1
|
Sahni J, McCue IS, Johnson AR, Schake MA, Sotelo LD, Turner JA, Pedrigi RM. Ultrasound Induces Similar Temporal Endothelial Expression Patterns of eNOS and KLF2 as Normal Flow. ULTRASOUND IN MEDICINE & BIOLOGY 2024; 50:1893-1902. [PMID: 39306482 PMCID: PMC11490374 DOI: 10.1016/j.ultrasmedbio.2024.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 07/22/2024] [Accepted: 08/23/2024] [Indexed: 10/21/2024]
Abstract
OBJECTIVE To determine the sensitivity of vascular endothelial cells to long durations of low-intensity pulsed ultrasound (LIPUS) compared to normal flow and identify the duration that maximizes expression of two mechanosensitive genes related to healthy endothelial function, endothelial nitric oxide synthase (eNOS) and Krüppel-like factor 2 (KLF2). METHODS Custom ultrasound exposure tanks were developed and the acoustic field was characterized. Human umbilical vein endothelial cells were seeded into culture plates and exposed to LIPUS at a frequency of 1 MHz and acoustic pressure of 217 kPa for 20 min, 1 h, 6 h, 9 h, or 24 h. As a comparator, other cells were exposed to normal flow. RT-qPCR was used to assess mRNA expression of eNOS and KLF2. RESULTS Maximum eNOS and KLF2 expression occurred at 6 h and was localized to the beam path. Both genes exhibited qualitatively similar patterns of expression under LIPUS compared to normal flow. LIPUS induced a more rapid beneficial response compared to normal flow, but flow induced higher expression of both genes. eNOS expression after 6 h of LIPUS was dependent on RNA yield and culture duration prior to experiments. CONCLUSION Endothelial cells exposed to longer durations of LIPUS than typically employed exhibited greater expression of beneficial genes. The temporal gene expression patterns resulting from LIPUS and normal flow suggest activation of similar signaling pathways. However, LIPUS also caused increased RNA yield that may be linked to proliferation, which would suggest more of a wound healing than atheroprotective phenotype.
Collapse
Affiliation(s)
- Jaideep Sahni
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Ian S McCue
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Adam R Johnson
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Morgan A Schake
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Luz D Sotelo
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Joseph A Turner
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Ryan M Pedrigi
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA; Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE, USA; Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
2
|
Guo H, Cui BD, Gong M, Li QX, Zhang LX, Chen JL, Chi J, Zhu LL, Xu EP, Wang ZM, Dai LP. An ethanolic extract of Arctium lappa L. leaves ameliorates experimental atherosclerosis by modulating lipid metabolism and inflammatory responses through PI3K/Akt and NF-κB singnaling pathways. JOURNAL OF ETHNOPHARMACOLOGY 2024; 325:117768. [PMID: 38253275 DOI: 10.1016/j.jep.2024.117768] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Atherosclerosis (AS), a lipid-induced inflammatory condition of the arteries, is a primary contributor to atherosclerotic cardiovascular diseases including stroke. Arctium lappa L. leaf (ALL), an edible and medicinal herb in China, has been documented and commonly used for treating stroke since the ancient times. However, the elucidations on its anti-AS effects and molecular mechanism remain insufficient. AIM OF THE STUDY To investigate the AS-ameliorating effects and the underlying mechanism of action of an ethanolic extract of leaves of Arctium lappa L. (ALLE). MATERIALS AND METHODS ALLE was reflux extracted using with 70% ethanol. An HPLC method was established to monitor the quality of ALLE. High fat diet (HFD) and vitamin D3-induced experimental AS in rats were used to determine the in vivo effects; and oxidized low-density lipoprotein-induced RAW264.7 macrophage foam cells were used for in vitro assays. Simvatatin was used as positive control. Biochemical assays were implemented to ascertain the secretions of lipids and pro-inflammatory mediators. Haematoxylin-eosin (H&E) and Oil red O stains were employed to assess histopathological alterations and lipid accumulation conditions, respectively. CCK-8 assays were used to measure cytotoxicity. Immunoblotting assay was conducted to measure protein levels. RESULTS ALLE treatment significantly ameliorated lipid deposition and histological abnormalities of aortas and livers in AS rats; improved the imbalances of serum lipids including total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C) and high-density lipoprotein cholesterol (HDL-C); notably attenuated serum concentrations of inflammation-associated cytokines/molecules including TNF-α, IL-6, IL-1β, VCAM-1, ICAM-1and MMP-9. Mechanistic studies demonstrated that ALLE suppressed the phosphorylation/activation of PI3K, Akt and NF-κB in AS rat aortas and in cultured foam cells. Additionally, the PI3K agonist 740Y-P notably reversed the in vitro inhibitory effects of ALLE on lipid deposition, productions of TC, TNF-α and IL-6, and protein levels of molecules of PI3K/Akt and NF-κB singnaling pathways. CONCLUSIONS ALLE ameliorates HFD- and vitamin D3-induced experimental AS by modulating lipid metabolism and inflammatory responses, and underlying mechanisms involves inhibition of the PI3K/Akt and NF-κB singnaling pathways. The findings of this study provide scientific justifications for the traditional application of ALL in managing atherosclerotic diseases.
Collapse
Affiliation(s)
- Hui Guo
- Henan University of Chinese Medicine (HUCM), Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province, Zhengzhou, 450046, China.
| | - Bing-di Cui
- Henan University of Chinese Medicine (HUCM), Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province, Zhengzhou, 450046, China.
| | - Man Gong
- Henan University of Chinese Medicine (HUCM), Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province, Zhengzhou, 450046, China.
| | - Qing-Xia Li
- Henan University of Chinese Medicine (HUCM), Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province, Zhengzhou, 450046, China.
| | - Ling-Xia Zhang
- Henan University of Chinese Medicine (HUCM), Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province, Zhengzhou, 450046, China.
| | - Jia-Li Chen
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, 510632, China.
| | - Jun Chi
- Henan University of Chinese Medicine (HUCM), Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province, Zhengzhou, 450046, China.
| | - Li-Li Zhu
- Henan University of Chinese Medicine (HUCM), Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province, Zhengzhou, 450046, China.
| | - Er-Ping Xu
- Henan University of Chinese Medicine (HUCM), Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province, Zhengzhou, 450046, China.
| | - Zhi-Min Wang
- Henan University of Chinese Medicine (HUCM), Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province, Zhengzhou, 450046, China; Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Li-Ping Dai
- Henan University of Chinese Medicine (HUCM), Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province, Zhengzhou, 450046, China.
| |
Collapse
|
3
|
Wang W, Yang Y, Wang D, Huang L. Toxic Effects of Rare Earth Elements on Human Health: A Review. TOXICS 2024; 12:317. [PMID: 38787096 PMCID: PMC11125915 DOI: 10.3390/toxics12050317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/18/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024]
Abstract
Rare earth elements (REEs) are a new type of material resource which have attracted significant attention in recent years. REEs have emerged as essential metals in modern-day technology due to their unique functions. The long-term, large-scale mining and utilization of rare earths has caused serious environmental pollution and constitutes a global health issue, which has raised concerns regarding the safety of human health. However, the toxicity profile of suspended particulate matter in REEs in the environment, which interacts with the human body, remains largely unknown. Studies have shown that REEs can enter the human body through a variety of pathways, leading to a variety of organ and system dysfunctions through changes in genetics, epigenetics, and signaling pathways. Through an extensive literature search and critical analysis, we provide a comprehensive overview of the available evidence, identify knowledge gaps, and make recommendations for future research directions.
Collapse
Affiliation(s)
| | | | | | - Lihua Huang
- School of Public Health, Baotou Medical College, Baotou 014030, China; (W.W.); (Y.Y.); (D.W.)
| |
Collapse
|
4
|
Schake MA, McCue IS, Curtis ET, Ripperda TJ, Harvey S, Hackfort BT, Fitzwater A, Chatzizisis YS, Kievit FM, Pedrigi RM. Restoration of normal blood flow in atherosclerotic arteries promotes plaque stabilization. iScience 2023; 26:106760. [PMID: 37235059 PMCID: PMC10206490 DOI: 10.1016/j.isci.2023.106760] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/23/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Blood flow is a key regulator of atherosclerosis. Disturbed blood flow promotes atherosclerotic plaque development, whereas normal blood flow protects against plaque development. We hypothesized that normal blood flow is also therapeutic, if it were able to be restored within atherosclerotic arteries. Apolipoprotein E-deficient (ApoE-/-) mice were initially instrumented with a blood flow-modifying cuff to induce plaque development and then five weeks later the cuff was removed to allow restoration of normal blood flow. Plaques in decuffed mice exhibited compositional changes that indicated increased stability compared to plaques in mice with the cuff maintained. The therapeutic benefit of decuffing was comparable to atorvastatin and the combination had an additive effect. In addition, decuffing allowed restoration of lumen area, blood velocity, and wall shear stress to near baseline values, indicating restoration of normal blood flow. Our findings demonstrate that the mechanical effects of normal blood flow on atherosclerotic plaques promote stabilization.
Collapse
Affiliation(s)
- Morgan A. Schake
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Ian S. McCue
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Evan T. Curtis
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Thomas J. Ripperda
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Samuel Harvey
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Bryan T. Hackfort
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Anna Fitzwater
- Institutional Animal Care Program, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Yiannis S. Chatzizisis
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Division of Cardiovascular Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Forrest M. Kievit
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Ryan M. Pedrigi
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| |
Collapse
|
5
|
Zhang H, Hu Z, Wang J, Xu J, Wang X, Zang G, Qiu J, Wang G. Shear stress regulation of nanoparticle uptake in vascular endothelial cells. Regen Biomater 2023; 10:rbad047. [PMID: 37351014 PMCID: PMC10281962 DOI: 10.1093/rb/rbad047] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/15/2023] [Accepted: 04/23/2023] [Indexed: 06/24/2023] Open
Abstract
Nanoparticles (NPs) hold tremendous targeting potential in cardiovascular disease and regenerative medicine, and exciting clinical applications are coming into light. Vascular endothelial cells (ECs) exposure to different magnitudes and patterns of shear stress (SS) generated by blood flow could engulf NPs in the blood. However, an unclear understanding of the role of SS on NP uptake is hindering the progress in improving the targeting of NP therapies. Here, the temporal and spatial distribution of SS in vascular ECs and the effect of different SS on NP uptake in ECs are highlighted. The mechanism of SS affecting NP uptake through regulating the cellular ROS level, endothelial glycocalyx and membrane fluidity is summarized, and the molecules containing clathrin and caveolin in the engulfment process are elucidated. SS targeting NPs are expected to overcome the current bottlenecks and change the field of targeting nanomedicine. This assessment on how SS affects the cell uptake of NPs and the marginalization of NPs in blood vessels could guide future research in cell biology and vascular targeting drugs.
Collapse
Affiliation(s)
- Hongping Zhang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Ziqiu Hu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Jinxuan Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Jianxiong Xu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Xiangxiu Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Guangchao Zang
- Lab Teaching & Management Center, Chongqing Medical University, Chongqing 400016, China
| | - Juhui Qiu
- Correspondence address: E-mail: (G.W.); (J.Q.)
| | - Guixue Wang
- Correspondence address: E-mail: (G.W.); (J.Q.)
| |
Collapse
|
6
|
Sahni J, Arshad M, Schake MA, Brooks JR, Yang R, Weinberg PD, Pedrigi RM. Characterizing nuclear morphology and expression of eNOS in vascular endothelial cells subjected to a continuous range of wall shear stress magnitudes and directionality. J Mech Behav Biomed Mater 2023; 137:105545. [PMID: 36368188 PMCID: PMC10371053 DOI: 10.1016/j.jmbbm.2022.105545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/30/2022] [Accepted: 10/24/2022] [Indexed: 11/11/2022]
Abstract
Complex patterns of hemodynamic wall shear stress occur in regions of arterial branching and curvature. Areas within these regions can be highly susceptible to atherosclerosis. Although many studies have characterized the response of vascular endothelial cells to shear stress in a categorical manner, our study herein addresses the need of characterizing endothelial behaviors over a continuous range of shear stress conditions that reflect the extensive variations seen in the vasculature. We evaluated the response of human umbilical vein endothelial cell monolayers to orbital flow at 120, 250, and 350 revolutions per minute (RPM) for 24 and 72 h. The orbital shaker model uniquely provides a continuous range of shear stress conditions from low and multidirectional at the center of each well of a culture plate to high and unidirectional at the periphery. We found distinct patterns of endothelial nuclear area, nuclear major and minor diameters, nuclear aspect ratio, and expression of endothelial nitric oxide synthase over this range of shear conditions and relationships were fit with linear and, where appropriate, power functions. Nuclear area was particularly sensitive with increases in the low and multidirectional WSS region that incrementally decreased as WSS became higher in magnitude and more unidirectional over the radius of the cell layers. The patterns of all endothelial behaviors exhibited high correlations (positive and negative) with metrics of shear stress magnitude and directionality that have been shown to strongly associate with atherosclerosis. Our findings demonstrate the exquisite sensitivity of these endothelial behaviors to incremental changes in shear stress magnitude and directionality, and provide critical quantitation of these relationships for predicting the susceptibility of an arterial segment to diseases such as atherosclerosis, particularly within complex flow environments in the vasculature such as around bifurcations.
Collapse
Affiliation(s)
- Jaideep Sahni
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, USA
| | - Mehwish Arshad
- Department of Bioengineering, Imperial College London, UK
| | - Morgan A Schake
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, USA
| | - Justin R Brooks
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, USA
| | - Ruiguo Yang
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, USA
| | | | - Ryan M Pedrigi
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, USA.
| |
Collapse
|