1
|
Tripathi A, Jaiswal A, Kumar D, Pandit R, Blake D, Tomley F, Joshi M, Joshi CG, Dubey SK. Whole genome sequencing revealed high occurrence of antimicrobial resistance genes in bacteria isolated from poultry manure. Int J Antimicrob Agents 2025; 65:107452. [PMID: 39880102 DOI: 10.1016/j.ijantimicag.2025.107452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 01/07/2025] [Accepted: 01/22/2025] [Indexed: 01/31/2025]
Abstract
BACKGROUND Global demand for food has driven expansion and intensification of livestock production, particularly in developing nations where antibiotic use is often routine. Waste from poultry production, including manure, is commonly utilized as fertilizers in agroecosystems, risking environmental contamination with potentially zoonotic bacteria and antimicrobial resistance genes (ARGs). METHODS Here, 33 bacterial isolates were recovered from broiler (n = 17) and layer (n = 16) chicken manure by aerobic culture using Luria Bertani agar. Antimicrobial susceptibility testing (AST) was performed using disc diffusion method. MALDI-ToF and 16S rRNA sequencing were used to identify and compare a subset of antibiotic-resistant isolates (n = 13). Comparison of whole genome sequence assemblies and phenotypic assays were used to assess capacity for biofilm formation, heavy metal tolerance and virulence. RESULTS AST by disc diffusion revealed all isolates were resistant to a minimum of three antibiotics, with resistance to ampicillin, co-trimoxazole, fluoroquinolones, tetracyclines, streptomycin, rifampicin and/or chloramphenicol detected. Stutzerimonas sp. and Acinetobacter sp. were the common genera observed in this study. Genome sequencing of each selected isolate revealed carriage of multiple ARGs capable of conferring resistance to many antimicrobials commonly employed in poultry production and human medicine, including tetracyclines, quinolones, macrolides, sulfonamide and cephalosporins. CONCLUSIONS The high occurrence of ARGs in studied bacterial isolates confirms that poultry manure could act as a source of genetic material that could be transferred to commensal microbiota and opportunistic pathogens of humans. Understanding the complex resistome interplay between humans, animals, and the environment requires a One Health approach, with implications for agricultural settings and public health.
Collapse
Affiliation(s)
- Animesh Tripathi
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Anjali Jaiswal
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Dinesh Kumar
- Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology (DST), Government of Gujarat, Gandhinagar, Gujarat, India
| | - Ramesh Pandit
- Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology (DST), Government of Gujarat, Gandhinagar, Gujarat, India
| | - Damer Blake
- Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, Hertfordshire, UK
| | - Fiona Tomley
- Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, Hertfordshire, UK
| | - Madhvi Joshi
- Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology (DST), Government of Gujarat, Gandhinagar, Gujarat, India
| | - Chaitanya G Joshi
- Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology (DST), Government of Gujarat, Gandhinagar, Gujarat, India
| | - Suresh Kumar Dubey
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India.
| |
Collapse
|
2
|
Kunkle DE, Cai Y, Eichman BF, Skaar EP. An interstrand DNA crosslink glycosylase aids Acinetobacter baumannii pathogenesis. Proc Natl Acad Sci U S A 2024; 121:e2402422121. [PMID: 38923984 PMCID: PMC11228520 DOI: 10.1073/pnas.2402422121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
Maintenance of DNA integrity is essential to all forms of life. DNA damage generated by reaction with genotoxic chemicals results in deleterious mutations, genome instability, and cell death. Pathogenic bacteria encounter several genotoxic agents during infection. In keeping with this, the loss of DNA repair networks results in virulence attenuation in several bacterial species. Interstrand DNA crosslinks (ICLs) are a type of DNA lesion formed by covalent linkage of opposing DNA strands and are particularly toxic as they interfere with replication and transcription. Bacteria have evolved specialized DNA glycosylases that unhook ICLs, thereby initiating their repair. In this study, we describe AlkX, a DNA glycosylase encoded by the multidrug resistant pathogen Acinetobacter baumannii. AlkX exhibits ICL unhooking activity similar to that of its Escherichia coli homolog YcaQ. Interrogation of the in vivo role of AlkX revealed that its loss sensitizes cells to DNA crosslinking and impairs A. baumannii colonization of the lungs and dissemination to distal tissues during pneumonia. These results suggest that AlkX participates in A. baumannii pathogenesis and protects the bacterium from stress conditions encountered in vivo. Consistent with this, we found that acidic pH, an environment encountered during host colonization, results in A. baumannii DNA damage and that alkX is induced by, and contributes to, defense against acidic conditions. Collectively, these studies reveal functions for a recently described class of proteins encoded in a broad range of pathogenic bacterial species.
Collapse
Affiliation(s)
- Dillon E. Kunkle
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN37232
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN37232
| | - Yujuan Cai
- Department of Biological Sciences, Vanderbilt University, Nashville, TN37232
| | - Brandt F. Eichman
- Department of Biological Sciences, Vanderbilt University, Nashville, TN37232
- Department of Biochemistry, Vanderbilt University, Nashville, TN37232
| | - Eric P. Skaar
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN37232
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN37232
- Department of Biological Sciences, Vanderbilt University, Nashville, TN37232
| |
Collapse
|
3
|
Nwabor LC, Chukamnerd A, Nwabor OF, Surachat K, Pomwised R, Jeenkeawpiam K, Chusri S. Genotypic and phenotypic mechanisms underlying antimicrobial resistance and synergistic efficacy of rifampicin-based combinations against carbapenem-resistant Acinetobacter baumannii. Heliyon 2024; 10:e27326. [PMID: 38524570 PMCID: PMC10958224 DOI: 10.1016/j.heliyon.2024.e27326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 02/16/2024] [Accepted: 02/27/2024] [Indexed: 03/26/2024] Open
Abstract
Purpose Carbapenem-resistant Acinetobacter baumannii (CRAB) is an urgent concern to public health. This study focuses on exploring the resistance mechanisms and the in vitro results of using rifampicin in combination with conventional antibiotics for the management of CRAB. Methods The synergistic and bactericidal effects of rifampicin with conventional antibiotics were evaluated using chequerboard assay and time-kill assay, while the phenotypic and genotypic characteristics of resistant determinants were performed by efflux pump detection and whole genome sequencing on 29 isolates from ICU patients with underlying health diseases. Results The isolates showed multidrug resistance, with over 60% showing addictive responses to rifampicin-based combinations at FICI ranging from 0.6 to 0.8. The time-kill assay revealed 99 % killing for rifampicin and minocycline combination in one isolate at 1/4 MIC rifampicin plus 1/4 MIC minocycline, while a bacteriostatic effect was observed at 1/2 MIC rifampici plus 1/2 MIC for a second isolate. Combination with tigecycline resulted in a 99% killing in two out of three isolates with a 2.5-3 log reduction in CFU at 1/4 MIC rifampicin plus 1/4 MIC tigecycline. Rifampicin plus colistin exhibited bactericidal activity against three out of four isolates. The combinations of rifampicin with ciprofloxacin, chloramphenicol, and trimethoprim-sulfamethoxazole were ineffective against the isolates. In addition, a 4-fold reduction in rifampicin MIC was observed in 2 out of 14 isolates in the presence of an efflux pump inhibitor. The pan-genome study demonstrated a progressive evolution with an accessory genome estimated to cover 58% of the matrix. Seven of the ten sequenced isolates belong to sequence type 2 (ST2), while one isolate each was assigned to ST164, ST16, and ST25. Furthermore, 11 plasmids, 34 antimicrobial resistance (AMR) genes, and 65 virulence-associated genes were predicted from the whole genome data. The blaOXA-23blaADC-25, blaOXA-66, blaPER-7, aph(6)-Id, armA, and arr-3 were prevalent among the isolates. Sequence alignment of the bacteria genome to the reference strain revealed a deleterious mutation in the rpoB gene of 4 isolates. Conclusion The study suggests that rifampicin in combination with either minocycline, tigecycline, or colistin might be a treatment option for CRAB clinical isolates. In addition, genotypic analysis of the bacteria isolates may inform the clinician of the suitable drug regimen for the management of specific bacteria variants.
Collapse
Affiliation(s)
- Lois Chinwe Nwabor
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Arnon Chukamnerd
- Division of Infectious Diseases, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Ozioma Forstinus Nwabor
- Division of Infectious Diseases, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Komwit Surachat
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand
- Translational Medicine Research Center, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Rattanaruji Pomwised
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Kongpop Jeenkeawpiam
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Sarunyou Chusri
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand
- Division of Infectious Diseases, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| |
Collapse
|
4
|
Khan S, Madhi SA, Olwagen C. Structure-based identification of novel inhibitors targeting the enoyl-ACP reductase enzyme of Acinetobacter baumannii. Sci Rep 2023; 13:21331. [PMID: 38044353 PMCID: PMC10694131 DOI: 10.1038/s41598-023-48696-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/29/2023] [Indexed: 12/05/2023] Open
Abstract
Acinetobacter baumannii is a Gram-negative multidrug-resistant bacterial pathogen primarily associated with nosocomial infections resulting in increased morbidity and mortality in adults and infants, especially in sub-Saharan Africa where the clinical burden is high. New therapeutics are needed to treat multidrug-resistant Acinetobacter baumannii infections and reduce transmission. The study used computer-integrated drug discovery approaches including pharmacophore modelling, molecular docking, and molecular dynamics simulation to screen potential inhibitors against the enoyl-acyl carrier protein reductase-FabI protein of Acinetobacter baumannii. The top three potential inhibitors: 21272541 > 89795992 > 89792657 showed favourable binding free energies including coulombic energy, van der Waals energy, and polar and non-polar energies. Furthermore, all three complexes were extremely stable and compact with reduced fluctuations during the simulations period. Inhibitor 21272541 exhibited the highest binding affinity against the Acinetobacter baumannii FabI protein. This is similar to our recent report, which also identified 21272541 as the lead inhibitor against Klebsiella pneumoniae infections. Future clinical studies evaluating drug effectiveness should prioritise inhibitor 21272541 which could be effective in treating infections caused by Gram-negative organisms.
Collapse
Affiliation(s)
- Shama Khan
- South African Medical Research Council: Vaccines and Infectious Diseases Analytics Research Unit, Faculty of Health Science, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - Shabir A Madhi
- South African Medical Research Council: Vaccines and Infectious Diseases Analytics Research Unit, Faculty of Health Science, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
- Wits Infectious Diseases and Oncology Research Institute, Faculty of Health Science, University of the Witwatersrand, Johannesburg, South Africa
| | - Courtney Olwagen
- South African Medical Research Council: Vaccines and Infectious Diseases Analytics Research Unit, Faculty of Health Science, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa.
| |
Collapse
|
5
|
Sarker P, Mitro A, Hoque H, Hasan MN, Nurnabi Azad Jewel GM. Identification of potential novel therapeutic drug target against Elizabethkingia anophelis by integrative pan and subtractive genomic analysis: An in silico approach. Comput Biol Med 2023; 165:107436. [PMID: 37690289 DOI: 10.1016/j.compbiomed.2023.107436] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 07/08/2023] [Accepted: 08/28/2023] [Indexed: 09/12/2023]
Abstract
Elizabethkingia anophelis is a human pathogen responsible for severe nosocomial infections in neonates and immunocompromised patients. The significantly higher mortality rate from E. anophelis infections and the lack of available regimens highlight the critical need to explore novel drug targets. The current study investigated effective novel drug targets by employing a comprehensive in silico subtractive genomic approach integrated with pangenomic analysis of E. anophelis strains. A total of 2809 core genomic proteins were found by pangenomic analysis of non-paralogous proteins. Subsequently, 156 pathogen-specific, 442 choke point, 202 virulence factor, 53 antibiotic resistant and 119 host-pathogen interacting proteins were identified in E. anophelis. By subtractive genomic approach, at first 791 proteins were found to be indispensable for the survival of E. anophelis. 558 and 315 proteins were detected as non-homologous to human and gut microflora respectively. Following that 245 cytoplasmic, 245 novel, and 23 broad-spectrum targets were selected and finally four proteins were considered as potential therapeutic targets of E. anophelis based on highest degree score in PPI network. Among those, three proteins were subjected to molecular docking and subsequent MD simulation as one protein did not contain a plausible binding pocket with sufficient surface area and volume. All the complexes were found to be stable and compact in 100 ns molecular dynamics simulation studies as measured by RMSD, RMSF, and Rg. These three short-listed targets identified in this study may lead to the development of novel antimicrobials capable of curing infections and pave the way to prevent and control the disease progression caused by the deadly agent E. anophelis.
Collapse
Affiliation(s)
- Parth Sarker
- Dept. of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, University Ave, Sylhet-3114, Bangladesh; Computational Biology and Bioinformatics Lab, Dept. of GEB, SUST, Sylhet-3114, Bangladesh
| | - Arnob Mitro
- Dept. of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, University Ave, Sylhet-3114, Bangladesh; Computational Biology and Bioinformatics Lab, Dept. of GEB, SUST, Sylhet-3114, Bangladesh
| | - Hammadul Hoque
- Dept. of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, University Ave, Sylhet-3114, Bangladesh
| | - Md Nazmul Hasan
- Dept. of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, University Ave, Sylhet-3114, Bangladesh
| | - G M Nurnabi Azad Jewel
- Dept. of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, University Ave, Sylhet-3114, Bangladesh; Computational Biology and Bioinformatics Lab, Dept. of GEB, SUST, Sylhet-3114, Bangladesh.
| |
Collapse
|
6
|
Rahman A, Styczynski A, Khaleque A, Hossain SA, Sadique A, Hossain A, Jain M, Tabassum SN, Khan F, Bhuiyan MSS, Alam J, Khandakar A, Kamruzzaman M, Ahsan CR, Kashem SBA, Chowdhury MEH, Hossain M. Genomic landscape of prominent XDR Acinetobacter clonal complexes from Dhaka, Bangladesh. BMC Genomics 2022; 23:802. [PMID: 36471260 PMCID: PMC9721023 DOI: 10.1186/s12864-022-08991-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 11/05/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Acinetobacter calcoaceticus-A. baumannii (ACB) complex pathogens are known for their prevalence in nosocomial infections and extensive antimicrobial resistance (AMR) capabilities. While genomic studies worldwide have elucidated the genetic context of antibiotic resistance in major international clones (ICs) of clinical Acinetobacter spp., not much information is available from Bangladesh. In this study, we analysed the AMR profiles of 63 ACB complex strains collected from Dhaka, Bangladesh. Following this, we generated draft genomes of 15 of these strains to understand the prevalence and genomic environments of AMR, virulence and mobilization associated genes in different Acinetobacter clones. RESULTS Around 84% (n = 53) of the strains were extensively drug resistant (XDR) with two showing pan-drug resistance. Draft genomes generated for 15 strains confirmed 14 to be A. baumannii while one was A. nosocomialis. Most A. baumannii genomes fell under three clonal complexes (CCs): the globally dominant CC1 and CC2, and CC10; one strain had a novel sequence type (ST). AMR phenotype-genotype agreement was observed and the genomes contained various beta-lactamase genes including blaOXA-23 (n = 12), blaOXA-66 (n = 6), and blaNDM-1 (n = 3). All genomes displayed roughly similar virulomes, however some virulence genes such as the Acinetobactin bauA and the type IV pilus gene pilA displayed high genetic variability. CC2 strains carried highest levels of plasmidic gene content and possessed conjugative elements carrying AMR genes, virulence factors and insertion sequences. CONCLUSION This study presents the first comparative genomic analysis of XDR clinical Acinetobacter spp. from Bangladesh. It highlights the prevalence of different classes of beta-lactamases, mobilome-derived heterogeneity in genetic architecture and virulence gene variability in prominent Acinetobacter clonal complexes in the country. The findings of this study would be valuable in understanding the genomic epidemiology of A. baumannii clones and their association with closely related pathogenic species like A. nosocomialis in Bangladesh.
Collapse
Affiliation(s)
- Aura Rahman
- NSU Genome Research Institute, North South University, Dhaka, Bangladesh
| | - Ashley Styczynski
- Division of Infectious Diseases and Geographic Medicine, School of Medicine, Stanford University, Palo Alto, California, USA
| | - Abdul Khaleque
- Department of Biochemistry and Microbiology, North South University, Dhaka, Bangladesh
| | | | - Abdus Sadique
- NSU Genome Research Institute, North South University, Dhaka, Bangladesh
| | - Arman Hossain
- Department of Biochemistry and Microbiology, North South University, Dhaka, Bangladesh
| | - Mukesh Jain
- The Hormone Lab & Infertility Centre, Dhaka, Bangladesh
| | | | - Fahad Khan
- NSU Genome Research Institute, North South University, Dhaka, Bangladesh
- Department of Biochemistry and Microbiology, North South University, Dhaka, Bangladesh
| | - Mohammad Sami Salman Bhuiyan
- NSU Genome Research Institute, North South University, Dhaka, Bangladesh
- Department of Biochemistry and Microbiology, North South University, Dhaka, Bangladesh
| | - Jahidul Alam
- NSU Genome Research Institute, North South University, Dhaka, Bangladesh
| | - Amith Khandakar
- Department of Electrical Engineering, Qatar University, Doha, 2713, Qatar
| | | | | | - Saad Bin Abul Kashem
- Department of Computer Sciences, AFG College with the University of Aberdeen, Doha, Qatar.
| | | | - Maqsud Hossain
- NSU Genome Research Institute, North South University, Dhaka, Bangladesh.
- Department of Biochemistry and Microbiology, North South University, Dhaka, Bangladesh.
| |
Collapse
|