1
|
Petitclerc I, Perron J, Dugas C, Mayer T, Raymond F, Di Marzo V, Veilleux A, Robitaille J. Association between gestational diabetes mellitus, maternal health and diet, and gut microbiota in mother-infant dyads. BMC Pregnancy Childbirth 2025; 25:486. [PMID: 40275186 PMCID: PMC12023395 DOI: 10.1186/s12884-025-07584-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 04/08/2025] [Indexed: 04/26/2025] Open
Abstract
BACKGROUND Gestational diabetes mellitus (GDM) increasingly affects women and predisposes both mothers and their infants to short- and long-term health consequences. Emerging research links GDM to maternal gut microbiota dysbiosis. However, the impact of GDM on the infant gut microbiota remains unclear. This cross-sectional study aims to explore potential associations between GDM and the gut microbiota in mothers and their infants, as well as correlations between maternal diet, cardiometabolic profile, and gut microbiota composition. METHODS Gut microbiota taxonomic composition was characterized by 16S rRNA gene sequencing on fecal samples collected at 2 months postpartum from 28 mothers, including 17 with (GDM+) and 11 without (GDM-) GDM, as well as 30 infants, 17 GDM + and 13 GDM-. Variations in overall composition and specific taxa between GDM + and GDM- were assessed. Correlations between maternal cardiometabolic profile, dietary intakes, and taxa were performed. RESULTS GDM was associated with the overall composition of gut microbiota between GDM + and GDM- in the maternal group, but not in infants. No statistically significant difference in alpha diversity between groups was found in either mothers or infants. However, 14 taxa showed significantly different abundance between GDM + and GDM- mothers, and 4 taxa differed in infants. Specific taxa at the family rank were correlated with maternal dietary and cardiometabolic variables in both mothers and infants. CONCLUSIONS GDM exposition was associated with gut microbiota composition in both mothers and infants at two months postpartum. This study enhances our understanding of how maternal health could be linked with the gut microbiota of mothers and their infants. TRIAL REGISTRATION NCT02872402 (2016-08-04, https://clinicaltrials.gov/study/NCT02872402?term=NCT02872402&rank=1 ) and NCT04263675 (2020-02-07, https://clinicaltrials.gov/study/NCT04263675?term=NCT04263675&rank=1 ).
Collapse
Affiliation(s)
- Isabelle Petitclerc
- Centre de recherche Nutrition, Santé et Société (NUTRISS), Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec City, QC, G1V 0A6, Canada
- School of Nutrition, Université Laval, Quebec City, QC, G1V 0A6, Canada
| | - Julie Perron
- Centre de recherche Nutrition, Santé et Société (NUTRISS), Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec City, QC, G1V 0A6, Canada
| | - Camille Dugas
- Centre de recherche Nutrition, Santé et Société (NUTRISS), Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec City, QC, G1V 0A6, Canada
| | - Thomas Mayer
- Centre de recherche Nutrition, Santé et Société (NUTRISS), Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec City, QC, G1V 0A6, Canada
- Canada Research Excellence Chair in the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Quebec City, QC, G1V 0A6, Canada
| | - Frédéric Raymond
- Centre de recherche Nutrition, Santé et Société (NUTRISS), Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec City, QC, G1V 0A6, Canada
- School of Nutrition, Université Laval, Quebec City, QC, G1V 0A6, Canada
- Canada Research Excellence Chair in the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Quebec City, QC, G1V 0A6, Canada
| | - Vincenzo Di Marzo
- Centre de recherche Nutrition, Santé et Société (NUTRISS), Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec City, QC, G1V 0A6, Canada
- School of Nutrition, Université Laval, Quebec City, QC, G1V 0A6, Canada
- Canada Research Excellence Chair in the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Quebec City, QC, G1V 0A6, Canada
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (IUCPQ), Université Laval, Quebec City, QC, G1V 4G5, Canada
| | - Alain Veilleux
- Centre de recherche Nutrition, Santé et Société (NUTRISS), Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec City, QC, G1V 0A6, Canada
- School of Nutrition, Université Laval, Quebec City, QC, G1V 0A6, Canada
- Canada Research Excellence Chair in the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Quebec City, QC, G1V 0A6, Canada
| | - Julie Robitaille
- Centre de recherche Nutrition, Santé et Société (NUTRISS), Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec City, QC, G1V 0A6, Canada.
- School of Nutrition, Université Laval, Quebec City, QC, G1V 0A6, Canada.
| |
Collapse
|
2
|
Zhong S, Yang B, Liu Y, Dai W, Li G, Yang J, Yang A, Wang Y, Wang M, Xu C, Deng Y. Dynamic changes of gut microbiota between the first and second trimester for women with gestational diabetes mellitus and their correlations with BMI: a nested cohort study in China. Front Microbiol 2024; 15:1467414. [PMID: 39723141 PMCID: PMC11669307 DOI: 10.3389/fmicb.2024.1467414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 11/18/2024] [Indexed: 12/28/2024] Open
Abstract
INTRODUCTION Gut microbiota (GM) has been implicated in gestational diabetes mellitus (GDM), yet longitudinal changes across trimesters remain insufficiently explored. METHODS This nested cohort study aimed to investigate GM alterations before 24 weeks of gestation and their association with GDM. Ninety-three Chinese participants provided fecal samples during the first and second trimesters. Based on oral glucose tolerance tests, 11 participants were classified as GDM, and 82 as non-diabetic (ND). Using 16S rRNA sequencing, we analyzed both cross-sectional and longitudinal differences in GM structure between those two groups. RESULTS In the first trimester, GDM group exhibited lower levels of Bacteroides_H and Acetatifactor compared to ND group (p < 0.05). In the second trimester, GDM individuals showed increased abundance of Fusobacteriota and Firmicutes_D, and genera including Fusobacterium_A and Fournierella, while Anaerotruncus and others decreased (P<0.05). Inflammation-associated genera like Gemmiger_A_73129 and Enterocloster increased, while Megamonas decreased in overweight or obese GDM women, which was not identified in normal-weight women. The ratios of relative abundance of genera Streptococcus, Enterocloster, and Collinsella exceeded 1.5 in the GDM group, particularly in overweight or obese individuals. Inflammatory pathways related to African trypanosomiasis and Staphylococcus aureus infection were predicted to be up-regulated in overweight or obese GDM individuals but not in normal-weight GDM women. DISCUSSION This study suggests that GM of women with GDM undergoes significant alterations between the first and second trimesters, potentially linked to inflammation, with more pronounced changes observed in overweight or obese individuals.
Collapse
Affiliation(s)
- Shilin Zhong
- Center of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
- Institute of Obstetrics and Gynecology, Shenzhen PKU-HKUST Medical Center, Shenzhen, China
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecologic Diseases, Shenzhen, China
| | - Bingcai Yang
- Center of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
- Institute of Obstetrics and Gynecology, Shenzhen PKU-HKUST Medical Center, Shenzhen, China
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecologic Diseases, Shenzhen, China
| | - Yuzhen Liu
- Center of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
- Institute of Obstetrics and Gynecology, Shenzhen PKU-HKUST Medical Center, Shenzhen, China
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecologic Diseases, Shenzhen, China
| | - Wenkui Dai
- Center of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
- Institute of Obstetrics and Gynecology, Shenzhen PKU-HKUST Medical Center, Shenzhen, China
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecologic Diseases, Shenzhen, China
| | - Guanglei Li
- CheerLand Biological Technology Co., Ltd., Shenzhen, China
| | - Juan Yang
- Center of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
- Institute of Obstetrics and Gynecology, Shenzhen PKU-HKUST Medical Center, Shenzhen, China
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecologic Diseases, Shenzhen, China
| | - Ao Yang
- Center of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
- Institute of Obstetrics and Gynecology, Shenzhen PKU-HKUST Medical Center, Shenzhen, China
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecologic Diseases, Shenzhen, China
| | - Ying Wang
- Center of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
- Institute of Obstetrics and Gynecology, Shenzhen PKU-HKUST Medical Center, Shenzhen, China
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecologic Diseases, Shenzhen, China
| | - Min Wang
- Center of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
- Institute of Obstetrics and Gynecology, Shenzhen PKU-HKUST Medical Center, Shenzhen, China
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecologic Diseases, Shenzhen, China
| | - Chang Xu
- Intelligent Hospital Research Academy, Peking University Shenzhen Hospital, Shenzhen, China
| | - Yuqing Deng
- Center of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
- Institute of Obstetrics and Gynecology, Shenzhen PKU-HKUST Medical Center, Shenzhen, China
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecologic Diseases, Shenzhen, China
| |
Collapse
|
3
|
de Albuquerque Lemos DE, de Brito Alves JL, de Souza EL. Probiotic therapy as a promising strategy for gestational diabetes mellitus management. Expert Opin Biol Ther 2024; 24:1207-1219. [PMID: 39323363 DOI: 10.1080/14712598.2024.2409880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 08/16/2024] [Accepted: 09/24/2024] [Indexed: 09/27/2024]
Abstract
INTRODUCTION Gestational diabetes mellitus (GDM) has become the most common pregnancy medical complication, and its prevalence has increased in recent years. The GDM treatment primarily relies on adopting healthy eating habits, physical exercise, and insulin therapy. However, using probiotics to modulate the gut microbiota has been the subject of clinical trials as a promising therapeutic strategy for GDM management. AREAS COVERED Due to the adverse effects of gut dysbiosis in women with GDM, strategies targeting the gut microbiota to mitigate hyperglycemia, low-grade inflammation, and adverse pregnancy outcomes have been explored. Probiotic supplementation may improve glucose metabolism, lipid profile, oxidative stress, inflammation, and blood pressure in women with GDM. Furthermore, decreased fasting blood glucose, insulin resistance, and inflammatory markers, such as TNF-α and CRP, as well as increased total antioxidant capacity, lipid profile modulation, and improved blood pressure in women with GDM, are some of the important results reported in the available literature. EXPERT OPINION To fill the knowledge gap, further studies are needed focusing on modulating gut microbiota composition and metabolic activity and their systemic repercussions in GDM.
Collapse
Affiliation(s)
| | - José Luiz de Brito Alves
- Department of Nutrition, Health Sciences Center, Federal University of Paraiba, João Pessoa, Brazil
| | - Evandro Leite de Souza
- Department of Nutrition, Health Sciences Center, Federal University of Paraiba, João Pessoa, Brazil
| |
Collapse
|
4
|
Sasidharan Pillai S, Gagnon CA, Foster C, Ashraf AP. Exploring the Gut Microbiota: Key Insights Into Its Role in Obesity, Metabolic Syndrome, and Type 2 Diabetes. J Clin Endocrinol Metab 2024; 109:2709-2719. [PMID: 39040013 PMCID: PMC11479700 DOI: 10.1210/clinem/dgae499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/22/2024] [Accepted: 07/16/2024] [Indexed: 07/24/2024]
Abstract
The gut microbiota (GM), comprising trillions of microorganisms in the gastrointestinal tract, is a key player in the development of obesity and related metabolic disorders, such as type 2 diabetes (T2D), metabolic syndrome (MS), and cardiovascular diseases. This mini-review delves into the intricate roles and mechanisms of the GM in these conditions, offering insights into potential therapeutic strategies targeting the microbiota. The review elucidates the diversity and development of the human GM, highlighting its pivotal functions in host physiology, including nutrient absorption, immune regulation, and energy metabolism. Studies show that GM dysbiosis is linked to increased energy extraction, altered metabolic pathways, and inflammation, contributing to obesity, MS, and T2D. The interplay between dietary habits and GM composition is explored, underscoring the influence of diet on microbial diversity and metabolic functions. Additionally, the review addresses the impact of common medications and therapeutic interventions like fecal microbiota transplantation on GM composition. The evidence so far advocates for further research to delineate the therapeutic potential of GM modulation in mitigating obesity and metabolic diseases, emphasizing the necessity of clinical trials to establish effective and sustainable treatment protocols.
Collapse
Affiliation(s)
- Sabitha Sasidharan Pillai
- Center for Endocrinology, Diabetes and Metabolism, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
- Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Charles A Gagnon
- University of Alabama at Birmingham Marnix E. Heersink School of Medicine, Birmingham, AL 35294, USA
| | - Christy Foster
- Department of Pediatrics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Ambika P Ashraf
- Department of Pediatrics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
5
|
Roque A, Zanker J, Brígido S, Tomaz MB, Gonçalves A, Barbeiro S, Benítez-Páez A, Pereira SG. Dietary patterns drive loss of fiber-foraging species in the celiac disease patients gut microbiota compared to first-degree relatives. Gut Pathog 2024; 16:58. [PMID: 39375796 PMCID: PMC11459851 DOI: 10.1186/s13099-024-00643-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 09/06/2024] [Indexed: 10/09/2024] Open
Abstract
BACKGROUND Celiac disease is an autoimmune disorder triggered by dietary gluten in genetically predisposed individuals that primarily affects the small intestine. Studies have reported differentially abundant bacterial taxa in the gut microbiota of celiac patients compared with non-celiac controls. However, findings across studies have inconsistencies and no microbial signature of celiac disease has been defined so far. RESULTS Here, we showed, by comparing celiac patients with their non-celiac 1st-degree relatives, that bacterial communities of related individuals have similar species occurrence and abundance compared with non-relatives, regardless the disease status. We also found in celiac patients a loss of bacterial species associated with fiber degradation, and host metabolic and immune modulation, as ruminiclostridia, ruminococci, Prevotella, and Akkermansia muciniphila species. We demonstrated that the differential abundance of bacterial species correlates to different dietary patterns observed between the two groups. For instance, Ruminiclostridium siraeum, Ruminococcus bicirculans, and Bacteroides plebeious, recognized as fiber-degraders, appear more abundant in non-celiac 1st-degree relatives, which have a vegetable consumption pattern higher than celiac patients. Pattern of servings per day also suggests a possible link between these species' abundance and daily calorie intake. CONCLUSIONS Overall, we evidenced that a kinship approach could be valuable in unveiling potential celiac disease microbial traits, as well as the significance of dietary factors in shaping microbial profiles and their influence on disease development and progression. Our results pave the way for designing and adopting novel dietary strategies based on gluten-free fiber-enriched ingredients to improve disease management and patients' quality of life.
Collapse
Affiliation(s)
- Ana Roque
- Center for Innovative Care and Health Technology (ciTechCare), School of Health Sciences, Polytechnic of Leiria, 2410-541, Leiria, Portugal
| | - Joyce Zanker
- Center for Innovative Care and Health Technology (ciTechCare), School of Health Sciences, Polytechnic of Leiria, 2410-541, Leiria, Portugal
| | - Sara Brígido
- Labeto, Centro de Análises Bioquímicas SA, Beatriz Godinho Laboratories, 2410-152, Leiria, Portugal
| | - Maria Beatriz Tomaz
- Labeto, Centro de Análises Bioquímicas SA, Beatriz Godinho Laboratories, 2410-152, Leiria, Portugal
| | - André Gonçalves
- Gastroentherology Division, Leiria Central Hospital, Leiria Region Local Health Unit, 2410-197, Leiria, Portugal
| | - Sandra Barbeiro
- Gastroentherology Division, Leiria Central Hospital, Leiria Region Local Health Unit, 2410-197, Leiria, Portugal
| | - Alfonso Benítez-Páez
- Microbiome, Nutrition, and Health Research Unit, Institute of Agrochemistry and Food Technology (IATA-CSIC), 46980, Paterna, Valencia, Spain
| | - Sónia Gonçalves Pereira
- Center for Innovative Care and Health Technology (ciTechCare), School of Health Sciences, Polytechnic of Leiria, 2410-541, Leiria, Portugal.
| |
Collapse
|
6
|
Rold LS, Jensen AM, Arenholt L, Leutscher PDC, Ovesen PG, Hagstrøm S, Sørensen S. Identifying microbiome-based changes and biomarkers prior to disease development in mother and child, with a focus on gestational diabetes mellitus: protocol for the DANish Maternal and Offspring Microbiome (DANMOM) cohort study. BMJ Open 2024; 14:e083358. [PMID: 39242166 PMCID: PMC11381651 DOI: 10.1136/bmjopen-2023-083358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 08/23/2024] [Indexed: 09/09/2024] Open
Abstract
INTRODUCTION The human gut microbiota is associated with gestational diabetes mellitus (GDM), which imposes a risk of developing long-term health problems for mother and child. Most studies on GDM and microbiota have been cross-sectional, which makes it difficult to make any conclusions on causality. Furthermore, it is important to assess if a dysbiotic microbiota is passed from the mother to the child, and then being at risk of developing metabolic health problems later in life. The DANish Maternal and Offspring Microbiome study aims to identify gut microbiota-related factors involved in metabolic dysfunction in women with GDM and their offspring. Importantly, the study design allows for early detection of biological changes associated with later development of metabolic disease. This could provide us with unique tools to support early diagnosis or implement preventative measures. METHODS AND ANALYSIS Pregnant women are included in the study after the 11-14 weeks' prenatal ultrasound scan and followed throughout pregnancy with enrolment of the offspring at birth. 202 women and 112 children have been included from North Denmark Regional Hospital and Aalborg University Hospital in Denmark. Mother and child are followed until the children reach the age of 5 years. From the mother, we collect faeces, urine, blood, saliva, vaginal fluid and breast milk samples, in addition to faeces and a blood sample from the child. Microbiota composition in biological samples will be analysed using 16S rRNA gene sequencing and compared with demographic and clinical data from medical charts, registers and questionnaires. Sample and data collection will continue until July 2028. ETHICS AND DISSEMINATION The study protocol has been approved by the North Denmark Region Committee on Health Research Ethics (N20190007). Written informed consent is obtained from all participants prior to study participation. Study results will be published in international peer-reviewed journals and presented at international conferences. The results will also be presented to the funders of the study and study participants.
Collapse
Affiliation(s)
- Louise Søndergaard Rold
- Centre for Clinical Research, North Denmark Regional Hospital, Hjørring, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Ann-Maria Jensen
- Centre for Clinical Research, North Denmark Regional Hospital, Hjørring, Denmark
| | - Louise Arenholt
- Centre for Clinical Research, North Denmark Regional Hospital, Hjørring, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
- Department of Gynecology and Obstetrics, North Denmark Regional Hospital, Hjørring, Denmark
| | - Peter Derek Christian Leutscher
- Centre for Clinical Research, North Denmark Regional Hospital, Hjørring, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Per Glud Ovesen
- Department of Gynecology and Obstetrics, Aarhus University Hospital, Aarhus, Denmark
- Steno Diabetes Center Aarhus, Aarhus, Denmark
| | - Søren Hagstrøm
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
- Department of Pediatrics and Adolescent Medicine, Aalborg University Hospital, Aalborg, Denmark
- Steno Diabetes Center North Denmark, Aalborg, Denmark
| | - Suzette Sørensen
- Centre for Clinical Research, North Denmark Regional Hospital, Hjørring, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
- Steno Diabetes Center North Denmark, Aalborg, Denmark
| |
Collapse
|
7
|
Ma S, Wang Y, Ji X, Dong S, Wang S, Zhang S, Deng F, Chen J, Lin B, Khan BA, Liu W, Hou K. Relationship between gut microbiota and the pathogenesis of gestational diabetes mellitus: a systematic review. Front Cell Infect Microbiol 2024; 14:1364545. [PMID: 38868299 PMCID: PMC11168118 DOI: 10.3389/fcimb.2024.1364545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/01/2024] [Indexed: 06/14/2024] Open
Abstract
Introduction Gestational diabetes mellitus (GDM) is a form of gestational diabetes mellitus characterized by insulin resistance and abnormal function of pancreatic beta cells. In recent years, genomic association studies have revealed risk and susceptibility genes associated with genetic susceptibility to GDM. However, genetic predisposition cannot explain the rising global incidence of GDM, which may be related to the increased influence of environmental factors, especially the gut microbiome. Studies have shown that gut microbiota is closely related to the occurrence and development of GDM. This paper reviews the relationship between gut microbiota and the pathological mechanism of GDM, in order to better understand the role of gut microbiota in GDM, and to provide a theoretical basis for clinical application of gut microbiota in the treatment of related diseases. Methods The current research results on the interaction between GDM and gut microbiota were collected and analyzed through literature review. Keywords such as "GDM", "gut microbiota" and "insulin resistance" were used for literature search, and the methodology, findings and potential impact on the pathophysiology of GDM were systematically evaluated. Results It was found that the composition and diversity of gut microbiota were significantly associated with the occurrence and development of GDM. Specifically, the abundance of certain gut bacteria is associated with an increased risk of GDM, while other changes in the microbiome may be associated with improved insulin sensitivity. In addition, alterations in the gut microbiota may affect blood glucose control through a variety of mechanisms, including the production of short-chain fatty acids, activation of inflammatory pathways, and metabolism of the B vitamin group. Discussion The results of this paper highlight the importance of gut microbiota in the pathogenesis of GDM. The regulation of the gut microbiota may provide new directions for the treatment of GDM, including improving insulin sensitivity and blood sugar control through the use of probiotics and prebiotics. However, more research is needed to confirm the generality and exact mechanisms of these findings and to explore potential clinical applications of the gut microbiota in the management of gestational diabetes. In addition, future studies should consider the interaction between environmental and genetic factors and how together they affect the risk of GDM.
Collapse
Affiliation(s)
- Sheng Ma
- Anhui Province Maternity & Child Health Hospital, Hefei, Anhui, China
| | - Yuping Wang
- School of Nursing, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Xiaoxia Ji
- Nursing Department, Shantou Central Hospital, Shantou, Guangdong, China
| | - Sunjuan Dong
- School of Nursing, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Shengnan Wang
- School of Nursing, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Shuo Zhang
- Shantou University Medical College, Shantou, Guangdong, China
| | - Feiying Deng
- Shantou University Medical College, Shantou, Guangdong, China
| | - Jingxian Chen
- Shantou University Medical College, Shantou, Guangdong, China
| | - Benwei Lin
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Barkat Ali Khan
- Drug Delivery and Cosmetic Lab (DDCL), Gomal Center of Pharmaceutical Sciences, Faculty of Pharmacy, Gomal University, Dera Ismail Khan, Pakistan
| | - Weiting Liu
- School of Nursing, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Kaijian Hou
- School of Nursing, Anhui University of Chinese Medicine, Hefei, Anhui, China
- School of Public Health, Shantou University, Shantou, Guangdong, China
| |
Collapse
|
8
|
Gupta A, Chan SY, Toh R, Low JM, Liu IMZ, Lim SL, Lee LY, Swarup S. Gestational diabetes-related gut microbiome dysbiosis is not influenced by different Asian ethnicities and dietary interventions: a pilot study. Sci Rep 2024; 14:9855. [PMID: 38684759 PMCID: PMC11058859 DOI: 10.1038/s41598-024-60386-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 04/22/2024] [Indexed: 05/02/2024] Open
Abstract
Gut microbiome dysbiosis contributes to the pathophysiology of both gestational diabetes mellitus (GDM) and its associated adverse outcomes in the woman and offspring. Even though GDM prevalence, complications, and outcomes vary among different ethnic groups, limited information is available about the influence of ethnicity on gut microbiome dysbiosis in pregnancies complicated by GDM. This pilot prospective cohort study examined the impact of ethnicity on gut dysbiosis in GDM among three Asian ethnic groups (Chinese, Malay, Indian) living in Singapore, and investigated the potential modulatory roles of diet and lifestyle modifications on gut microbiome post-GDM diagnosis. Women with GDM (n = 53) and without GDM (n = 16) were recruited. Fecal samples were collected at 24-28- and 36-40-weeks' gestation and analyzed by targeted 16S rRNA gene-based amplicon sequencing. Permutational multivariate analysis of variance (PERMANOVA) analysis was performed to evaluate differences between groups. Differentially abundant taxa were identified by DeSeq2 based analysis. Functional prediction was performed using the phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt2). Among women with GDM, gut microbiome from different ethnicities harbored common microbial features. However, among those without GDM, there was contrasting microbiome composition between ethnic groups. Microbial members such as Collinsella, Blautia, Ruminococcus, Ruminococcus gnavus, Ruminococcus torques, and Eubacterium hallii groups were differentially enriched (p < 0.05) in women with GDM compared to those without. Among women with GDM, no differences in alpha- and beta- diversity were observed when comparing 24-28 weeks' samples with 36-40 weeks' samples, a period covering intense dietary and lifestyle modification, suggesting an inability to modulate gut microbiota through classic GDM management. Women with GDM have a distinct gut microbiome profile which harbours common features across different Asian ethnic groups, consistent with the notion that specific microbes are involved in the pathogenesis of insulin resistance, pro-inflammatory conditions, and other metabolic dysregulation known to be present in GDM.
Collapse
Affiliation(s)
- Abhishek Gupta
- Singapore Centre For Environmental Life Sciences Engineering (SCELSE), National University of Singapore, Singapore, Singapore.
| | - Shiao Yng Chan
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Agency for Science, Technology and Research (A*STAR), Singapore Institute for Clinical Sciences (SICS), Singapore, Singapore
| | - Rachel Toh
- Department of Neonatology, Khoo Teck Puat-National University Children's Medical Institute, National University Hospital, National University Health System, Singapore, Singapore
| | - Jia Ming Low
- Department of Neonatology, Khoo Teck Puat-National University Children's Medical Institute, National University Hospital, National University Health System, Singapore, Singapore.
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| | - Isabella Ming Zhen Liu
- Department of Neonatology, Khoo Teck Puat-National University Children's Medical Institute, National University Hospital, National University Health System, Singapore, Singapore
| | - Su Lin Lim
- Department of Dietetics, National University Hospital, National University Health System, Singapore, Singapore
| | - Le Ye Lee
- Foundation Healthcare Holdings, Singapore, Singapore
| | - Sanjay Swarup
- Singapore Centre For Environmental Life Sciences Engineering (SCELSE), National University of Singapore, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- NUS Environmental Research Institute, National University of Singapore, Singapore, Singapore
| |
Collapse
|
9
|
Meloncelli N, O’Connor H, Wilkinson SA, Nitert MD, Kearney L, de Jersey S. Preventing Gestational Diabetes with a Healthy Gut Diet: Protocol for a Pilot, Feasibility Randomized Controlled Trial. Nutrients 2023; 15:4653. [PMID: 37960306 PMCID: PMC10649061 DOI: 10.3390/nu15214653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/18/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023] Open
Abstract
Around 14% of pregnancies globally are affected by gestational diabetes mellitus (GDM), making it one of the most common disorders experienced by women in pregnancy. While dietary, physical activity and supplement interventions have been implemented to prevent GDM, with varying levels of success, altering the gut microbiota through diet is a promising strategy for prevention. Several studies have demonstrated that women with GDM likely have a different gut microbiota to pregnant women without GDM, demonstrating that the gut microbiota may play a part in glycemic control and the development of GDM. To date, there have been no randomized controlled trials using diet to alter the gut microbiota in pregnancy with the aim of preventing GDM. Here, we present the study protocol for a single-blind randomized controlled trial which aims to determine the effectiveness of the Healthy Gut Diet on reducing the diagnosis of GDM in pregnant women with one or more risk factors. Consenting women will be randomized into either the Healthy Gut Diet intervention group or the usual care (control) group after 11 weeks gestation. The women in the intervention group will receive three telehealth counseling appointments with an Accredited Practicing Dietitian with the aim of educating and empowering these women to build a healthy gut microbiota through their diet. The intervention was co-designed with women who have lived experience of GDM and incorporates published behavior change techniques. The control group will receive the usual care and will also be shown a brief (3 min) video on general healthy eating in pregnancy. The primary outcome is the diagnosis of GDM at any stage of the pregnancy. Secondary outcomes include changes to gut microbiota composition and diversity; gestational weight gain; maternal and infant outcomes; management of GDM (where relevant); dietary quality and intake; physical activity; and depression scoring. We aim to recruit 120 women over 16 months. Recruitment commenced in January 2023. The trial has been registered with the Australian New Zealand Clinical Trials Registry (ACTRN12622001285741).
Collapse
Affiliation(s)
- Nina Meloncelli
- Centre for Health Services Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4029, Australia
- Office of the Chief Allied Health Practitioner, Metro North Hospital and Health Service, Brisbane, QLD 4029, Australia
| | - Hannah O’Connor
- Centre for Health Services Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4029, Australia
| | - Shelley A. Wilkinson
- Department of Obstetric Medicine, Mater Mothers Hospital, South Brisbane, QLD 4101, Australia;
- Faculty of Health and Behavioural Sciences, School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Marloes Dekker Nitert
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia;
| | - Lauren Kearney
- Women’s and Newborn Service Group, Royal Brisbane and Women’s Hospital, Metro North Health, Brisbane, QLD 4029, Australia;
- School of Nursing, Midwifery and Social Work, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Susan de Jersey
- Centre for Health Services Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4029, Australia
- Department of Dietetics and Foodservices, Royal Brisbane and Women’s Hospital, Metro North Health, Brisbane, QLD 4029, Australia
| |
Collapse
|
10
|
Strout N, Pasic L, Hicks C, Chua XY, Tashvighi N, Butler P, Liu Z, El-Assaad F, Holmes E, Susic D, Samaras K, Craig ME, Davis GK, Henry A, Ledger WL, El-Omar EM. The MothersBabies Study, an Australian Prospective Cohort Study Analyzing the Microbiome in the Preconception and Perinatal Period to Determine Risk of Adverse Pregnancy, Postpartum, and Child-Related Health Outcomes: Study Protocol. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6736. [PMID: 37754596 PMCID: PMC10531411 DOI: 10.3390/ijerph20186736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/03/2023] [Accepted: 09/06/2023] [Indexed: 09/28/2023]
Abstract
The microbiome has emerged as a key determinant of human health and reproduction, with recent evidence suggesting a dysbiotic microbiome is implicated in adverse perinatal health outcomes. The existing research has been limited by the sample collection and timing, cohort design, sample design, and lack of data on the preconception microbiome. This prospective, longitudinal cohort study will recruit 2000 Australian women, in order to fully explore the role of the microbiome in the development of adverse perinatal outcomes. Participants are enrolled for a maximum of 7 years, from 1 year preconception, through to 5 years postpartum. Assessment occurs every three months until pregnancy occurs, then during Trimester 1 (5 + 0-12 + 6 weeks gestation), Trimester 2 (20 + 0-24 + 6 weeks gestation), Trimester 3 (32 + 0-36 + 6 weeks gestation), and postpartum at 1 week, 2 months, 6 months, and then annually from 1 to 5 years. At each assessment, maternal participants self-collect oral, skin, vaginal, urine, and stool samples. Oral, skin, urine, and stool samples will be collected from children. Blood samples will be obtained from maternal participants who can access a study collection center. The measurements taken will include anthropometric, blood pressure, heart rate, and serum hormonal and metabolic parameters. Validated self-report questionnaires will be administered to assess diet, physical activity, mental health, and child developmental milestones. Medications, medical, surgical, obstetric history, the impact of COVID-19, living environments, and pregnancy and child health outcomes will be recorded. Multiomic bioinformatic and statistical analyses will assess the association between participants who developed high-risk and low-risk pregnancies, adverse postnatal conditions, and/or childhood disease, and their microbiome for the different sample types.
Collapse
Affiliation(s)
- Naomi Strout
- UNSW Microbiome Research Centre, St George and Sutherland Clinical Campuses, UNSW Sydney, Sydney, NSW 2052, Australia; (N.S.); (L.P.); (C.H.); (X.-Y.C.); (F.E.-A.); (D.S.)
| | - Lana Pasic
- UNSW Microbiome Research Centre, St George and Sutherland Clinical Campuses, UNSW Sydney, Sydney, NSW 2052, Australia; (N.S.); (L.P.); (C.H.); (X.-Y.C.); (F.E.-A.); (D.S.)
| | - Chloe Hicks
- UNSW Microbiome Research Centre, St George and Sutherland Clinical Campuses, UNSW Sydney, Sydney, NSW 2052, Australia; (N.S.); (L.P.); (C.H.); (X.-Y.C.); (F.E.-A.); (D.S.)
| | - Xin-Yi Chua
- UNSW Microbiome Research Centre, St George and Sutherland Clinical Campuses, UNSW Sydney, Sydney, NSW 2052, Australia; (N.S.); (L.P.); (C.H.); (X.-Y.C.); (F.E.-A.); (D.S.)
| | - Niki Tashvighi
- UNSW Microbiome Research Centre, St George and Sutherland Clinical Campuses, UNSW Sydney, Sydney, NSW 2052, Australia; (N.S.); (L.P.); (C.H.); (X.-Y.C.); (F.E.-A.); (D.S.)
| | - Phoebe Butler
- UNSW Microbiome Research Centre, St George and Sutherland Clinical Campuses, UNSW Sydney, Sydney, NSW 2052, Australia; (N.S.); (L.P.); (C.H.); (X.-Y.C.); (F.E.-A.); (D.S.)
| | - Zhixin Liu
- UNSW Stats Central, Biological Sciences South Building (E26), Level 2 Kensington, UNSW Sydney, Sydney, NSW 2052, Australia
- Healthdirect Australia, Level 4, 477 Pitt Street, Sydney, NSW 2000, Australia
| | - Fatima El-Assaad
- UNSW Microbiome Research Centre, St George and Sutherland Clinical Campuses, UNSW Sydney, Sydney, NSW 2052, Australia; (N.S.); (L.P.); (C.H.); (X.-Y.C.); (F.E.-A.); (D.S.)
| | - Elaine Holmes
- The Australian National Phenome Centre, Harry Perkins Institute, Murdoch University, Perth, WA 6150, Australia;
| | - Daniella Susic
- UNSW Microbiome Research Centre, St George and Sutherland Clinical Campuses, UNSW Sydney, Sydney, NSW 2052, Australia; (N.S.); (L.P.); (C.H.); (X.-Y.C.); (F.E.-A.); (D.S.)
- Department of Women’s and Children’s Health, St George Hospital, Kogarah, NSW 2217, Australia; (G.K.D.); (A.H.)
- Discipline of Women’s Health, School of Clinical Medicine, UNSW Sydney, Sydney, NSW 2052, Australia; (M.E.C.); (W.L.L.)
| | - Katherine Samaras
- Complex Diseases Program, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia;
- Department of Endocrinology, St Vincent’s Hospital, Darlinghurst, NSW 2010, Australia
- St Vincent’s Clinical Campus, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Maria E. Craig
- Discipline of Women’s Health, School of Clinical Medicine, UNSW Sydney, Sydney, NSW 2052, Australia; (M.E.C.); (W.L.L.)
| | - Gregory K. Davis
- Department of Women’s and Children’s Health, St George Hospital, Kogarah, NSW 2217, Australia; (G.K.D.); (A.H.)
- Discipline of Women’s Health, School of Clinical Medicine, UNSW Sydney, Sydney, NSW 2052, Australia; (M.E.C.); (W.L.L.)
| | - Amanda Henry
- Department of Women’s and Children’s Health, St George Hospital, Kogarah, NSW 2217, Australia; (G.K.D.); (A.H.)
- Discipline of Women’s Health, School of Clinical Medicine, UNSW Sydney, Sydney, NSW 2052, Australia; (M.E.C.); (W.L.L.)
| | - William L. Ledger
- Discipline of Women’s Health, School of Clinical Medicine, UNSW Sydney, Sydney, NSW 2052, Australia; (M.E.C.); (W.L.L.)
| | - Emad M. El-Omar
- UNSW Microbiome Research Centre, St George and Sutherland Clinical Campuses, UNSW Sydney, Sydney, NSW 2052, Australia; (N.S.); (L.P.); (C.H.); (X.-Y.C.); (F.E.-A.); (D.S.)
| |
Collapse
|
11
|
Lyu X, Wang S, Zhong J, Cai L, Zheng Y, Zhou Y, Zhou Y, Chen Q, Li Q. Gut microbiome interacts with pregnancy hormone metabolites in gestational diabetes mellitus. Front Microbiol 2023; 14:1175065. [PMID: 37492251 PMCID: PMC10364628 DOI: 10.3389/fmicb.2023.1175065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/09/2023] [Indexed: 07/27/2023] Open
Abstract
Introduction Change in the composition of intestinal microbiota is associated with metabolic disorders such as gestational diabetes mellitus (GDM). Methods To understand how the microbiota impacts the development of gestational diabetes mellitus, we profiled the intestinal microbiome of 54 pregnant women, including 27 GDM subjects, by employing 16S rRNA gene sequencing. Additionally, we conducted targeted metabolomics assays to validate the identified pathways with overrepresented metabolites. Results We evaluated the patterns of changing abundances of operational taxonomic units (OTU) between GDM and the healthy counterparts over three timepoints. Based on the significant OTUs, we inferred 132 significantly altered metabolic pathways in GDM. And identified two overrepresented metabolites of pregnancy hormone, butyrate and mevalonate, as potential intermediary metabolites of intestinal microbiota in GDM. Finally, we validated the impacts of the intestinal microbiota on GDM by demonstrating consistent changes of the serum levels of progesterone, estradiol, butyrate, and mevalonate in an independent cohort. Discussion Our findings confirm that alterations in the microbiota play a role in the development of GDM by impacting the metabolism of pregnancy hormones. This provides a novel perspective on the pathogenesis of GDM and introduces potential biomarkers that can be used for early diagnosis and prevention of the disease.
Collapse
Affiliation(s)
- Xuejing Lyu
- Clinical Medical Research Center for Obstetrics and Gynecology Diseases of Fujian Province, Laboratory of Research and Diagnosis of Gynecological Diseases of Xiamen City, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- School of Medicine, National Institute of Data Science in Health and Medicine, Xiamen University, Xiamen, China
| | - Shaona Wang
- The Third Clinical Medical College, Fujian Medical University, Fuzhou, China
- Department of Women’s Health, Xiamen Haicang District Maternity and Child Health Care Hospital, Xiamen, China
| | - Jiaxin Zhong
- School of Medicine, National Institute of Data Science in Health and Medicine, Xiamen University, Xiamen, China
| | - Lingzhu Cai
- Clinical Medical Research Center for Obstetrics and Gynecology Diseases of Fujian Province, Laboratory of Research and Diagnosis of Gynecological Diseases of Xiamen City, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- The Third Clinical Medical College, Fujian Medical University, Fuzhou, China
| | - Yanhui Zheng
- Clinical Medical Research Center for Obstetrics and Gynecology Diseases of Fujian Province, Laboratory of Research and Diagnosis of Gynecological Diseases of Xiamen City, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- The Third Clinical Medical College, Fujian Medical University, Fuzhou, China
| | - Ying Zhou
- Clinical Medical Research Center for Obstetrics and Gynecology Diseases of Fujian Province, Laboratory of Research and Diagnosis of Gynecological Diseases of Xiamen City, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- The Third Clinical Medical College, Fujian Medical University, Fuzhou, China
| | - Ying Zhou
- School of Medicine, National Institute of Data Science in Health and Medicine, Xiamen University, Xiamen, China
| | - Qionghua Chen
- Clinical Medical Research Center for Obstetrics and Gynecology Diseases of Fujian Province, Laboratory of Research and Diagnosis of Gynecological Diseases of Xiamen City, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- The Third Clinical Medical College, Fujian Medical University, Fuzhou, China
| | - Qiyuan Li
- School of Medicine, National Institute of Data Science in Health and Medicine, Xiamen University, Xiamen, China
- Department of Pediatrics, The First Affiliated Hospital of Xiamen University, Xiamen, China
| |
Collapse
|
12
|
Avizemel O, Frishman S, Pinto Y, Michael Y, Turjeman S, Tenenbaum-Gavish K, Yariv O, Peled Y, Poran E, Pardo J, Chen R, Hod M, Schwartz B, Hadar E, Koren O, Agay-Shay K. "Residential greenness, gestational diabetes mellitus (GDM) and microbiome diversity during pregnancy". Int J Hyg Environ Health 2023; 251:114191. [PMID: 37290331 DOI: 10.1016/j.ijheh.2023.114191] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 04/11/2023] [Accepted: 05/22/2023] [Indexed: 06/10/2023]
Abstract
BACKGROUND Gestational diabetes mellitus (GDM) is associated with reduced gut microbiota richness that was also reported to differ significantly between those living in rural compared to urban environments. Therefore, our aim was to examine the associations between greenness and maternal blood glucose levels and GDM, with microbiome diversity as a possible mediator in these associations. METHODS Pregnant women were recruited between January 2016 and October 2017. Residential greenness was evaluated as mean Normalized Difference Vegetation Index (NDVI) within 100, 300 and 500 m buffers surrounding each maternal residential address. Maternal glucose levels were measured at 24-28 weeks of gestation and GDM was diagnosed. We estimated the associations between greenness and glucose levels and GDM using generalized linear models, adjusting for socioeconomic status and season at last menstrual period. Using causal mediation analysis, the mediation effects of four different indices of microbiome alpha diversity in first trimester stool and saliva samples were assessed. RESULTS Of 269 pregnant women, 27 participants (10.04%) were diagnosed with GDM. Although not statistically significant, adjusted exposure to medium tertile levels of mean NDVI at 300 m buffer had lower odds of GDM (OR = 0.45, 95% CI: 0.16, 1.26, p = 0.13) and decreased change in mean glucose levels (β = -6.28, 95% CI: 14.91, 2.24, p = 0.15) compared to the lowest tertile levels of mean NDVI. Mixed results were observed at 100 and 500 m buffers, and when comparing highest tertile levels to lowest. No mediation effect of first trimester microbiome on the association between residential greenness and GDM was observed, and a small, possibly incidental, mediation effect on glucose levels was observed. CONCLUSION Our study suggests possible associations between residential greenness and glucose intolerance and risk of GDM, though without sufficient evidence. Microbiome in the first trimester, while involved in GDM etiology, is not a mediator in these associations. Future studies in larger populations should further examine these associations.
Collapse
Affiliation(s)
- Ofir Avizemel
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel; The Health & Environment Research (HER) Lab, Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel.
| | - Sigal Frishman
- Institute of Biochemistry, School of Nutritional Sciences Food Science and Nutrition, The School of Nutritional Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel; Helen Schneider Hospital for Women, Rabin Medical Center and Sackler Faculty of Medicine, Tel-Aviv University, Israel
| | - Yishay Pinto
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Yaron Michael
- Department of Soil & Water Sciences, Institute of Environmental Sciences, the Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Sondra Turjeman
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Kinneret Tenenbaum-Gavish
- Helen Schneider Hospital for Women, Rabin Medical Center and Sackler Faculty of Medicine, Tel-Aviv University, Israel
| | - Or Yariv
- Department of Soil & Water Sciences, Institute of Environmental Sciences, the Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Yoav Peled
- Helen Schneider Hospital for Women, Rabin Medical Center and Sackler Faculty of Medicine, Tel-Aviv University, Israel; Clalit Medical Services, Dan Petach-Tikva District, Israel
| | - Eran Poran
- Clalit Medical Services, Dan Petach-Tikva District, Israel
| | - Joseph Pardo
- Helen Schneider Hospital for Women, Rabin Medical Center and Sackler Faculty of Medicine, Tel-Aviv University, Israel; Clalit Medical Services, Dan Petach-Tikva District, Israel
| | - Rony Chen
- Helen Schneider Hospital for Women, Rabin Medical Center and Sackler Faculty of Medicine, Tel-Aviv University, Israel
| | - Moshe Hod
- Helen Schneider Hospital for Women, Rabin Medical Center and Sackler Faculty of Medicine, Tel-Aviv University, Israel
| | - Betty Schwartz
- Institute of Biochemistry, School of Nutritional Sciences Food Science and Nutrition, The School of Nutritional Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Eran Hadar
- Helen Schneider Hospital for Women, Rabin Medical Center and Sackler Faculty of Medicine, Tel-Aviv University, Israel
| | - Omry Koren
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Keren Agay-Shay
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel; The Health & Environment Research (HER) Lab, Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel.
| |
Collapse
|
13
|
Tranidou A, Dagklis T, Magriplis E, Apostolopoulou A, Tsakiridis I, Chroni V, Tsekitsidi E, Kalaitzopoulou I, Pazaras N, Chourdakis M. Pre-Pregnancy Adherence to Mediterranean Diet and Risk of Gestational Diabetes Mellitus: A Prospective Cohort Study in Greece. Nutrients 2023; 15:nu15040848. [PMID: 36839206 PMCID: PMC9967881 DOI: 10.3390/nu15040848] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/30/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Gestational Diabetes Mellitus (GDM) is a growing epidemic affecting pregnant women and their offspring. This study aimed to identify the relationship between adherence to a Mediterranean diet (MD) before conception and the risk of GDM in a contemporary Greek pregnant cohort. A prospective cohort of pregnant women was recruited at the routine first trimester visit. Nutritional intake was evaluated using a population specific validated food frequency questionnaire (FFQ). Pre-pregnancy adherence to MD was derived using two different scoring systems, the Mediterranean diet index score (MDS), and a modified version. Adjusted odds ratios (aOR) were computed using multiple logistic regression models for each score derived. Of 743 participating women, 112 (15.1%) developed GDM. The MDS index showed that scoring 5-9 points (high adherence) was associated with a lower GDM incidence (aOR: 0.57 95% CI (0.32, 0.90), p = 0.02), while the modified MDS index showed no significant association for any level of adherence. Pre-pregnancy consumption of "meat and derivatives" and "fatty meat and processed meat" was associated with a higher risk of GDM, with both scoring systems (p = 0.008, p = 0.004, respectively). A higher adherence to a MD pre-pregnancy, especially with less meat consumption, may have a protective effect on the occurrence of GDM.
Collapse
Affiliation(s)
- Antigoni Tranidou
- 3rd Department of Obstetrics and Gynecology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece
| | - Themistoklis Dagklis
- 3rd Department of Obstetrics and Gynecology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece
- Correspondence:
| | - Emmanuella Magriplis
- Department of Food Science and Human Nutrition, Agricultural University of Athens, 11855 Athens, Greece
| | - Aikaterini Apostolopoulou
- Laboratory of Hygiene, Social & Preventive Medicine and Medical Statistics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Ioannis Tsakiridis
- 3rd Department of Obstetrics and Gynecology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece
| | - Violeta Chroni
- Laboratory of Hygiene, Social & Preventive Medicine and Medical Statistics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Eirini Tsekitsidi
- Laboratory of Hygiene, Social & Preventive Medicine and Medical Statistics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Ioustini Kalaitzopoulou
- Laboratory of Hygiene, Social & Preventive Medicine and Medical Statistics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Nikolaos Pazaras
- Laboratory of Hygiene, Social & Preventive Medicine and Medical Statistics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Michail Chourdakis
- Laboratory of Hygiene, Social & Preventive Medicine and Medical Statistics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
14
|
Relationship between Diet Quality and Maternal Stool Microbiota in the MUMS Australian Pregnancy Cohort. Nutrients 2023; 15:nu15030689. [PMID: 36771396 PMCID: PMC9920253 DOI: 10.3390/nu15030689] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/23/2023] [Accepted: 01/23/2023] [Indexed: 02/01/2023] Open
Abstract
Dietary intake during pregnancy may influence the antenatal microbiome, which is proposed to impact maternal and infant health during the pregnancy and beyond. The aim of this sub-study was to examine associations between dietary intake and microbiota diversity during pregnancy using whole metagenomic sequencing and examine associations in low-risk versus high-risk pregnancies, as well as complicated versus uncomplicated pregnancies. Pregnancy data were analysed from women participating in the MUMS cohort study in Sydney, Australia (women followed from trimester 1 of pregnancy to 1-year postpartum), who had dietary intake data at either trimester 1 or 3, assessed using the Australian Eating Survey, and a matched stool sample (n = 86). Correlations of microbial alpha diversity with dietary intake data were determined using the repeated-measures correlation, rmcorr, in R. In the combined cohort, no associations were found between diet quality or diet composition and microbial alpha diversity or beta diversity. However, trends in our analysis suggested that dietary intake of specific macro- and micronutrients may influence microbial diversity differently, depending on particular pregnancy conditions. Our findings suggest that dietary intake during pregnancy may have a variable influence on the maternal microbiota, unique to the individual maternal pregnancy phenotype. More research is needed to disentangle these associations.
Collapse
|
15
|
Vavreckova M, Galanova N, Kostovcik M, Krystynik O, Ivanovova E, Roubalova R, Jiraskova Zakostelska Z, Friedecky D, Friedecka J, Haluzik M, Karasek D, Kostovcikova K. Specific gut bacterial and fungal microbiota pattern in the first half of pregnancy is linked to the development of gestational diabetes mellitus in the cohort including obese women. Front Endocrinol (Lausanne) 2022; 13:970825. [PMID: 36133313 PMCID: PMC9484836 DOI: 10.3389/fendo.2022.970825] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/15/2022] [Indexed: 11/30/2022] Open
Abstract
AIMS Gestation is linked to changes in gut microbiota composition and function. Since gestational diabetes mellitus (GDM) can develop at any time of the pregnancy, we stratified the women into four groups according to the time and test used for the diagnosis. We focused on the gut microbiota pattern in early pregnancy to detect changes which could be linked to later GDM development. METHODS We collected stool samples from 104 pregnant women including obese individuals (first trimester body mass index median was 26.73). We divided the women into four groups according to routine screening of fasting plasma glucose (FPG) levels and oral glucose tolerance test (oGTT) in the first and third trimesters, respectively. We processed the stool samples for bacterial 16S rRNA and fungal ITS1 genes sequencing by Illumina MiSeq approach and correlated the gut microbiota composition with plasma short-chain fatty acid levels (SCFA). RESULTS We found that gut bacterial microbiota in the first trimester significantly differs among groups with different GDM onset based on unweighted UniFrac distances (p=0.003). Normoglycemic women had gut microbiota associated with higher abundance of family Prevotellaceae, and order Fusobacteriales, and genus Sutterella. Women diagnosed later during pregnancy either by FGP levels or by oGTT had higher abundances of genera Enterococcus, or Erysipelotrichaceae UCG-003, respectively. We observed significant enrichment of fungal genus Mucor in healthy pregnant women whereas Candida was more abundant in the group of pregnant women with impaired oGTT. Using correlation analysis, we found that Holdemanella negatively correlated with Blautia and Candida abundances and that Escherichia/Shigella abundance positively correlated and Subdoligranulum negatively correlated with plasma lipid levels. Coprococcus, Akkermansia, Methanobrevibacter, Phascolarctobacterium and Alistipes positively correlated with acetate, valerate, 2-hydroxybutyrate and 2-methylbutyrate levels, respectively, in women with GDM. CONCLUSIONS We conclude that there are significant differences in the gut microbiota composition between pregnant women with and without GDM already at the early stage of pregnancy in our cohort that included also overweight and obese individuals. Specific microbial pattern associated with GDM development during early pregnancy and its correlation to plasma lipid or SCFA levels could help to identify women in higher risk of GDM development.
Collapse
Affiliation(s)
- Marketa Vavreckova
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Natalie Galanova
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Martin Kostovcik
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Ondrej Krystynik
- Third Department of Internal Medicine – Nephrology, Rheumatology and Endocrinology, University Hospital Olomouc, Olomouc, Czechia
| | - Eliska Ivanovova
- Laboratory for Inherited Metabolic Disorders, Department of Clinical Biochemistry, University Hospital Olomouc, and Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czechia
| | - Radka Roubalova
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Zuzana Jiraskova Zakostelska
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - David Friedecky
- Laboratory for Inherited Metabolic Disorders, Department of Clinical Biochemistry, University Hospital Olomouc, and Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czechia
| | - Jaroslava Friedecka
- Laboratory for Inherited Metabolic Disorders, Department of Clinical Biochemistry, University Hospital Olomouc, and Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czechia
| | - Martin Haluzik
- Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czechia
| | - David Karasek
- Third Department of Internal Medicine – Nephrology, Rheumatology and Endocrinology, University Hospital Olomouc, Olomouc, Czechia
| | - Klara Kostovcikova
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
- *Correspondence: Klara Kostovcikova,
| |
Collapse
|
16
|
Farhat S, Hemmatabadi M, Ejtahed HS, Shirzad N, Larijani B. Microbiome alterations in women with gestational diabetes mellitus and their offspring: A systematic review. Front Endocrinol (Lausanne) 2022; 13:1060488. [PMID: 36568098 PMCID: PMC9772279 DOI: 10.3389/fendo.2022.1060488] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 11/07/2022] [Indexed: 12/12/2022] Open
Abstract
AIMS Gestational diabetes mellitus (GDM) is a metabolic disorder that might predispose pregnant women to develop type 2 Diabetes Mellitus or lead to severe adverse outcomes in their offspring. One of the factors that have been thought to be involved in the pathology behind this disorder is the microbiome. In this systematic review, we comprehensively review the documents regarding the microbiota alterations in different tracts of pregnant women with GDM and their offspring. METHODS A comprehensive search was conducted in major databases including MEDLINE (PubMed), Scopus, and Web of sciences up to August 2021. Data on the demographics, methodology, and microbiome alterations were extracted and classified according to the type of microbiome in pregnant women with GDM and their offspring. The quality of studies was assessed using the Newcastle-Ottawa Scale (NOS). RESULTS In 49 articles which were retrieved, the findings were variable on the level of changes in alpha and beta diversity, enrichment or depletion in phyla, genera, species and OTUs, in each microbiome type. Although there were some inconsistencies among the results, a pattern of significant alterations was seen in the gut, oral, vaginal microbiome of women with GDM and gut, oral, and placental microbiome of their offspring. CONCLUSION Even though the alteration of the microbiome of the different tracts was seen in the cases of GDM, the inconsistency among the studies prevents us from identifying unique pattern. However, the results seem promising and further studies that overcome the confounding factors related to the demographics and methodology are needed.
Collapse
Affiliation(s)
- Sara Farhat
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahboobeh Hemmatabadi
- Endocrine Research Center, Valiasr Hospital, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Hanieh-Sadat Ejtahed
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- *Correspondence: Hanieh-Sadat Ejtahed, ; Nooshin Shirzad,
| | - Nooshin Shirzad
- Endocrine Research Center, Valiasr Hospital, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- *Correspondence: Hanieh-Sadat Ejtahed, ; Nooshin Shirzad,
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|