1
|
He Z, Xie L, Liu J, Wei X, Zhang W, Mei Z. Novel insight into the role of A-kinase anchoring proteins (AKAPs) in ischemic stroke and therapeutic potentials. Biomed Pharmacother 2024; 175:116715. [PMID: 38739993 DOI: 10.1016/j.biopha.2024.116715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/03/2024] [Accepted: 05/06/2024] [Indexed: 05/16/2024] Open
Abstract
Ischemic stroke, a devastating disease associated with high mortality and disability worldwide, has emerged as an urgent public health issue. A-kinase anchoring proteins (AKAPs) are a group of signal-organizing molecules that compartmentalize and anchor a wide range of receptors and effector proteins and have a major role in stabilizing mitochondrial function and promoting neurodevelopmental development in the central nervous system (CNS). Growing evidence suggests that dysregulation of AKAPs expression and activity is closely associated with oxidative stress, ion disorder, mitochondrial dysfunction, and blood-brain barrier (BBB) impairment in ischemic stroke. However, the underlying mechanisms remain inadequately understood. This review provides a comprehensive overview of the composition and structure of A-kinase anchoring protein (AKAP) family members, emphasizing their physiological functions in the CNS. We explored in depth the molecular and cellular mechanisms of AKAP complexes in the pathological progression and risk factors of ischemic stroke, including hypertension, hyperglycemia, lipid metabolism disorders, and atrial fibrillation. Herein, we highlight the potential of AKAP complexes as a pharmacological target against ischemic stroke in the hope of inspiring translational research and innovative clinical approaches.
Collapse
Affiliation(s)
- Ziyu He
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Letian Xie
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Jiyong Liu
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Xuan Wei
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Wenli Zhang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China.
| | - Zhigang Mei
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China; Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, College of Medicine and Health Sciences, China Three Gorges University, Yichang, Hubei 443002, China.
| |
Collapse
|
2
|
Tsai CY, Ko HJ, Chiou SJ, Lin XY, Chuang TH, Cheng JT, Su YF, Loh JK, Hong YR. GSKIP modulates cell aggregation through EMT/MET signaling rather than differentiation in SH-SY5Y human neuroblastoma cells. J Cell Commun Signal 2023; 17:1039-1054. [PMID: 37133713 PMCID: PMC10409706 DOI: 10.1007/s12079-023-00752-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 04/18/2023] [Indexed: 05/04/2023] Open
Abstract
GSK3β interacting protein (GSKIP) is a small A-kinase anchor protein previously reported to mediate the N-cadherin/β-catenin pool for differentiation in SH-SY5Y cells through overexpression of GSKIP to present the neuron outgrowth phenotype. To further investigate how GSKIP functions in neurons, CRISPR/Cas9 technology was utilized to knock out GSKIP (GSKIP-KO) in SH-SY5Y. Several GSKIP-KO clones resulted in an aggregation phenotype and reduced cell growth without retinoic acid (RA) treatment. However, neuron outgrowth was still observed in GSKIP-KO clones treated with RA. The GSKIP-KO clones exhibited an aggregation phenotype through suppression of GSK3β/β-catenin pathways and cell cycle progression rather than cell differentiation. Gene set enrichment analysis indicated that GSKIP-KO was related to epithelial mesenchymal transition/mesenchymal epithelial transition (EMT/MET) and Wnt/β-catenin/cadherin signaling pathways, suppressing cell migration and tumorigenesis through the inhibition of Wnt/β-catenin mediated EMT/MET. Conversely, reintroduction of GSKIP into GSKIP-KO clones restored cell migration and tumorigenesis. Notably, phosphor-β-catenin (S675) and β-catenin (S552) but not phosphor-β-catenin (S33/S37/T41) translocated into the nucleus for further gene activation. Collectively, these results suggested that GSKIP may function as an oncogene to form an aggregation phenotype for cell survival in harsh environments through EMT/MET rather than differentiation in the GSKIP-KO of SH-SY5Y cells. GSKIP Implication in Signaling Pathways with Potential Impact on SHSY-5Y Cell Aggregation.
Collapse
Affiliation(s)
- Cheng-Yu Tsai
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Post Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Huey-Jiun Ko
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- Department of Biochemistry, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Shean-Jaw Chiou
- Department of Biochemistry, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan
| | - Xin-Yi Lin
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- Department of Biochemistry, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Tsung-Hsien Chuang
- Immunology Research Center, National Health Research Institutes, Miaoli, 350, Taiwan
| | - Jiin-Tsuey Cheng
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan
| | - Yu-Feng Su
- Post Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Joon-Khim Loh
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
| | - Yi-Ren Hong
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
- Department of Biochemistry, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan.
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan.
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
- Neuroscience Research Center, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
| |
Collapse
|
3
|
Wu NS, Lin YF, Ma IC, Ko HJ, Hong YR. Many faces and functions of GSKIP: a temporospatial regulation view. Cell Signal 2022; 97:110391. [PMID: 35728705 DOI: 10.1016/j.cellsig.2022.110391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/06/2022] [Accepted: 06/16/2022] [Indexed: 11/25/2022]
Abstract
Glycogen synthase kinase 3 (GSK3)-β (GSK3β) interaction protein (GSKIP) is one of the smallest A-kinase anchoring proteins that possesses a binding site for GSK3β. Recently, our group identified the protein kinase A (PKA)-GSKIP-GSK3β-X axis; knowledge of this axis may help us decipher the many roles of GSKIP and perhaps help explain the evolutionary reason behind the interaction between GSK3β and PKA. In this review, we highlight the critical and multifaceted role of GSKIP in facilitating PKA kinase activity and its function as a scaffolding protein in signaling pathways. We also highlight how these pivotal PKA and GSK3 kinases can control context-specific functions and interact with multiple target proteins, such as β-catenin, Drp1, Tau, and other proteins. GSKIP is a key regulator of multiple mechanisms because of not only its location at certain subcellular compartments but also its serial changes during the developmental process. Moreover, the involvement of critical upstream regulatory signaling pathways in GSKIP signaling in various cancers, such as miRNA (microRNA) and lncRNA (long noncoding RNA), may help in the identification of therapeutic targets in the era of precision medicine and personalized therapy. Finally, we emphasize on the model of the early stage of pathogenesis of Alzheimer Disease (AD). Although the model requires validation, it can serve as a basis for diagnostic biomarkers development and drug discovery for early-stage AD.
Collapse
Affiliation(s)
- Nian-Siou Wu
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Yi-Fan Lin
- School of Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan.
| | - I Chu Ma
- China Medical University Hospital, Taichung 404, Taiwan.
| | - Huey-Jiun Ko
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Yi-Ren Hong
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; Graduate Institutes of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan,; Neuroscience Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| |
Collapse
|