23/2025]
Abstract
PURPOSE Intracranial hemorrhage (ICH) requires urgent treatment, and accurate and timely diagnosis is essential for improving outcomes. This pivotal clinical trial aimed to validate a deep learning algorithm for ICH detection and assess its clinical utility through a reader performance test. METHODS Retrospective CT scans from patients with and without ICH were collected from a tertiary hospital. Two experts evaluated all scans, with a third expert reviewing disagreements for the final diagnosis. We analyzed the performance of the deep learning algorithm, JLK-ICH, for all cases and ICH subtypes. Additional external validation was performed using a multi-ethnic U.S. DATASET A reader performance study included six non-expert readers who evaluated 800 CT scans, with and without JLK-ICH assistance, following a washout period. ICH presence and five-point scale confidence level for decisions were rated. RESULTS A total of 1,370 CT scans were evaluated. The deep learning model showed 98.7% sensitivity (95% confidence interval [CI] 97.8-99.3%), 88.5% specificity (95% CI, 83.6-92.3%), and an area under the receiver operating characteristic curve (AUROC) of 0.936 (95% CI, 0.915-0.957). The model maintained high accuracy across all ICH subtypes, and additional external validation confirmed these results. In the reader performance study, AUROC with JLK-ICH assistance (0.967 [0.953-0.981]) surpassed that without assistance (0.953 [0.938-0.957]; P = 0.009). JLK-ICH particularly improved performance when readers were highly uncertain. CONCLUSION The JLK-ICH algorithm demonstrated high accuracy in detecting all ICH subtypes. Non-expert readers significantly improved diagnostic accuracy for brain CT scans with deep learning assistance.
Collapse
Affiliation(s)
- Dong-Wan Kang
- Division of Intensive Care Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
- Department of Neurosurgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
- Department of Neurology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
| | - Museong Kim
- Department of Neurosurgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
- Hospital Medicine Center, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
| | - Gi-Hun Park
- JLK Inc., Artificial Intelligence Research Center, Seoul, Republic of Korea
| | - Yong Soo Kim
- Division of Intensive Care Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
- Department of Neurosurgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
- Department of Neurology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
| | - Moon-Ku Han
- Division of Intensive Care Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
- Department of Neurology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
| | - Myungjae Lee
- JLK Inc., Artificial Intelligence Research Center, Seoul, Republic of Korea
| | - Dongmin Kim
- JLK Inc., Artificial Intelligence Research Center, Seoul, Republic of Korea
| | - Wi-Sun Ryu
- JLK Inc., Artificial Intelligence Research Center, Seoul, Republic of Korea
| | - Han-Gil Jeong
- Division of Intensive Care Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea.
- Department of Neurosurgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea.
- Department of Neurology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea.
| |
Collapse
|
3
|
Koyun M, Taskent I. Evaluation of Advanced Artificial Intelligence Algorithms' Diagnostic Efficacy in Acute Ischemic Stroke: A Comparative Analysis of ChatGPT-4o and Claude 3.5 Sonnet Models. J Clin Med 2025; 14:571. [PMID: 39860577 PMCID: PMC11765597 DOI: 10.3390/jcm14020571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 01/15/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: Acute ischemic stroke (AIS) is a leading cause of mortality and disability worldwide, with early and accurate diagnosis being critical for timely intervention and improved patient outcomes. This retrospective study aimed to assess the diagnostic performance of two advanced artificial intelligence (AI) models, Chat Generative Pre-trained Transformer (ChatGPT-4o) and Claude 3.5 Sonnet, in identifying AIS from diffusion-weighted imaging (DWI). Methods: The DWI images of a total of 110 cases (AIS group: n = 55, healthy controls: n = 55) were provided to the AI models via standardized prompts. The models' responses were compared to radiologists' gold-standard evaluations, and performance metrics such as sensitivity, specificity, and diagnostic accuracy were calculated. Results: Both models exhibited a high sensitivity for AIS detection (ChatGPT-4o: 100%, Claude 3.5 Sonnet: 94.5%). However, ChatGPT-4o demonstrated a significantly lower specificity (3.6%) compared to Claude 3.5 Sonnet (74.5%). The agreement with radiologists was poor for ChatGPT-4o (κ = 0.036; %95 CI: -0.013, 0.085) but good for Claude 3.5 Sonnet (κ = 0.691; %95 CI: 0.558, 0.824). In terms of the AIS hemispheric localization accuracy, Claude 3.5 Sonnet (67.2%) outperformed ChatGPT-4o (32.7%). Similarly, for specific AIS localization, Claude 3.5 Sonnet (30.9%) showed greater accuracy than ChatGPT-4o (7.3%), with these differences being statistically significant (p < 0.05). Conclusions: This study highlights the superior diagnostic performance of Claude 3.5 Sonnet compared to ChatGPT-4o in identifying AIS from DWI. Despite its advantages, both models demonstrated notable limitations in accuracy, emphasizing the need for further development before achieving full clinical applicability. These findings underline the potential of AI tools in radiological diagnostics while acknowledging their current limitations.
Collapse
Affiliation(s)
- Mustafa Koyun
- Department of Radiology, Kastamonu Training and Research Hospital, Kastamonu 37150, Turkey
| | - Ismail Taskent
- Department of Radiology, Kastamonu University, Kastamonu 37150, Turkey;
| |
Collapse
|
4
|
Koyun M, Cevval ZK, Reis B, Ece B. Detection of Intracranial Hemorrhage from Computed Tomography Images: Diagnostic Role and Efficacy of ChatGPT-4o. Diagnostics (Basel) 2025; 15:143. [PMID: 39857027 PMCID: PMC11763562 DOI: 10.3390/diagnostics15020143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: The role of artificial intelligence (AI) in radiological image analysis is rapidly evolving. This study evaluates the diagnostic performance of Chat Generative Pre-trained Transformer Omni (GPT-4 Omni) in detecting intracranial hemorrhages (ICHs) in non-contrast computed tomography (NCCT) images, along with its ability to classify hemorrhage type, stage, anatomical location, and associated findings. Methods: A retrospective study was conducted using 240 cases, comprising 120 ICH cases and 120 controls with normal findings. Five consecutive NCCT slices per case were selected by radiologists and analyzed by ChatGPT-4o using a standardized prompt with nine questions. Diagnostic accuracy, sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) were calculated by comparing the model's results with radiologists' assessments (the gold standard). After a two-week interval, the same dataset was re-evaluated to assess intra-observer reliability and consistency. Results: ChatGPT-4o achieved 100% accuracy in identifying imaging modality type. For ICH detection, the model demonstrated a diagnostic accuracy of 68.3%, sensitivity of 79.2%, specificity of 57.5%, PPV of 65.1%, and NPV of 73.4%. It correctly classified 34.0% of hemorrhage types and 7.3% of localizations. All ICH-positive cases were identified as acute phase (100%). In the second evaluation, diagnostic accuracy improved to 73.3%, with a sensitivity of 86.7% and a specificity of 60%. The Cohen's Kappa coefficient for intra-observer agreement in ICH detection indicated moderate agreement (κ = 0.469). Conclusions: ChatGPT-4o shows promise in identifying imaging modalities and ICH presence but demonstrates limitations in localization and hemorrhage type classification. These findings highlight its potential for improvement through targeted training for medical applications.
Collapse
Affiliation(s)
- Mustafa Koyun
- Department of Radiology, Kastamonu Training and Research Hospital, Kastamonu 37150, Turkey;
| | - Zeycan Kubra Cevval
- Department of Radiology, Kastamonu Training and Research Hospital, Kastamonu 37150, Turkey;
| | - Bahadir Reis
- Department of Radiology, Kastamonu University, Kastamonu 37150, Turkey; (B.R.); (B.E.)
| | - Bunyamin Ece
- Department of Radiology, Kastamonu University, Kastamonu 37150, Turkey; (B.R.); (B.E.)
| |
Collapse
|
5
|
Teodorescu B, Gilberg L, Koç AM, Goncharov A, Berclaz LM, Wiedemeyer C, Guzel HE, Ataide EJG. Advancements in opportunistic intracranial aneurysm screening: The impact of a deep learning algorithm on radiologists' analysis of T2-weighted cranial MRI. J Stroke Cerebrovasc Dis 2024; 33:108014. [PMID: 39293708 DOI: 10.1016/j.jstrokecerebrovasdis.2024.108014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 09/12/2024] [Indexed: 09/20/2024] Open
Abstract
(1) Background: Unruptured Intracranial Aneurysms (UIAs) are common blood vessel malformations, occurring in up to 3 % of healthy adults. Magnetic Resonance Angiography (MRA) is frequently used for the screening of UIAs due to its high resolution in vascular anatomy. However, T2-Weighted Magnetic Resonance Imaging (T2WI) is a standard sequence utilized for the majority of outpatient head scans. By employing a sequence such as T2WI, there is a possible shift towards early detection of UIAs through opportunistic screening. Here, we assess a Deep Learning Algorithm (DLA) developed to assist radiologists in identifying and reporting UIAs on T2WI in a routine clinical setting. (2) Methods: A DLA was trained on a set of 110 patients undergoing an MR head scan with the gold standard set by two radiology experts. Eight radiologists were given a cohort of 50 cranial T2WI studies and asked for a routine report. After a 10-day washout period, they reviewed the same cases randomized and supported by the DLA predictions. We assessed changes in sensitivity, specificity, accuracy, and false positives. (3) Results: During routine reporting, the models' assistance improved the sensitivity of the eight participants by an average of 36.19 and the accuracy by 10.00 percentage points. (4) Conclusion: Our results indicate the potential benefit of deep learning to improve radiologists' detection of UIAs during routine reporting. From this, we can infer that the combination of T2WI with our DLA supports opportunistic screening, suggesting potential approaches for future research and application.
Collapse
Affiliation(s)
- Bianca Teodorescu
- Floy GmbH, Germany; Department of Medicine II, University Hospital, LMU Munich, Germany.
| | | | - Ali Murat Koç
- Floy GmbH, Germany; Izmir Katip Celebi University, Ataturk Education and Research Hospital, Department of Radiology
| | | | - Luc M Berclaz
- Department of Medicine III, University Hospital, LMU Munich, Germany
| | | | | | | |
Collapse
|
6
|
Fathi M, Eshraghi R, Behzad S, Tavasol A, Bahrami A, Tafazolimoghadam A, Bhatt V, Ghadimi D, Gholamrezanezhad A. Potential strength and weakness of artificial intelligence integration in emergency radiology: a review of diagnostic utilizations and applications in patient care optimization. Emerg Radiol 2024; 31:887-901. [PMID: 39190230 DOI: 10.1007/s10140-024-02278-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/08/2024] [Indexed: 08/28/2024]
Abstract
Artificial intelligence (AI) and its recent increasing healthcare integration has created both new opportunities and challenges in the practice of radiology and medical imaging. Recent advancements in AI technology have allowed for more workplace efficiency, higher diagnostic accuracy, and overall improvements in patient care. Limitations of AI such as data imbalances, the unclear nature of AI algorithms, and the challenges in detecting certain diseases make it difficult for its widespread adoption. This review article presents cases involving the use of AI models to diagnose intracranial hemorrhage, spinal fractures, and rib fractures, while discussing how certain factors like, type, location, size, presence of artifacts, calcification, and post-surgical changes, affect AI model performance and accuracy. While the use of artificial intelligence has the potential to improve the practice of emergency radiology, it is important to address its limitations to maximize its advantages while ensuring the safety of patients overall.
Collapse
Affiliation(s)
- Mobina Fathi
- Advanced Diagnostic and Interventional Radiology Research Center (ADIR), Tehran University of Medical Sciences, Tehran, Iran
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Eshraghi
- Student Research Committee, Kashan University of Medical Science, Kashan, Iran
| | | | - Arian Tavasol
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ashkan Bahrami
- Student Research Committee, Kashan University of Medical Science, Kashan, Iran
| | | | - Vivek Bhatt
- School of Medicine, University of California, Riverside, CA, USA
| | - Delaram Ghadimi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Gholamrezanezhad
- Keck School of Medicine of University of Southern California, Los Angeles, CA, USA.
- Department of Radiology, Division of Emergency Radiology, Keck School of Medicine, Cedars Sinai Hospital, University of Southern California, 1500 San Pablo Street, Los Angeles, CA, 90033, USA.
| |
Collapse
|
7
|
Bower MM, Giles JA, Sansing LH, Carhuapoma JR, Woo D. Stroke Controversies and Debates: Imaging in Intracerebral Hemorrhage. Stroke 2024; 55:2765-2771. [PMID: 39355925 PMCID: PMC11536919 DOI: 10.1161/strokeaha.123.043480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 08/13/2024] [Accepted: 09/06/2024] [Indexed: 10/03/2024]
Affiliation(s)
- Matthew M. Bower
- Johns Hopkins University School of Medicine, Department of Neurology, Baltimore, MD
| | - James A. Giles
- Yale University School of Medicine, Department of Neurology; New Haven, CT
| | - Lauren H. Sansing
- Yale University School of Medicine, Department of Neurology; New Haven, CT
| | | | - Daniel Woo
- University of Cincinnati College of Medicine, Department of Neurology; Cincinnati, OH
| |
Collapse
|
8
|
Bark D, Basu J, Toumpanakis D, Burwick Nyberg J, Bjerner T, Rostami E, Fällmar D. Clinical Impact of an AI Decision Support System for Detection of Intracranial Hemorrhage in CT Scans. Neurotrauma Rep 2024; 5:1009-1015. [PMID: 39440151 PMCID: PMC11491571 DOI: 10.1089/neur.2024.0017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024] Open
Abstract
This study aimed to evaluate the predictive value and clinical impact of a clinically implemented artificial neural network software model. The software detects intracranial hemorrhage (ICH) from head computed tomography (CT) scans and artificial intelligence (AI)-identified positive cases are then annotated in the work list for early radiologist evaluation. The index test was AI detection by the program Zebra Medical Vision-HealthICH+. Radiologist-confirmed ICH was the reference standard. The study compared whether time benefits from using the AI model led to faster escalation of patient care or surgery within the first 24 h. A total of 2,306 patients were evaluated by the software, and 288 AI-positive cases were included. The AI tool had a positive predictive value of 0.823. There was, however, no significant time reduction when comparing the patients who required escalation of care and those who did not. There was also no significant time reduction in those who required acute surgery compared with those who did not. Among the individual patients with reduced time delay, no cases with evident clinical benefit were identified. Although the clinically implemented AI-based decision support system showed adequate predictive value in identifying ICH, there was no significant clinical benefit for the patients in our setting. While AI-assisted detection of ICH shows great promise from a technical perspective, there remains a need to evaluate the clinical impact and perform external validation across different settings.
Collapse
Affiliation(s)
- David Bark
- Department of Neurosciences, Neurosurgery, Uppsala University Hospital, Uppsala, Sweden
| | - Julia Basu
- Department of Surgical Sciences, Neuroradiology, Uppsala University, Uppsala, Sweden
| | - Dimitrios Toumpanakis
- Department of Surgical Sciences, Neuroradiology, Uppsala University, Uppsala, Sweden
| | - Johan Burwick Nyberg
- Department of Surgical Sciences, Neuroradiology, Uppsala University, Uppsala, Sweden
| | - Tomas Bjerner
- Department of Radiology in Linköping, Linköping University, Linköping, Sweden
- Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
- Centre for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
| | - Elham Rostami
- Department of Neurosciences, Neurosurgery, Uppsala University Hospital, Uppsala, Sweden
- Centre for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - David Fällmar
- Department of Surgical Sciences, Neuroradiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
9
|
Behzad S, Tabatabaei SMH, Lu MY, Eibschutz LS, Gholamrezanezhad A. Pitfalls in Interpretive Applications of Artificial Intelligence in Radiology. AJR Am J Roentgenol 2024; 223:e2431493. [PMID: 39046137 DOI: 10.2214/ajr.24.31493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Interpretive artificial intelligence (AI) tools are poised to change the future of radiology. However, certain pitfalls may pose particular challenges for optimal AI interpretative performance. These include anatomic variants, age-related changes, postoperative changes, medical devices, image artifacts, lack of integration of prior and concurrent imaging examinations and clinical information, and the satisfaction-of-search effect. Model training and development should account for such pitfalls to minimize errors and optimize interpretation accuracy. More broadly, AI algorithms should be exposed to diverse and complex training datasets to yield a holistic interpretation that considers all relevant information beyond the individual examination. Successful clinical deployment of AI tools will require that radiologist end users recognize these pitfalls and other limitations of the available models. Furthermore, developers should incorporate explainable AI techniques (e.g., heat maps) into their tools, to improve radiologists' understanding of model outputs and to enable radiologists to provide feedback for guiding continuous learning and iterative refinement. In this article, we provide an overview of common pitfalls that radiologists may encounter when using interpretive AI products in daily practice. We present how such pitfalls lead to AI errors and offer potential strategies that AI developers may use for their mitigation.
Collapse
Affiliation(s)
| | - Seyed M Hossein Tabatabaei
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit St, Boston, MA 02114
| | - Max Y Lu
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | | | - Ali Gholamrezanezhad
- Department of Radiology, Los Angeles General Hospital, Los Angeles, CA
- Department of Radiology, Cedars Sinai Hospital, Los Angeles, CA
| |
Collapse
|
10
|
Del Gaizo AJ, Osborne TF, Shahoumian T, Sherrier R. Deep Learning to Detect Intracranial Hemorrhage in a National Teleradiology Program and the Impact on Interpretation Time. Radiol Artif Intell 2024; 6:e240067. [PMID: 39017032 PMCID: PMC11427938 DOI: 10.1148/ryai.240067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/11/2024] [Accepted: 06/25/2024] [Indexed: 07/18/2024]
Abstract
The diagnostic performance of an artificial intelligence (AI) clinical decision support solution for acute intracranial hemorrhage (ICH) detection was assessed in a large teleradiology practice. The impact on radiologist read times and system efficiency was also quantified. A total of 61 704 consecutive noncontrast head CT examinations were retrospectively evaluated. System performance was calculated along with mean and median read times for CT studies obtained before (baseline, pre-AI period; August 2021 to May 2022) and after (post-AI period; January 2023 to February 2024) AI implementation. The AI solution had a sensitivity of 75.6%, specificity of 92.1%, accuracy of 91.7%, prevalence of 2.70%, and positive predictive value of 21.1%. Of the 56 745 post-AI CT scans with no bleed identified by a radiologist, examinations falsely flagged as suspected ICH by the AI solution (n = 4464) took an average of 9 minutes 40 seconds (median, 8 minutes 7 seconds) to interpret as compared with 8 minutes 25 seconds (median, 6 minutes 48 seconds) for unremarkable CT scans before AI (n = 49 007) (P < .001) and 8 minutes 38 seconds (median, 6 minutes 53 seconds) after AI when ICH was not suspected by the AI solution (n = 52 281) (P < .001). CT scans with no bleed identified by the AI but reported as positive for ICH by the radiologist (n = 384) took an average of 14 minutes 23 seconds (median, 13 minutes 35 seconds) to interpret as compared with 13 minutes 34 seconds (median, 12 minutes 30 seconds) for CT scans correctly reported as a bleed by the AI (n = 1192) (P = .04). With lengthened read times for falsely flagged examinations, system inefficiencies may outweigh the potential benefits of using the tool in a high volume, low prevalence environment. Keywords: Artificial Intelligence, Intracranial Hemorrhage, Read Time, Report Turnaround Time, System Efficiency Supplemental material is available for this article. © RSNA, 2024.
Collapse
Affiliation(s)
- Andrew James Del Gaizo
- From the VA National Teleradiology Program, 795 Willow Rd, Bldg 3342,
Menlo Park, CA 94025 (A.J.D.G., R.S.); VA Palo Alto Health Care System, Palo
Alto, Calif (T.F.O.); Department of Radiology, Stanford University School of
Medicine, Stanford, Calif (T.F.O.); and VA Health Solutions, Patient Care
Services, Washington, DC (T.S.)
| | - Thomas F. Osborne
- From the VA National Teleradiology Program, 795 Willow Rd, Bldg 3342,
Menlo Park, CA 94025 (A.J.D.G., R.S.); VA Palo Alto Health Care System, Palo
Alto, Calif (T.F.O.); Department of Radiology, Stanford University School of
Medicine, Stanford, Calif (T.F.O.); and VA Health Solutions, Patient Care
Services, Washington, DC (T.S.)
| | - Troy Shahoumian
- From the VA National Teleradiology Program, 795 Willow Rd, Bldg 3342,
Menlo Park, CA 94025 (A.J.D.G., R.S.); VA Palo Alto Health Care System, Palo
Alto, Calif (T.F.O.); Department of Radiology, Stanford University School of
Medicine, Stanford, Calif (T.F.O.); and VA Health Solutions, Patient Care
Services, Washington, DC (T.S.)
| | - Robert Sherrier
- From the VA National Teleradiology Program, 795 Willow Rd, Bldg 3342,
Menlo Park, CA 94025 (A.J.D.G., R.S.); VA Palo Alto Health Care System, Palo
Alto, Calif (T.F.O.); Department of Radiology, Stanford University School of
Medicine, Stanford, Calif (T.F.O.); and VA Health Solutions, Patient Care
Services, Washington, DC (T.S.)
| |
Collapse
|
11
|
Petrella RJ. The AI Future of Emergency Medicine. Ann Emerg Med 2024; 84:139-153. [PMID: 38795081 DOI: 10.1016/j.annemergmed.2024.01.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 05/27/2024]
Abstract
In the coming years, artificial intelligence (AI) and machine learning will likely give rise to profound changes in the field of emergency medicine, and medicine more broadly. This article discusses these anticipated changes in terms of 3 overlapping yet distinct stages of AI development. It reviews some fundamental concepts in AI and explores their relation to clinical practice, with a focus on emergency medicine. In addition, it describes some of the applications of AI in disease diagnosis, prognosis, and treatment, as well as some of the practical issues that they raise, the barriers to their implementation, and some of the legal and regulatory challenges they create.
Collapse
Affiliation(s)
- Robert J Petrella
- Emergency Departments, CharterCARE Health Partners, Providence and North Providence, RI; Emergency Department, Boston VA Medical Center, Boston, MA; Emergency Departments, Steward Health Care System, Boston and Methuen, MA; Harvard Medical School, Boston, MA; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA; Department of Medicine, Brigham and Women's Hospital, Boston, MA.
| |
Collapse
|
12
|
Lindroth H, Nalaie K, Raghu R, Ayala IN, Busch C, Bhattacharyya A, Moreno Franco P, Diedrich DA, Pickering BW, Herasevich V. Applied Artificial Intelligence in Healthcare: A Review of Computer Vision Technology Application in Hospital Settings. J Imaging 2024; 10:81. [PMID: 38667979 PMCID: PMC11050909 DOI: 10.3390/jimaging10040081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/08/2024] [Accepted: 03/11/2024] [Indexed: 04/28/2024] Open
Abstract
Computer vision (CV), a type of artificial intelligence (AI) that uses digital videos or a sequence of images to recognize content, has been used extensively across industries in recent years. However, in the healthcare industry, its applications are limited by factors like privacy, safety, and ethical concerns. Despite this, CV has the potential to improve patient monitoring, and system efficiencies, while reducing workload. In contrast to previous reviews, we focus on the end-user applications of CV. First, we briefly review and categorize CV applications in other industries (job enhancement, surveillance and monitoring, automation, and augmented reality). We then review the developments of CV in the hospital setting, outpatient, and community settings. The recent advances in monitoring delirium, pain and sedation, patient deterioration, mechanical ventilation, mobility, patient safety, surgical applications, quantification of workload in the hospital, and monitoring for patient events outside the hospital are highlighted. To identify opportunities for future applications, we also completed journey mapping at different system levels. Lastly, we discuss the privacy, safety, and ethical considerations associated with CV and outline processes in algorithm development and testing that limit CV expansion in healthcare. This comprehensive review highlights CV applications and ideas for its expanded use in healthcare.
Collapse
Affiliation(s)
- Heidi Lindroth
- Division of Nursing Research, Department of Nursing, Mayo Clinic, Rochester, MN 55905, USA; (K.N.); (R.R.); (I.N.A.); (C.B.)
- Center for Aging Research, Regenstrief Institute, School of Medicine, Indiana University, Indianapolis, IN 46202, USA
- Center for Health Innovation and Implementation Science, School of Medicine, Indiana University, Indianapolis, IN 46202, USA
| | - Keivan Nalaie
- Division of Nursing Research, Department of Nursing, Mayo Clinic, Rochester, MN 55905, USA; (K.N.); (R.R.); (I.N.A.); (C.B.)
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN 55905, USA; (D.A.D.); (B.W.P.); (V.H.)
| | - Roshini Raghu
- Division of Nursing Research, Department of Nursing, Mayo Clinic, Rochester, MN 55905, USA; (K.N.); (R.R.); (I.N.A.); (C.B.)
| | - Ivan N. Ayala
- Division of Nursing Research, Department of Nursing, Mayo Clinic, Rochester, MN 55905, USA; (K.N.); (R.R.); (I.N.A.); (C.B.)
| | - Charles Busch
- Division of Nursing Research, Department of Nursing, Mayo Clinic, Rochester, MN 55905, USA; (K.N.); (R.R.); (I.N.A.); (C.B.)
- College of Engineering, University of Wisconsin-Madison, Madison, WI 53705, USA
| | | | - Pablo Moreno Franco
- Department of Transplantation Medicine, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Daniel A. Diedrich
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN 55905, USA; (D.A.D.); (B.W.P.); (V.H.)
| | - Brian W. Pickering
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN 55905, USA; (D.A.D.); (B.W.P.); (V.H.)
| | - Vitaly Herasevich
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN 55905, USA; (D.A.D.); (B.W.P.); (V.H.)
| |
Collapse
|
13
|
Smith CM, Weathers AL, Lewis SL. An overview of clinical machine learning applications in neurology. J Neurol Sci 2023; 455:122799. [PMID: 37979413 DOI: 10.1016/j.jns.2023.122799] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 10/26/2023] [Accepted: 11/12/2023] [Indexed: 11/20/2023]
Abstract
Machine learning techniques for clinical applications are evolving, and the potential impact this will have on clinical neurology is important to recognize. By providing a broad overview on this growing paradigm of clinical tools, this article aims to help healthcare professionals in neurology prepare to navigate both the opportunities and challenges brought on through continued advancements in machine learning. This narrative review first elaborates on how machine learning models are organized and implemented. Machine learning tools are then classified by clinical application, with examples of uses within neurology described in more detail. Finally, this article addresses limitations and considerations regarding clinical machine learning applications in neurology.
Collapse
Affiliation(s)
- Colin M Smith
- Lehigh Valley Fleming Neuroscience Institute, 1250 S Cedar Crest Blvd., Allentown, PA 18103, USA
| | - Allison L Weathers
- Cleveland Clinic Information Technology Division, 9500 Euclid Ave. Cleveland, OH 44195, USA
| | - Steven L Lewis
- Lehigh Valley Fleming Neuroscience Institute, 1250 S Cedar Crest Blvd., Allentown, PA 18103, USA.
| |
Collapse
|
14
|
Maghami M, Sattari SA, Tahmasbi M, Panahi P, Mozafari J, Shirbandi K. Diagnostic test accuracy of machine learning algorithms for the detection intracranial hemorrhage: a systematic review and meta-analysis study. Biomed Eng Online 2023; 22:114. [PMID: 38049809 PMCID: PMC10694901 DOI: 10.1186/s12938-023-01172-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/17/2023] [Indexed: 12/06/2023] Open
Abstract
BACKGROUND This systematic review and meta-analysis were conducted to objectively evaluate the evidence of machine learning (ML) in the patient diagnosis of Intracranial Hemorrhage (ICH) on computed tomography (CT) scans. METHODS Until May 2023, systematic searches were conducted in ISI Web of Science, PubMed, Scopus, Cochrane Library, IEEE Xplore Digital Library, CINAHL, Science Direct, PROSPERO, and EMBASE for studies that evaluated the diagnostic precision of ML model-assisted ICH detection. Patients with and without ICH as the target condition who were receiving CT-Scan were eligible for the research, which used ML algorithms based on radiologists' reports as the gold reference standard. For meta-analysis, pooled sensitivities, specificities, and a summary receiver operating characteristics curve (SROC) were used. RESULTS At last, after screening the title, abstract, and full paper, twenty-six retrospective and three prospective, and two retrospective/prospective studies were included. The overall (Diagnostic Test Accuracy) DTA of retrospective studies with a pooled sensitivity was 0.917 (95% CI 0.88-0.943, I2 = 99%). The pooled specificity was 0.945 (95% CI 0.918-0.964, I2 = 100%). The pooled diagnostic odds ratio (DOR) was 219.47 (95% CI 104.78-459.66, I2 = 100%). These results were significant for the specificity of the different network architecture models (p-value = 0.0289). However, the results for sensitivity (p-value = 0.6417) and DOR (p-value = 0.2187) were not significant. The ResNet algorithm has higher pooled specificity than other algorithms with 0.935 (95% CI 0.854-0.973, I2 = 93%). CONCLUSION This meta-analysis on DTA of ML algorithms for detecting ICH by assessing non-contrast CT-Scans shows the ML has an acceptable performance in diagnosing ICH. Using ResNet in ICH detection remains promising prediction was improved via training in an Architecture Learning Network (ALN).
Collapse
Affiliation(s)
- Masoud Maghami
- Medical Doctor (MD), School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Shahab Aldin Sattari
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Marziyeh Tahmasbi
- Department of Medical Imaging and Radiation Sciences, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Pegah Panahi
- Medical Doctor (MD), School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Javad Mozafari
- Department of Emergency Medicine, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Radiology, Resident (MD), EUREGIO-KLINIK Albert-Schweitzer-Straße GmbH, Nordhorn, Germany
| | | |
Collapse
|
15
|
Kiefer J, Kopp M, Ruettinger T, Heiss R, Wuest W, Amarteifio P, Stroebel A, Uder M, May MS. Diagnostic Accuracy and Performance Analysis of a Scanner-Integrated Artificial Intelligence Model for the Detection of Intracranial Hemorrhages in a Traumatology Emergency Department. Bioengineering (Basel) 2023; 10:1362. [PMID: 38135956 PMCID: PMC10740704 DOI: 10.3390/bioengineering10121362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/03/2023] [Accepted: 11/19/2023] [Indexed: 12/24/2023] Open
Abstract
Intracranial hemorrhages require an immediate diagnosis to optimize patient management and outcomes, and CT is the modality of choice in the emergency setting. We aimed to evaluate the performance of the first scanner-integrated artificial intelligence algorithm to detect brain hemorrhages in a routine clinical setting. This retrospective study includes 435 consecutive non-contrast head CT scans. Automatic brain hemorrhage detection was calculated as a separate reconstruction job in all cases. The radiological report (RR) was always conducted by a radiology resident and finalized by a senior radiologist. Additionally, a team of two radiologists reviewed the datasets retrospectively, taking additional information like the clinical record, course, and final diagnosis into account. This consensus reading served as a reference. Statistics were carried out for diagnostic accuracy. Brain hemorrhage detection was executed successfully in 432/435 (99%) of patient cases. The AI algorithm and reference standard were consistent in 392 (90.7%) cases. One false-negative case was identified within the 52 positive cases. However, 39 positive detections turned out to be false positives. The diagnostic performance was calculated as a sensitivity of 98.1%, specificity of 89.7%, positive predictive value of 56.7%, and negative predictive value (NPV) of 99.7%. The execution of scanner-integrated AI detection of brain hemorrhages is feasible and robust. The diagnostic accuracy has a high specificity and a very high negative predictive value and sensitivity. However, many false-positive findings resulted in a relatively moderate positive predictive value.
Collapse
Affiliation(s)
- Jonas Kiefer
- Department of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Maximiliansplatz 3, 91054 Erlangen, Germany; (J.K.); (T.R.); (R.H.); (M.U.)
| | - Markus Kopp
- Department of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Maximiliansplatz 3, 91054 Erlangen, Germany; (J.K.); (T.R.); (R.H.); (M.U.)
- Imaging Science Institute, Ulmenweg 18, 91054 Erlangen, Germany;
| | - Theresa Ruettinger
- Department of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Maximiliansplatz 3, 91054 Erlangen, Germany; (J.K.); (T.R.); (R.H.); (M.U.)
| | - Rafael Heiss
- Department of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Maximiliansplatz 3, 91054 Erlangen, Germany; (J.K.); (T.R.); (R.H.); (M.U.)
- Imaging Science Institute, Ulmenweg 18, 91054 Erlangen, Germany;
| | - Wolfgang Wuest
- Martha-Maria Hospital Nuernberg, Stadenstraße 58, 90491 Nuernberg, Germany;
| | - Patrick Amarteifio
- Imaging Science Institute, Ulmenweg 18, 91054 Erlangen, Germany;
- Siemens Healthcare GmbH, Allee am Röthelheimpark 3, 91052 Erlangen, Germany
| | - Armin Stroebel
- Center for Clinical Studies CCS, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Krankenhausstraße 12, 91054 Erlangen, Germany;
| | - Michael Uder
- Department of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Maximiliansplatz 3, 91054 Erlangen, Germany; (J.K.); (T.R.); (R.H.); (M.U.)
- Imaging Science Institute, Ulmenweg 18, 91054 Erlangen, Germany;
| | - Matthias Stefan May
- Department of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Maximiliansplatz 3, 91054 Erlangen, Germany; (J.K.); (T.R.); (R.H.); (M.U.)
- Imaging Science Institute, Ulmenweg 18, 91054 Erlangen, Germany;
| |
Collapse
|
16
|
Kotovich D, Twig G, Itsekson-Hayosh Z, Klug M, Simon AB, Yaniv G, Konen E, Tau N, Raskin D, Chang PJ, Orion D. The impact on clinical outcomes after 1 year of implementation of an artificial intelligence solution for the detection of intracranial hemorrhage. Int J Emerg Med 2023; 16:50. [PMID: 37568103 PMCID: PMC10422703 DOI: 10.1186/s12245-023-00523-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 07/17/2023] [Indexed: 08/13/2023] Open
Abstract
BACKGROUND To assess the effect of a commercial artificial intelligence (AI) solution implementation in the emergency department on clinical outcomes in a single level 1 trauma center. METHODS A retrospective cohort study for two time periods-pre-AI (1.1.2017-1.1.2018) and post-AI (1.1.2019-1.1.2020)-in a level 1 trauma center was performed. The ICH algorithm was applied to 587 consecutive patients with a confirmed diagnosis of ICH on head CT upon admission to the emergency department. Study variables included demographics, patient outcomes, and imaging data. Participants admitted to the emergency department during the same time periods for other acute diagnoses (ischemic stroke (IS) and myocardial infarction (MI)) served as control groups. Primary outcomes were 30- and 120-day all-cause mortality. The secondary outcome was morbidity based on Modified Rankin Scale for Neurologic Disability (mRS) at discharge. RESULTS Five hundred eighty-seven participants (289 pre-AI-age 71 ± 1, 169 men; 298 post-AI-age 69 ± 1, 187 men) with ICH were eligible for the analyzed period. Demographics, comorbidities, Emergency Severity Score, type of ICH, and length of stay were not significantly different between the two time periods. The 30- and 120-day all-cause mortality were significantly reduced in the post-AI group when compared to the pre-AI group (27.7% vs 17.5%; p = 0.004 and 31.8% vs 21.7%; p = 0.017, respectively). Modified Rankin Scale (mRS) at discharge was significantly reduced post-AI implementation (3.2 vs 2.8; p = 0.044). CONCLUSION The added value of this study emphasizes the introduction of artificial intelligence (AI) computer-aided triage and prioritization software in an emergent care setting that demonstrated a significant reduction in a 30- and 120-day all-cause mortality and morbidity for patients diagnosed with intracranial hemorrhage (ICH). Along with mortality rates, the AI software was associated with a significant reduction in the Modified Ranking Scale (mRs).
Collapse
Affiliation(s)
- Dmitry Kotovich
- The Institute for Research in Military Medicine, The Faculty of Medicine, The Hebrew University of Jerusalem, Tel Aviv, Israel.
- The IDF Medical Corps, 9112102, Tel Aviv, Israel.
| | - Gilad Twig
- The Institute for Research in Military Medicine, The Faculty of Medicine, The Hebrew University of Jerusalem, Tel Aviv, Israel
- The IDF Medical Corps, 9112102, Tel Aviv, Israel
| | - Zeev Itsekson-Hayosh
- Center of Stroke and Neurovascular Disorders, Sheba Medical Center, Tel HaShomer, Ramat Gan, affiliated to Sackler Faculty of Medicine, Tel Aviv University, 52621, Tel Aviv, Israel
| | - Maximiliano Klug
- Department of Diagnostic Imaging, Sheba Medical Center, Tel HaShomer, Ramat Gan, Israel, affiliated to Sackler Faculty of Medicine, Tel Aviv University, 52621, Tel Aviv, Israel
| | - Asaf Ben Simon
- Sackler School of Medicine, Faculty of Medicine, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Gal Yaniv
- Department of Diagnostic Imaging, Sheba Medical Center, Tel HaShomer, Ramat Gan, Israel, affiliated to Sackler Faculty of Medicine, Tel Aviv University, 52621, Tel Aviv, Israel
| | - Eli Konen
- Department of Diagnostic Imaging, Sheba Medical Center, Tel HaShomer, Ramat Gan, Israel, affiliated to Sackler Faculty of Medicine, Tel Aviv University, 52621, Tel Aviv, Israel
| | - Noam Tau
- Department of Diagnostic Imaging, Sheba Medical Center, Tel HaShomer, Ramat Gan, Israel, affiliated to Sackler Faculty of Medicine, Tel Aviv University, 52621, Tel Aviv, Israel
| | - Daniel Raskin
- Department of Diagnostic Imaging, Sheba Medical Center, Tel HaShomer, Ramat Gan, Israel, affiliated to Sackler Faculty of Medicine, Tel Aviv University, 52621, Tel Aviv, Israel
| | - Paul J Chang
- Department of Radiology, University of Chicago Medical Center, Chicago, Illinois, 60637, USA
| | - David Orion
- Center of Stroke and Neurovascular Disorders, Sheba Medical Center, Tel HaShomer, Ramat Gan, affiliated to Sackler Faculty of Medicine, Tel Aviv University, 52621, Tel Aviv, Israel
| |
Collapse
|
17
|
Wang D, Jin R, Shieh CC, Ng AY, Pham H, Dugal T, Barnett M, Winoto L, Wang C, Barnett Y. Real world validation of an AI-based CT hemorrhage detection tool. Front Neurol 2023; 14:1177723. [PMID: 37602253 PMCID: PMC10435741 DOI: 10.3389/fneur.2023.1177723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 07/12/2023] [Indexed: 08/22/2023] Open
Abstract
Introduction Intracranial hemorrhage (ICH) is a potentially life-threatening medical event that requires expedited diagnosis with computed tomography (CT). Automated medical imaging triaging tools can rapidly bring scans containing critical abnormalities, such as ICH, to the attention of radiologists and clinicians. Here, we retrospectively investigated the real-world performance of VeriScout™, an artificial intelligence-based CT hemorrhage detection and triage tool. Methods Ground truth for the presence or absence of ICH was iteratively determined by expert consensus in an unselected dataset of 527 consecutively acquired non-contrast head CT scans, which were sub-grouped according to the presence of artefact, post-operative features and referral source. The performance of VeriScout™ was compared with the ground truths for all groups. Results VeriScout™ detected hemorrhage with a sensitivity of 0.92 (CI 0.84-0.96) and a specificity of 0.96 (CI 0.94-0.98) in the global dataset, exceeding the sensitivity of general radiologists (0.88) with only a minor relative decrement in specificity (0.98). Crucially, the AI tool detected 13/14 cases of subarachnoid hemorrhage, a potentially fatal condition that is often missed in emergency department settings. There was no decrement in the performance of VeriScout™ in scans containing artefact or postoperative change. Using an integrated informatics platform, VeriScout™ was deployed into the existing radiology workflow. Detected hemorrhage cases were flagged in the hospital radiology information system (RIS) and relevant, annotated, preview images made available in the picture archiving and communications system (PACS) within 10 min. Conclusion AI-based radiology worklist prioritization for critical abnormalities, such as ICH, may enhance patient care without adding to radiologist or clinician burden.
Collapse
Affiliation(s)
- Dongang Wang
- Sydney Neuroimaging Analysis Centre, Camperdown, NSW, Australia
- Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia
| | - Ruilin Jin
- Department of Medical Imaging, St. Vincent’s Hospital, Sydney, NSW, Australia
| | | | - Adrian Y. Ng
- Emergency Department, St. Vincent’s Hospital, Sydney, NSW, Australia
| | - Hiep Pham
- Department of Medical Imaging, St. Vincent’s Hospital, Sydney, NSW, Australia
| | - Tej Dugal
- Sydney Neuroimaging Analysis Centre, Camperdown, NSW, Australia
| | - Michael Barnett
- Sydney Neuroimaging Analysis Centre, Camperdown, NSW, Australia
- Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia
| | - Luis Winoto
- Emergency Department, St. Vincent’s Hospital, Sydney, NSW, Australia
| | - Chenyu Wang
- Sydney Neuroimaging Analysis Centre, Camperdown, NSW, Australia
- Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia
| | - Yael Barnett
- Sydney Neuroimaging Analysis Centre, Camperdown, NSW, Australia
- Department of Medical Imaging, St. Vincent’s Hospital, Sydney, NSW, Australia
| |
Collapse
|
18
|
Angkurawaranon S, Sanorsieng N, Unsrisong K, Inkeaw P, Sripan P, Khumrin P, Angkurawaranon C, Vaniyapong T, Chitapanarux I. A comparison of performance between a deep learning model with residents for localization and classification of intracranial hemorrhage. Sci Rep 2023; 13:9975. [PMID: 37340038 DOI: 10.1038/s41598-023-37114-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 06/15/2023] [Indexed: 06/22/2023] Open
Abstract
Intracranial hemorrhage (ICH) from traumatic brain injury (TBI) requires prompt radiological investigation and recognition by physicians. Computed tomography (CT) scanning is the investigation of choice for TBI and has become increasingly utilized under the shortage of trained radiology personnel. It is anticipated that deep learning models will be a promising solution for the generation of timely and accurate radiology reports. Our study examines the diagnostic performance of a deep learning model and compares the performance of that with detection, localization and classification of traumatic ICHs involving radiology, emergency medicine, and neurosurgery residents. Our results demonstrate that the high level of accuracy achieved by the deep learning model, (0.89), outperforms the residents with regard to sensitivity (0.82) but still lacks behind in specificity (0.90). Overall, our study suggests that the deep learning model may serve as a potential screening tool aiding the interpretation of head CT scans among traumatic brain injury patients.
Collapse
Affiliation(s)
- Salita Angkurawaranon
- Department of Radiology, Maharaj Nakorn Chiang Mai Hospital, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Global Health and Chronic Conditions Research Group, Chiang Mai, 50200, Thailand
| | - Nonn Sanorsieng
- Department of Radiology, Maharaj Nakorn Chiang Mai Hospital, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Kittisak Unsrisong
- Department of Radiology, Maharaj Nakorn Chiang Mai Hospital, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Papangkorn Inkeaw
- Department of Computer Science, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Patumrat Sripan
- Research Institute for Health Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Piyapong Khumrin
- Department of Family Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Chaisiri Angkurawaranon
- Global Health and Chronic Conditions Research Group, Chiang Mai, 50200, Thailand
- Department of Family Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Tanat Vaniyapong
- Neurosurgery Division, Department of Surgery, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Imjai Chitapanarux
- Department of Radiology, Maharaj Nakorn Chiang Mai Hospital, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
19
|
Dreizin D, Staziaki PV, Khatri GD, Beckmann NM, Feng Z, Liang Y, Delproposto ZS, Klug M, Spann JS, Sarkar N, Fu Y. Artificial intelligence CAD tools in trauma imaging: a scoping review from the American Society of Emergency Radiology (ASER) AI/ML Expert Panel. Emerg Radiol 2023; 30:251-265. [PMID: 36917287 PMCID: PMC10640925 DOI: 10.1007/s10140-023-02120-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 02/27/2023] [Indexed: 03/16/2023]
Abstract
BACKGROUND AI/ML CAD tools can potentially improve outcomes in the high-stakes, high-volume model of trauma radiology. No prior scoping review has been undertaken to comprehensively assess tools in this subspecialty. PURPOSE To map the evolution and current state of trauma radiology CAD tools along key dimensions of technology readiness. METHODS Following a search of databases, abstract screening, and full-text document review, CAD tool maturity was charted using elements of data curation, performance validation, outcomes research, explainability, user acceptance, and funding patterns. Descriptive statistics were used to illustrate key trends. RESULTS A total of 4052 records were screened, and 233 full-text articles were selected for content analysis. Twenty-one papers described FDA-approved commercial tools, and 212 reported algorithm prototypes. Works ranged from foundational research to multi-reader multi-case trials with heterogeneous external data. Scalable convolutional neural network-based implementations increased steeply after 2016 and were used in all commercial products; however, options for explainability were narrow. Of FDA-approved tools, 9/10 performed detection tasks. Dataset sizes ranged from < 100 to > 500,000 patients, and commercialization coincided with public dataset availability. Cross-sectional torso datasets were uniformly small. Data curation methods with ground truth labeling by independent readers were uncommon. No papers assessed user acceptance, and no method included human-computer interaction. The USA and China had the highest research output and frequency of research funding. CONCLUSIONS Trauma imaging CAD tools are likely to improve patient care but are currently in an early stage of maturity, with few FDA-approved products for a limited number of uses. The scarcity of high-quality annotated data remains a major barrier.
Collapse
Affiliation(s)
- David Dreizin
- Department of Diagnostic Radiology and Nuclear Medicine, R Adams Cowley Shock Trauma Center, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Pedro V Staziaki
- Cardiothoracic Imaging, Department of Radiology, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Garvit D Khatri
- Department of Radiology, University of Washington School of Medicine, Seattle, WA, USA
| | - Nicholas M Beckmann
- Memorial Hermann Orthopedic & Spine Hospital, McGovern Medical School at UTHealth, Houston, TX, USA
| | - Zhaoyong Feng
- Epidemiology & Public Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Yuanyuan Liang
- Epidemiology & Public Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Zachary S Delproposto
- Division of Emergency Radiology, Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | | | - J Stephen Spann
- Department of Radiology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Nathan Sarkar
- University of Maryland School of Medicine, Baltimore, MD, USA
| | - Yunting Fu
- Health Sciences and Human Services Library, University of Maryland, Baltimore, Baltimore, MD, USA
| |
Collapse
|
20
|
Chandrabhatla AS, Kuo EA, Sokolowski JD, Kellogg RT, Park M, Mastorakos P. Artificial Intelligence and Machine Learning in the Diagnosis and Management of Stroke: A Narrative Review of United States Food and Drug Administration-Approved Technologies. J Clin Med 2023; 12:jcm12113755. [PMID: 37297949 DOI: 10.3390/jcm12113755] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/22/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Stroke is an emergency in which delays in treatment can lead to significant loss of neurological function and be fatal. Technologies that increase the speed and accuracy of stroke diagnosis or assist in post-stroke rehabilitation can improve patient outcomes. No resource exists that comprehensively assesses artificial intelligence/machine learning (AI/ML)-enabled technologies indicated for the management of ischemic and hemorrhagic stroke. We queried a United States Food and Drug Administration (FDA) database, along with PubMed and private company websites, to identify the recent literature assessing the clinical performance of FDA-approved AI/ML-enabled technologies. The FDA has approved 22 AI/ML-enabled technologies that triage brain imaging for more immediate diagnosis or promote post-stroke neurological/functional recovery. Technologies that assist with diagnosis predominantly use convolutional neural networks to identify abnormal brain images (e.g., CT perfusion). These technologies perform comparably to neuroradiologists, improve clinical workflows (e.g., time from scan acquisition to reading), and improve patient outcomes (e.g., days spent in the neurological ICU). Two devices are indicated for post-stroke rehabilitation by leveraging neuromodulation techniques. Multiple FDA-approved technologies exist that can help clinicians better diagnose and manage stroke. This review summarizes the most up-to-date literature regarding the functionality, performance, and utility of these technologies so clinicians can make informed decisions when using them in practice.
Collapse
Affiliation(s)
- Anirudha S Chandrabhatla
- School of Medicine, University of Virginia Health Sciences Center, 1215 Lee Street, Charlottesville, VA 22903, USA
- Department of Neurological Surgery, University of Virginia Health Sciences Center, 1215 Lee Street, Charlottesville, VA 22903, USA
| | - Elyse A Kuo
- School of Medicine, University of Virginia Health Sciences Center, 1215 Lee Street, Charlottesville, VA 22903, USA
- Department of Neurological Surgery, University of Virginia Health Sciences Center, 1215 Lee Street, Charlottesville, VA 22903, USA
| | - Jennifer D Sokolowski
- Department of Neurological Surgery, University of Virginia Health Sciences Center, 1215 Lee Street, Charlottesville, VA 22903, USA
| | - Ryan T Kellogg
- Department of Neurological Surgery, University of Virginia Health Sciences Center, 1215 Lee Street, Charlottesville, VA 22903, USA
| | - Min Park
- Department of Neurological Surgery, University of Virginia Health Sciences Center, 1215 Lee Street, Charlottesville, VA 22903, USA
| | - Panagiotis Mastorakos
- Department of Neurological Surgery, University of Virginia Health Sciences Center, 1215 Lee Street, Charlottesville, VA 22903, USA
- Department of Neurological Surgery, Thomas Jefferson University Hospital, 111 S 11th Street, Philadelphia, PA 19107, USA
| |
Collapse
|
21
|
Artificial intelligence in emergency radiology: A review of applications and possibilities. Diagn Interv Imaging 2023; 104:6-10. [PMID: 35933269 DOI: 10.1016/j.diii.2022.07.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 07/23/2022] [Indexed: 01/10/2023]
Abstract
Artificial intelligence (AI) applications in radiology have been rising exponentially in the last decade. Although AI has found usage in various areas of healthcare, its utilization in the emergency department (ED) as a tool for emergency radiologists shows great promise towards easing some of the challenges faced daily. There have been numerous reported studies examining the application of AI-based algorithms in identifying common ED conditions to ensure more rapid reporting and in turn quicker patient care. In addition to interpretive applications, AI assists with many of the non-interpretive tasks that are encountered every day by emergency radiologists. These include, but are not limited to, protocolling, image quality control and workflow prioritization. AI continues to face challenges such as physician uptake or costs, but is a long-term investment that shows great potential to relieve many difficulties faced by emergency radiologists and ultimately improve patient outcomes. This review sums up the current advances of AI in emergency radiology, including current diagnostic applications (interpretive) and applications that stretch beyond imaging (non-interpretive), analyzes current drawbacks of AI in emergency radiology and discusses future challenges.
Collapse
|
22
|
Soyer P, Fishman EK, Rowe SP, Patlas MN, Chassagnon G. Does artificial intelligence surpass the radiologist? Diagn Interv Imaging 2022; 103:445-447. [PMID: 35973913 DOI: 10.1016/j.diii.2022.08.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 08/02/2022] [Indexed: 12/30/2022]
Affiliation(s)
- Philippe Soyer
- Department of Radiology, Hôpital Cochin, Assistance Publique-Hopitaux de Paris, 75014 Paris, France; Université Paris Cité, Faculté de Médecine, 75006, Paris, France.
| | - Elliot K Fishman
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Steven P Rowe
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Michael N Patlas
- Department of Radiology, Hamilton General Hospital, McMaster University Hamilton, ON, Canada L8L 2X2
| | - Guillaume Chassagnon
- Department of Radiology, Hôpital Cochin, Assistance Publique-Hopitaux de Paris, 75014 Paris, France; Université Paris Cité, Faculté de Médecine, 75006, Paris, France
| |
Collapse
|
23
|
Evaluation of radiation exposure for patients undergoing computed tomography perfusion procedure for acute ischemic stroke. Radiat Phys Chem Oxf Engl 1993 2022. [DOI: 10.1016/j.radphyschem.2022.110447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
24
|
Al-Dasuqi K, Johnson MH, Cavallo JJ. Use of artificial intelligence in emergency radiology: An overview of current applications, challenges, and opportunities. Clin Imaging 2022; 89:61-67. [PMID: 35716432 DOI: 10.1016/j.clinimag.2022.05.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/04/2022] [Accepted: 05/23/2022] [Indexed: 11/16/2022]
Abstract
The value of artificial intelligence (AI) in healthcare has become evident, especially in the field of medical imaging. The accelerated pace and acuity of care in the Emergency Department (ED) has made it a popular target for artificial intelligence-driven solutions. Software that helps better detect, report, and appropriately guide management can ensure high quality patient care while enabling emergency radiologists to better meet the demands of quick turnaround times. Beyond diagnostic applications, AI-based algorithms also have the potential to optimize other important steps within the ED imaging workflow. This review will highlight the different types of AI-based applications currently available for use in the ED, as well as the challenges and opportunities associated with their implementation.
Collapse
Affiliation(s)
- Khalid Al-Dasuqi
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, Box 208042, Tompkins East 2, 333 Cedar St, New Haven, CT 06520-8042, United States of America.
| | - Michele H Johnson
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, Box 208042, Tompkins East 2, 333 Cedar St, New Haven, CT 06520-8042, United States of America.
| | - Joseph J Cavallo
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, Box 208042, Tompkins East 2, 333 Cedar St, New Haven, CT 06520-8042, United States of America.
| |
Collapse
|
25
|
Hetenyi S, Goelz L, Boehmcker A, Schorlemmer C. Quality Assurance of a Cross-Border and Sub-Specialized Teleradiology Service. Healthcare (Basel) 2022; 10:1001. [PMID: 35742052 PMCID: PMC9223114 DOI: 10.3390/healthcare10061001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/20/2022] [Accepted: 05/25/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The current literature discusses aspects of quality assurance (QA) and sub-specialization. However, the challenges of these topics in a teleradiology network have been less explored. In a project report, we aimed to review the development and enforcement of sub-specialized radiology at Telemedicine Clinic (TMC), one of the largest teleradiology providers in Europe, and to describe each step of its QA. EVALUATION The company-specific background was provided by the co-authors-current and former staff members of TMC. Detailed descriptions of the structures of sub-specialization and QA at TMC are provided. Exemplary quantitative evaluation of caseloads and disagreement rates of secondary reviews are illustrated. Description of Sub-specialization and Quality Assurance at TMC: Sub-specialization at TMC is divided into musculoskeletal radiology, neuroradiology, head and neck, a body, and an emergency section operating at local daytime in Europe and Australia. Quality assurance is based on a strict selection process of radiologists, specific reporting guidelines, feedback through the secondary reading of 100% of all radiology reports for new starters, and a minimum of 5% of radiology reports on a continuous basis for all other radiologists, knowledge sharing activities and ongoing training. The level of sub-specialization of each radiologist is monitored continuously on an individual basis in detail. After prospective secondary readings, the mean disagreement rate at TMC indicating at least possibly clinically relevant findings was 4% in 2021. CONCLUSION With continuing and current developments in radiology in mind, the essential features of sub-specialization and innovative QA are relevant for further expansion of teleradiology services and for most radiology departments worldwide to respond to the increasing demand for value-based radiology.
Collapse
Affiliation(s)
- Szabolcs Hetenyi
- European Telemedicine Clinic SL, Torre Mapfre, C/Marina 16-18, 08005 Barcelona, Spain; (S.H.); (A.B.); (C.S.)
| | - Leonie Goelz
- Department of Radiology and Neuroradiology, BG Klinikum Unfallkrankenhaus Berlin, Warener Straße 7, 12683 Berlin, Germany
- Institute for Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany
| | - Alexander Boehmcker
- European Telemedicine Clinic SL, Torre Mapfre, C/Marina 16-18, 08005 Barcelona, Spain; (S.H.); (A.B.); (C.S.)
- AIDOC Medical, Aminadav St. 3, Tel Aviv-Yafo 6706703, Israel
| | - Carlos Schorlemmer
- European Telemedicine Clinic SL, Torre Mapfre, C/Marina 16-18, 08005 Barcelona, Spain; (S.H.); (A.B.); (C.S.)
| |
Collapse
|