1
|
Nikaein N, Tuerxun K, Cedersund G, Eklund D, Kruse R, Särndahl E, Nånberg E, Thonig A, Repsilber D, Persson A, Nyman E. Mathematical models disentangle the role of IL-10 feedbacks in human monocytes upon proinflammatory activation. J Biol Chem 2023; 299:105205. [PMID: 37660912 PMCID: PMC10556785 DOI: 10.1016/j.jbc.2023.105205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 08/16/2023] [Accepted: 08/24/2023] [Indexed: 09/05/2023] Open
Abstract
Inflammation is one of the vital mechanisms through which the immune system responds to harmful stimuli. During inflammation, proinflammatory and anti-inflammatory cytokines interplay to orchestrate fine-tuned and dynamic immune responses. The cytokine interplay governs switches in the inflammatory response and dictates the propagation and development of the inflammatory response. Molecular pathways underlying the interplay are complex, and time-resolved monitoring of mediators and cytokines is necessary as a basis to study them in detail. Our understanding can be advanced by mathematical models that enable to analyze the system of interactions and their dynamical interplay in detail. We, therefore, used a mathematical modeling approach to study the interplay between prominent proinflammatory and anti-inflammatory cytokines with a focus on tumor necrosis factor and interleukin 10 (IL-10) in lipopolysaccharide-primed primary human monocytes. Relevant time-resolved data were generated by experimentally adding or blocking IL-10 at different time points. The model was successfully trained and could predict independent validation data and was further used to perform simulations to disentangle the role of IL-10 feedbacks during an acute inflammatory event. We used the insight to obtain a reduced predictive model including only the necessary IL-10-mediated feedbacks. Finally, the validated reduced model was used to predict early IL-10-tumor necrosis factor switches in the inflammatory response. Overall, we gained detailed insights into fine-tuning of inflammatory responses in human monocytes and present a model for further use in studying the complex and dynamic process of cytokine-regulated acute inflammation.
Collapse
Affiliation(s)
- Niloofar Nikaein
- Faculty of Medicine and Health, School of Medical Sciences, Örebro University, Örebro, Sweden.
| | - Kedeye Tuerxun
- Faculty of Medicine and Health, School of Medical Sciences, Örebro University, Örebro, Sweden; Faculty of Medicine and Health, Inflammatory Response and Infection Susceptibility Centre (iRiSC), Örebro University, Örebro, Sweden
| | - Gunnar Cedersund
- Faculty of Medicine and Health, School of Medical Sciences, Örebro University, Örebro, Sweden; Faculty of Medicine and Health, Inflammatory Response and Infection Susceptibility Centre (iRiSC), Örebro University, Örebro, Sweden; Department of Biomedical Engineering, Linköping University, Linköping, Sweden; Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
| | - Daniel Eklund
- Faculty of Medicine and Health, School of Medical Sciences, Örebro University, Örebro, Sweden; Faculty of Medicine and Health, Inflammatory Response and Infection Susceptibility Centre (iRiSC), Örebro University, Örebro, Sweden
| | - Robert Kruse
- Faculty of Medicine and Health, Inflammatory Response and Infection Susceptibility Centre (iRiSC), Örebro University, Örebro, Sweden; Faculty of Medicine and Health, Department of Clinical Research Laboratory, Örebro University, Örebro, Sweden
| | - Eva Särndahl
- Faculty of Medicine and Health, School of Medical Sciences, Örebro University, Örebro, Sweden; Faculty of Medicine and Health, Inflammatory Response and Infection Susceptibility Centre (iRiSC), Örebro University, Örebro, Sweden
| | - Eewa Nånberg
- Faculty of Medicine and Health, Inflammatory Response and Infection Susceptibility Centre (iRiSC), Örebro University, Örebro, Sweden; Faculty of Medicine and Health, School of Health Sciences, Örebro University, Örebro, Sweden
| | - Antje Thonig
- Faculty of Medicine and Health, School of Medical Sciences, Örebro University, Örebro, Sweden; Faculty of Medicine and Health, Inflammatory Response and Infection Susceptibility Centre (iRiSC), Örebro University, Örebro, Sweden
| | - Dirk Repsilber
- Faculty of Medicine and Health, School of Medical Sciences, Örebro University, Örebro, Sweden
| | - Alexander Persson
- Faculty of Medicine and Health, School of Medical Sciences, Örebro University, Örebro, Sweden; Faculty of Medicine and Health, Inflammatory Response and Infection Susceptibility Centre (iRiSC), Örebro University, Örebro, Sweden
| | - Elin Nyman
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden.
| |
Collapse
|
2
|
Lövfors W, Magnusson R, Jönsson C, Gustafsson M, Olofsson CS, Cedersund G, Nyman E. A comprehensive mechanistic model of adipocyte signaling with layers of confidence. NPJ Syst Biol Appl 2023; 9:24. [PMID: 37286693 DOI: 10.1038/s41540-023-00282-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 05/17/2023] [Indexed: 06/09/2023] Open
Abstract
Adipocyte signaling, normally and in type 2 diabetes, is far from fully understood. We have earlier developed detailed dynamic mathematical models for several well-studied, partially overlapping, signaling pathways in adipocytes. Still, these models only cover a fraction of the total cellular response. For a broader coverage of the response, large-scale phosphoproteomic data and systems level knowledge on protein interactions are key. However, methods to combine detailed dynamic models with large-scale data, using information about the confidence of included interactions, are lacking. We have developed a method to first establish a core model by connecting existing models of adipocyte cellular signaling for: (1) lipolysis and fatty acid release, (2) glucose uptake, and (3) the release of adiponectin. Next, we use publicly available phosphoproteome data for the insulin response in adipocytes together with prior knowledge on protein interactions, to identify phosphosites downstream of the core model. In a parallel pairwise approach with low computation time, we test whether identified phosphosites can be added to the model. We iteratively collect accepted additions into layers and continue the search for phosphosites downstream of these added layers. For the first 30 layers with the highest confidence (311 added phosphosites), the model predicts independent data well (70-90% correct), and the predictive capability gradually decreases when we add layers of decreasing confidence. In total, 57 layers (3059 phosphosites) can be added to the model with predictive ability kept. Finally, our large-scale, layered model enables dynamic simulations of systems-wide alterations in adipocytes in type 2 diabetes.
Collapse
Affiliation(s)
- William Lövfors
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden.
- Department of Mathematics, Linköping University, Linköping, Sweden.
- School of Medical Sciences and Inflammatory Response and Infection Susceptibility Centre (iRiSC), Faculty of Medicine and Health, Örebro University, Örebro, Sweden.
| | - Rasmus Magnusson
- School of Bioscience, Systems Biology Research Center, University of Skövde, Skövde, Sweden
| | - Cecilia Jönsson
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden
- Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Mika Gustafsson
- Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Charlotta S Olofsson
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Gunnar Cedersund
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden.
- School of Medical Sciences and Inflammatory Response and Infection Susceptibility Centre (iRiSC), Faculty of Medicine and Health, Örebro University, Örebro, Sweden.
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden.
| | - Elin Nyman
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden.
| |
Collapse
|
3
|
Ruska D, Radenkovs V, Juhnevica-Radenkova K, Rubene D, Ciprovica I, Zagorska J. The Impact of Biotechnologically Produced Lactobionic Acid in the Diet of Lactating Dairy Cows on Their Performance and Quality Traits of Milk. Animals (Basel) 2023; 13:815. [PMID: 36899672 PMCID: PMC10000126 DOI: 10.3390/ani13050815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/13/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
Dairy processing is one of the most polluting sectors of the food industry as it causes water pollution. Given considerable whey quantities obtained via traditional cheese and curd production methods, manufacturers worldwide are encountering challenges for its rational use. However, with the advancement in biotechnology, the sustainability of whey management can be fostered by applying microbial cultures for the bioconversion of whey components such as lactose to functional molecules. The present work was undertaken to demonstrate the potential utilization of whey for producing a fraction rich in lactobionic acid (Lba), which was further used in the dietary treatment of lactating dairy cows. The analysis utilizing high-performance liquid chromatography with refractive index (HPLC-RID) detection confirmed the abundance of Lba in biotechnologically processed whey, corresponding to 11.3 g L-1. The basic diet of two dairy cow groups involving nine animals, Holstein Black and White or Red breeds in each, was supplemented either with 1.0 kg sugar beet molasses (Group A) or 5.0 kg of the liquid fraction containing 56.5 g Lba (Group B). Overall, the use of Lba in the diet of dairy cows during the lactation period equal to molasses affected cows' performances and quality traits, especially fat composition. The observed values of urea content revealed that animals of Group B and, to a lesser extent, Group A received a sufficient amount of proteins, as the amount of urea in the milk decreased by 21.7% and 35.1%, respectively. After six months of the feeding trial, a significantly higher concentration of essential amino acids (AAs), i.e., isoleucine and valine, was observed in Group B. The percentage increase corresponded to 5.8% and 3.3%, respectively. A similar trend of increase was found for branched-chain AAs, indicating an increase of 2.4% compared with the initial value. Overall, the content of fatty acids (FAs) in milk samples was affected by feeding. Without reference to the decrease in individual FAs, the higher values of monounsaturated FAs (MUFAs) were achieved via the supplementation of lactating cows' diets with molasses. In contrast, the dietary inclusion of Lba in the diet promoted an increase in saturated FA (SFA) and polyunsaturated FA (PUFA) content in the milk after six months of the feeding trial.
Collapse
Affiliation(s)
- Diana Ruska
- Faculty of Agriculture, Institute of Animal Sciences, Latvia University of Life Sciences and Technologies, LV-3001 Jelgava, Latvia
| | - Vitalijs Radenkovs
- Division of Smart Technologies, Research Laboratory of Biotechnology, Latvia University of Life Sciences and Technologies, LV-3004 Jelgava, Latvia
- Processing and Biochemistry Department, Institute of Horticulture, LV-3701 Dobele, Latvia
| | | | - Daina Rubene
- Division of Agronomic Analysis, Research Laboratory of Biotechnology, Latvia University of Life Sciences and Technologies, LV-3002 Jelgava, Latvia
| | - Inga Ciprovica
- Faculty of Food Technology, Latvia University of Life Sciences and Technologies, LV-3004 Jelgava, Latvia
| | - Jelena Zagorska
- Faculty of Food Technology, Latvia University of Life Sciences and Technologies, LV-3004 Jelgava, Latvia
| |
Collapse
|
4
|
Fajardo G, Coronado M, Matthews M, Bernstein D. Mitochondrial Quality Control in the Heart: The Balance between Physiological and Pathological Stress. Biomedicines 2022; 10:biomedicines10061375. [PMID: 35740401 PMCID: PMC9220167 DOI: 10.3390/biomedicines10061375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 12/12/2022] Open
Abstract
Alterations in mitochondrial function and morphology are critical adaptations to cardiovascular stress, working in concert in an attempt to restore organelle-level and cellular-level homeostasis. Processes that alter mitochondrial morphology include fission, fusion, mitophagy, and biogenesis, and these interact to maintain mitochondrial quality control. Not all cardiovascular stress is pathologic (e.g., ischemia, pressure overload, cardiotoxins), despite a wealth of studies to this effect. Physiological stress, such as that induced by aerobic exercise, can induce morphologic adaptations that share many common pathways with pathological stress, but in this case result in improved mitochondrial health. Developing a better understanding of the mechanisms underlying alterations in mitochondrial quality control under diverse cardiovascular stressors will aid in the development of pharmacologic interventions aimed at restoring cellular homeostasis.
Collapse
Affiliation(s)
- Giovanni Fajardo
- Department of Pediatrics and the Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA;
| | | | - Melia Matthews
- Department of Biomedical and Biological Sciences, Cornell University, Ithaca, NY 14850, USA;
| | - Daniel Bernstein
- Department of Pediatrics and the Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA;
- Correspondence: ; Tel.: +1-650-723-7913
| |
Collapse
|