1
|
Centonze M, Aloisio Caruso E, De Nunzio V, Cofano M, Saponara I, Pinto G, Notarnicola M. The Antiaging Potential of Dietary Plant-Based Polyphenols: A Review on Their Role in Cellular Senescence Modulation. Nutrients 2025; 17:1716. [PMID: 40431456 PMCID: PMC12114605 DOI: 10.3390/nu17101716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2025] [Revised: 05/14/2025] [Accepted: 05/16/2025] [Indexed: 05/29/2025] Open
Abstract
Aging is a complex biological process characterized by a progressive decline in physiological functions and an increased risk of chronic diseases. A key mechanism of this process is cellular senescence, the permanent arrest of the cell cycle in response to stress or damage, which contributes to the accumulation of dysfunctional cells in tissues. Recent research has highlighted the role of polyphenols, bioactive compounds present in numerous plant-based foods, in positively modulating these processes. Polyphenols exert antioxidant effects, regulate gene expression and improve mitochondrial function, helping to delay cellular aging and prevent age-related diseases. In addition, some polyphenols exhibit senolytic properties, selectively eliminating senescent cells and promoting tissue regeneration. This review summarizes the current evidence on the effects of polyphenols on aging and cellular senescence, exploring the underlying molecular mechanisms and discussing their potential in nutritional strategies aimed at promoting healthy aging.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Maria Notarnicola
- Laboratory of Nutritional Biochemistry, National Institute of Gastroenterology IRCCS “Saverio de Bellis”, 70013 Castellana Grotte, Italy; (M.C.); (E.A.C.); (V.D.N.); (M.C.); (I.S.); (G.P.)
| |
Collapse
|
2
|
Ryan P, Lee J. In vitro senescence and senolytic functional assays. Biomater Sci 2025. [PMID: 40375674 DOI: 10.1039/d4bm01684j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2025]
Abstract
A detailed understanding of aging biology and the development of anti-aging therapeutic strategies remain imperative yet inherently challenging due to the protracted nature of aging. Cellular senescence arises naturally through replicative exhaustion and is accelerated by clinical treatments or environmental stressors. The accumulation of senescent cells-defined by a loss of mitogenic potential, resistance to apoptosis, and acquisition of a pro-inflammatory secretory phenotype-has been implicated as a key driver of chronic disease, tissue degeneration, and organismal aging. Recent studies have highlighted the therapeutic promise of senolytic drugs, which selectively eliminate senescent cells. Compelling results from preclinical animal studies and ongoing clinical trials underscore this potential. However, the clinical translation of senolytics requires further pharmacological validation to refine selectivity, minimize toxicity, and determine optimal dosing. Equally important is the evaluation of senolytics' potential to restore tissue structure and function by reducing the senescent cell burden. In vitro tissue culture models offer a powerful platform to advance these efforts. This review summarizes the current landscape of in vitro systems used for inducing cellular senescence-referred to as "senescence assays"-and for screening senolytic drugs-referred to as "senolytic assays". We conclude by discussing key challenges to improving mechanistic insight, predictive accuracy, and clinical relevance in senolytic drug development, as well as emerging applications of senolytic therapies.
Collapse
Affiliation(s)
- Patrick Ryan
- Molecular & Cellular Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts, 01003, USA.
| | - Jungwoo Lee
- Molecular & Cellular Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts, 01003, USA.
- Department of Chemical Engineering, University of Massachusetts, Amherst, Massachusetts, 01003, USA
- Department of Biomedical Engineering, University of Massachusetts, Amherst, Massachusetts, 01003, USA
| |
Collapse
|
3
|
Aminudin NI, Wan Jaafar WMS, Mohd Amin NMS, Kamarul Baharin R, Zainal Abidin ZA. Biotransformation of curcumin by Streptomyces sp. K1-18 isolated from mangrove soil. Nat Prod Res 2025; 39:2824-2830. [PMID: 38372293 DOI: 10.1080/14786419.2024.2318786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/19/2024] [Accepted: 02/07/2024] [Indexed: 02/20/2024]
Abstract
Biotransformation is recognised as a green chemistry tool to synthesise diverse natural product analogues for valorisation of their chemistry and bioactivities. It offers significant benefits compared to chemical synthesis, given its cost-effectiveness and greater selectivity. In this work, a curcumin analogue, namely gingerenone A, was yielded from the biotransformation process catalysed by Streptomyces sp. K1-18. The structure of the compound was established by using mass spectrometry/mass spectrometry chemical profiling assisted with in silico fragmentation by MetFrag tool. This biotransformation successfully afforded a reduction reaction on curcumin. This is the first report on utilisation of Streptomyces sp. K1-18 as a biocatalyst for biotransformation of curcumin.
Collapse
Affiliation(s)
- Nurul Iman Aminudin
- Department of Chemistry, Kulliyyah of Science, International Islamic University Malaysia (IIUM), Kuantan, Malaysia
| | | | | | - Raudah Kamarul Baharin
- Department of Biotechnology, Kulliyyah of Science, International Islamic University Malaysia (IIUM), Kuantan, Malaysia
| | - Zaima Azira Zainal Abidin
- Department of Biotechnology, Kulliyyah of Science, International Islamic University Malaysia (IIUM), Kuantan, Malaysia
| |
Collapse
|
4
|
Olascoaga S, Konigsberg M, Espinal‐Enríquez J, Tovar H, Matadamas‐Martínez F, Pérez‐Villanueva J, López‐Diazguerrero NE. Transcriptomic signatures and network-based methods uncover new senescent cell anti-apoptotic pathways and senolytics. FEBS J 2025; 292:1950-1971. [PMID: 39871113 PMCID: PMC12001159 DOI: 10.1111/febs.17402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/27/2024] [Accepted: 01/07/2025] [Indexed: 01/29/2025]
Abstract
Cellular senescence is an irreversible cell cycle arrest caused by various stressors that damage cells. Over time, senescent cells accumulate and contribute to the progression of multiple age-related degenerative diseases. It is believed that these cells accumulate partly due to their ability to evade programmed cell death through the development and activation of survival and antiapoptotic resistance mechanisms; however, many aspects of how these survival mechanisms develop and activate are still unknown. By analyzing transcriptomic signature profiles generated by the LINCS L1000 project and using network-based methods, we identified various genes that could represent new senescence-related survival mechanisms. Additionally, employing the same methodology, we identified over 600 molecules with potential senolytic activity. Experimental validation of our computational findings confirmed the senolytic activity of Fluorouracil, whose activity would be mediated by a multitarget mechanism, revealing that its targets AURKA, EGFR, IRS1, SMAD4, and KRAS are new senescent cell antiapoptotic pathways (SCAPs). The development of these pathways could depend on the stimulus that induces cellular senescence. The SCAP development and activation mechanisms proposed in this work offer new insights into how senescent cells survive. Identifying new antiapoptotic resistance targets and drugs with potential senolytic activity paves the way for developing new pharmacological therapies to eliminate senescent cells selectively.
Collapse
Affiliation(s)
- Samael Olascoaga
- Posgrado en Biología Experimental, DCBSUniversidad Autónoma Metropolitana IztapalapaMexico CityMexico
- Laboratorio de Bioenergética y Envejecimiento Celular, Departamento de Ciencias de la SaludUniversidad Autónoma Metropolitana‐IztapalapaMexico CityMexico
| | - Mina Konigsberg
- Laboratorio de Bioenergética y Envejecimiento Celular, Departamento de Ciencias de la SaludUniversidad Autónoma Metropolitana‐IztapalapaMexico CityMexico
| | | | - Hugo Tovar
- Computational Genomics DivisionNational Institute of Genomic MedicineMexico CityMexico
| | - Félix Matadamas‐Martínez
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias‐UMAE Hospital de Pediatría, Centro Médico Nacional Siglo XXIInstituto Mexicano del Seguro SocialMexico CityMexico
| | - Jaime Pérez‐Villanueva
- División de Ciencias Biológicas y de la Salud, Departamento de Sistemas BiológicosUniversidad Autónoma Metropolitana‐Xochimilco (UAM‐X)Mexico CityMexico
| | - Norma Edith López‐Diazguerrero
- Laboratorio de Bioenergética y Envejecimiento Celular, Departamento de Ciencias de la SaludUniversidad Autónoma Metropolitana‐IztapalapaMexico CityMexico
| |
Collapse
|
5
|
Li S, Wang K, Wu J, Zhu Y. The immunosenescence clock: A new method for evaluating biological age and predicting mortality risk. Ageing Res Rev 2025; 104:102653. [PMID: 39746402 DOI: 10.1016/j.arr.2024.102653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/12/2024] [Accepted: 12/29/2024] [Indexed: 01/04/2025]
Abstract
Precisely assessing an individual's immune age is critical for developing targeted aging interventions. Although traditional methods for evaluating biological age, such as the use of cellular senescence markers and physiological indicators, have been widely applied, these methods inherently struggle to capture the full complexity of biological aging. We propose the concept of an 'immunosenescence clock' that evaluates immune system changes on the basis of changes in immune cell abundance and omics data (including transcriptome and proteome data), providing a complementary indicator for understanding age-related physiological transformations. Rather than claiming to definitively measure biological age, this approach can be divided into a biological age prediction clock and a mortality prediction clock. The main function of the biological age prediction clock is to reflect the physiological state through the transcriptome data of peripheral blood mononuclear cells (PBMCs), whereas the mortality prediction clock emphasizes the ability to identify people at high risk of mortality and disease. We hereby present nearly all of the immunosenescence clocks developed to date, as well as their functional differences. Critically, we explicitly acknowledge that no single diagnostic test can exhaustively capture the intricate changes associated with biological aging. Furthermore, as these biological functions are based on the acceleration or delay of immunosenescence, we also summarize the factors that accelerate immunosenescence and the methods for delaying it. A deep understanding of the regulatory mechanisms of immunosenescence can help establish more accurate immune-age models, providing support for personalized longevity interventions and improving quality of life in old age.
Collapse
Affiliation(s)
- Shuyu Li
- Laboratory of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ke Wang
- Department of Breast Surgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jingni Wu
- Department of International Healthcare Center and General Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yongliang Zhu
- Laboratory of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
6
|
Kim HS, Jung CH. Impacts of Senolytic Phytochemicals on Gut Microbiota: A Comprehensive Review. J Microbiol Biotechnol 2024; 34:2166-2172. [PMID: 39603836 PMCID: PMC11637817 DOI: 10.4014/jmb.2408.08032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/21/2024] [Accepted: 10/29/2024] [Indexed: 11/29/2024]
Abstract
There is increasing interest in utilizing senolytics to selectively remove senescent cells from intestinal tissues, with the aim of maintaining a healthy gut environment during aging. This strategy underscores the potential of senolytics to enhance gut health by delaying intestinal aging and positively modulating gut microbiota. Certain plant-based phytochemicals have demonstrated promising senolytic effects. Beyond their ability to eliminate senescent cells, these compounds also exhibit antioxidant and anti-inflammatory properties, reducing oxidative stress and inflammation-key drivers of age-related diseases. By selectively removing senescent cells from the intestine, senolytic phytochemicals contribute to an improved intestinal inflammatory environment and promote the growth of a diverse microbial community. Ultimately, the dietary intake of these senolytic phytochemicals aids in maintaining a healthier intestinal microenvironment by targeting and clearing aged enterocytes.
Collapse
Affiliation(s)
- Hee Soo Kim
- Aging and Metabolism Research Group, Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
- Department of Food Biotechnology, University of Science and Technology, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Chang Hwa Jung
- Aging and Metabolism Research Group, Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
- Department of Food Biotechnology, University of Science and Technology, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| |
Collapse
|
7
|
Matin M, Joshi T, Wang D, Tzvetkov NT, Matin FB, Wierzbicka A, Jóźwik A, Horbańczuk JO, Atanasov AG. Effects of Ginger ( Zingiber officinale) on the Hallmarks of Aging. Biomolecules 2024; 14:940. [PMID: 39199328 PMCID: PMC11352747 DOI: 10.3390/biom14080940] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/22/2024] [Accepted: 07/29/2024] [Indexed: 09/01/2024] Open
Abstract
Ginger (Zingiber officinale Roscoe) is broadly used as a traditional remedy and food ingredient, and numerous preclinical and clinical studies have demonstrated health benefits in a range of age-related disorders. Moreover, longevity-promoting effects have been demonstrated in several (preclinical) research models. With this work, we aimed to comprehensively review the reported effects of ginger and its bioactive constituents on the twelve established hallmarks of aging, with the ultimate goal of gaining a deeper understanding of the potential for future interventions in the area of longevity-extension and counteracting of aging-related diseases. The reviewed literature supports the favorable effects of ginger and some of its constituents on all twelve hallmarks of aging, with a particularly high number of animal research studies indicating counteraction of nutrient-sensing dysregulations, mitochondrial dysfunction, chronic inflammation, and dysbiosis. On this background, validation in human clinical trials is still insufficient or is entirely missing, with the exception of some studies indicating positive effects on deregulated nutrient-sensing, chronic inflammation, and dysbiosis. Thus, the existing body of literature clearly supports the potential of ginger to be further studied in clinical trials as a supplement for the promotion of both lifespan and health span.
Collapse
Affiliation(s)
- Maima Matin
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzebiec, 05-552 Magdalenka, Poland; (M.M.); (A.W.); (A.J.); (J.O.H.)
| | - Tanuj Joshi
- Department of Pharmaceutical Sciences, Bhimtal, Kumaun University, Nainital 263002, India;
| | - Dongdong Wang
- Centre for Metabolism, Obesity and Diabetes Research, Department of Medicine, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada;
| | - Nikolay T. Tzvetkov
- Department of Biochemical Pharmacology and Drug Design, Institute of Molecular Biology “Roumen Tsanev”, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| | - Farhan Bin Matin
- Department of Pharmacy, East West University, Aftabnagar, Dhaka 1212, Bangladesh;
| | - Agnieszka Wierzbicka
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzebiec, 05-552 Magdalenka, Poland; (M.M.); (A.W.); (A.J.); (J.O.H.)
| | - Artur Jóźwik
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzebiec, 05-552 Magdalenka, Poland; (M.M.); (A.W.); (A.J.); (J.O.H.)
| | - Jarosław Olav Horbańczuk
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzebiec, 05-552 Magdalenka, Poland; (M.M.); (A.W.); (A.J.); (J.O.H.)
| | - Atanas G. Atanasov
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzebiec, 05-552 Magdalenka, Poland; (M.M.); (A.W.); (A.J.); (J.O.H.)
- Laboratory of Natural Products and Medicinal Chemistry (LNPMC), Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602105, India
- Ludwig Boltzmann Institute Digital Health and Patient Safety, Medical University of Vienna, Spitalgasse 23, 1090 Vienna, Austria
| |
Collapse
|
8
|
Luo Y, Zhang Z, Zheng W, Zeng Z, Fan L, Zhao Y, Huang Y, Cao S, Yu S, Shen L. Molecular Mechanisms of Plant Extracts in Protecting Aging Blood Vessels. Nutrients 2024; 16:2357. [PMID: 39064801 PMCID: PMC11279783 DOI: 10.3390/nu16142357] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/09/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
Plant Extracts (PE) are natural substances extracted from plants, rich in various bioactive components. Exploring the molecular mechanisms and interactions involved in the vascular protective effects of PE is beneficial for the development of further strategies to protect aging blood vessels. For this review, the content was obtained from scientific databases such as PubMed, China National Knowledge Infrastructure (CNKI), and Google Scholar up to July 2024, using the search terms "Plant extracts", "oxidative stress", "vascular aging", "endothelial dysfunction", "ROS", and "inflammation". This review highlighted the effects of PE in protecting aging blood vessels. Through pathways such as scavenging reactive oxygen species, activating antioxidant signaling pathways, enhancing respiratory chain complex activity, inhibiting mitochondrial-reactive oxygen species generation, improving nitric oxide bioavailability, downregulating the secretion of inflammatory factors, and activating sirtuins 1 and Nrf2 signaling pathways, it can improve vascular structural and functional changes caused by age-related oxidative stress, mitochondrial dysfunction, and inflammation due to aging, thereby reducing the incidence of age-related cardiovascular diseases.
Collapse
Affiliation(s)
- Yuxin Luo
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Teaching Animal Hospital, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (Z.Z.); (W.Z.); (Z.Z.); (L.F.); (Y.Z.); (Y.H.); (S.C.); (S.Y.)
| | - Zeru Zhang
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Teaching Animal Hospital, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (Z.Z.); (W.Z.); (Z.Z.); (L.F.); (Y.Z.); (Y.H.); (S.C.); (S.Y.)
| | - Weijian Zheng
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Teaching Animal Hospital, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (Z.Z.); (W.Z.); (Z.Z.); (L.F.); (Y.Z.); (Y.H.); (S.C.); (S.Y.)
| | - Zhi Zeng
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Teaching Animal Hospital, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (Z.Z.); (W.Z.); (Z.Z.); (L.F.); (Y.Z.); (Y.H.); (S.C.); (S.Y.)
| | - Lei Fan
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Teaching Animal Hospital, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (Z.Z.); (W.Z.); (Z.Z.); (L.F.); (Y.Z.); (Y.H.); (S.C.); (S.Y.)
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Yuquan Zhao
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Teaching Animal Hospital, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (Z.Z.); (W.Z.); (Z.Z.); (L.F.); (Y.Z.); (Y.H.); (S.C.); (S.Y.)
| | - Yixin Huang
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Teaching Animal Hospital, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (Z.Z.); (W.Z.); (Z.Z.); (L.F.); (Y.Z.); (Y.H.); (S.C.); (S.Y.)
| | - Suizhong Cao
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Teaching Animal Hospital, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (Z.Z.); (W.Z.); (Z.Z.); (L.F.); (Y.Z.); (Y.H.); (S.C.); (S.Y.)
| | - Shumin Yu
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Teaching Animal Hospital, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (Z.Z.); (W.Z.); (Z.Z.); (L.F.); (Y.Z.); (Y.H.); (S.C.); (S.Y.)
| | - Liuhong Shen
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Teaching Animal Hospital, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (Z.Z.); (W.Z.); (Z.Z.); (L.F.); (Y.Z.); (Y.H.); (S.C.); (S.Y.)
| |
Collapse
|
9
|
Rossi M, Banskota N, Shin CH, Anerillas C, Tsitsipatis D, Yang JH, Munk R, Martindale J, Yang X, Piao Y, Mazan-Mamczarz K, Fan J, Lehrmann E, Lam KW, De S, Abdelmohsen K, Gorospe M. Increased PTCHD4 expression via m6A modification of PTCHD4 mRNA promotes senescent cell survival. Nucleic Acids Res 2024; 52:7261-7278. [PMID: 38721764 PMCID: PMC11229380 DOI: 10.1093/nar/gkae322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 03/27/2024] [Accepted: 04/12/2024] [Indexed: 07/09/2024] Open
Abstract
RNA modifications, including N6-methyladenosine (m6A), critically modulate protein expression programs in a range of cellular processes. Although the transcriptomes of cells undergoing senescence are strongly regulated, the landscape and impact of m6A modifications during senescence are poorly understood. Here, we report a robust m6A modification of PTCHD4 mRNA, encoding Patched Domain-Containing Protein 4, in senescent cells. The METTL3/METTL14 complex was found to incorporate the m6A modification on PTCHD4 mRNA; addition of m6A rendered PTCHD4 mRNA more stable and increased PTCHD4 production. MeRIP RT-qPCR and eCLIP analyses were used to map this m6A modification to the last exon of PTCHD4 mRNA. Further investigation identified IGF2BP1, but not other m6A readers, as responsible for the stabilization and increased abundance of m6A-modified PTCHD4 mRNA. Silencing PTCHD4, a transmembrane protein, enhanced growth arrest and DNA damage in pre-senescent cells and sensitized them to senolysis and apoptosis. Our results indicate that m6A modification of PTCHD4 mRNA increases the production of PTCHD4, a protein associated with senescent cell survival, supporting the notion that regulating m6A modification on specific mRNAs could be exploited to eliminate senescent cells for therapeutic benefit.
Collapse
Affiliation(s)
- Martina Rossi
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of Health (NIH), Baltimore, MD, USA
| | - Nirad Banskota
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of Health (NIH), Baltimore, MD, USA
| | - Chang Hoon Shin
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of Health (NIH), Baltimore, MD, USA
| | - Carlos Anerillas
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of Health (NIH), Baltimore, MD, USA
| | - Dimitrios Tsitsipatis
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of Health (NIH), Baltimore, MD, USA
| | - Jen-Hao Yang
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of Health (NIH), Baltimore, MD, USA
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Rachel Munk
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of Health (NIH), Baltimore, MD, USA
| | - Jennifer L Martindale
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of Health (NIH), Baltimore, MD, USA
| | - Xiaoling Yang
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of Health (NIH), Baltimore, MD, USA
| | - Yulan Piao
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of Health (NIH), Baltimore, MD, USA
| | - Krystyna Mazan-Mamczarz
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of Health (NIH), Baltimore, MD, USA
| | - Jinshui Fan
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of Health (NIH), Baltimore, MD, USA
| | - Elin Lehrmann
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of Health (NIH), Baltimore, MD, USA
| | - Kwan-Wood Gabriel Lam
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of Health (NIH), Baltimore, MD, USA
| | - Supriyo De
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of Health (NIH), Baltimore, MD, USA
| | - Kotb Abdelmohsen
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of Health (NIH), Baltimore, MD, USA
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of Health (NIH), Baltimore, MD, USA
| |
Collapse
|
10
|
Li Y, Tian X, Luo J, Bao T, Wang S, Wu X. Molecular mechanisms of aging and anti-aging strategies. Cell Commun Signal 2024; 22:285. [PMID: 38790068 PMCID: PMC11118732 DOI: 10.1186/s12964-024-01663-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Aging is a complex and multifaceted process involving a variety of interrelated molecular mechanisms and cellular systems. Phenotypically, the biological aging process is accompanied by a gradual loss of cellular function and the systemic deterioration of multiple tissues, resulting in susceptibility to aging-related diseases. Emerging evidence suggests that aging is closely associated with telomere attrition, DNA damage, mitochondrial dysfunction, loss of nicotinamide adenine dinucleotide levels, impaired macro-autophagy, stem cell exhaustion, inflammation, loss of protein balance, deregulated nutrient sensing, altered intercellular communication, and dysbiosis. These age-related changes may be alleviated by intervention strategies, such as calorie restriction, improved sleep quality, enhanced physical activity, and targeted longevity genes. In this review, we summarise the key historical progress in the exploration of important causes of aging and anti-aging strategies in recent decades, which provides a basis for further understanding of the reversibility of aging phenotypes, the application prospect of synthetic biotechnology in anti-aging therapy is also prospected.
Collapse
Affiliation(s)
- Yumeng Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences; National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| | - Xutong Tian
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences; National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| | - Juyue Luo
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences; National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| | - Tongtong Bao
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences; National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| | - Shujin Wang
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Xin Wu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences; National Center of Technology Innovation for Synthetic Biology, Tianjin, China.
| |
Collapse
|
11
|
Zhang G, Samarawickrama PN, Gui L, Ma Y, Cao M, Zhu H, Li W, Yang H, Li K, Yang Y, Zhu E, Li W, He Y. Revolutionizing Diabetic Foot Ulcer Care: The Senotherapeutic Approach. Aging Dis 2024; 16:946-970. [PMID: 38739931 PMCID: PMC11964433 DOI: 10.14336/ad.2024.0065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/16/2024] [Indexed: 05/16/2024] Open
Abstract
Diabetic foot ulcers (DFUs) are a prevalent and profoundly debilitating complication that afflicts individuals with diabetes mellitus (DM). These ulcers are associated with substantial morbidity, recurrence rates, disability, and mortality, imposing substantial economic, psychological, and medical burdens. Timely detection and intervention can mitigate the morbidity and disparities linked to DFU. Nevertheless, current therapeutic approaches for DFU continue to grapple with multifaceted limitations. A growing body of evidence emphasizes the crucial role of cellular senescence in the pathogenesis of chronic wounds. Interventions that try to delay cellular senescence, eliminate senescent cells (SnCs), or suppress the senescence-associated secretory phenotype (SASP) have shown promise for helping chronic wounds to heal. In this context, targeting cellular senescence emerges as a novel therapeutic strategy for DFU. In this comprehensive review, we look at the pathology and treatment of DFU in a systematic way. We also explain the growing importance of investigating SnCs in DFU and highlight the great potential of senotherapeutics that target SnCs in DFU treatment. The development of efficacious and safe senotherapeutics represents a pioneering therapeutic approach aimed at enhancing the quality of life for individuals affected by DFU.
Collapse
Affiliation(s)
- Guiqin Zhang
- Department of Endocrinology, the Second Affiliated Hospital of Dali University (the Third People's Hospital of Yunnan Province), Kunming, Yunnan 650011, China.
| | - Priyadarshani Nadeeshika Samarawickrama
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China.
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China.
| | - Li Gui
- Department of Endocrinology, the Second Affiliated Hospital of Dali University (the Third People's Hospital of Yunnan Province), Kunming, Yunnan 650011, China.
| | - Yuan Ma
- Department of Orthopedics, the Third People’s Hospital of Yunnan Province, Kunming, Yunnan 650011, China.
| | - Mei Cao
- Department of Endocrinology, the Second Affiliated Hospital of Dali University (the Third People's Hospital of Yunnan Province), Kunming, Yunnan 650011, China.
| | - Hong Zhu
- Department of Endocrinology, the Second Affiliated Hospital of Dali University (the Third People's Hospital of Yunnan Province), Kunming, Yunnan 650011, China.
| | - Wei Li
- Department of Endocrinology, the Second Affiliated Hospital of Dali University (the Third People's Hospital of Yunnan Province), Kunming, Yunnan 650011, China.
| | - Honglin Yang
- Department of Orthopedics, the Third People’s Hospital of Yunnan Province, Kunming, Yunnan 650011, China.
| | - Kecheng Li
- Department of Orthopedics, the Third People’s Hospital of Yunnan Province, Kunming, Yunnan 650011, China.
| | - Yang Yang
- Department of Biochemistry & Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229, USA.
| | - Enfang Zhu
- Department of Endocrinology, the Second Affiliated Hospital of Dali University (the Third People's Hospital of Yunnan Province), Kunming, Yunnan 650011, China.
| | - Wen Li
- Department of Endocrinology, the Second Affiliated Hospital of Dali University (the Third People's Hospital of Yunnan Province), Kunming, Yunnan 650011, China.
| | - Yonghan He
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China.
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China.
| |
Collapse
|
12
|
Rad AN, Grillari J. Current senolytics: Mode of action, efficacy and limitations, and their future. Mech Ageing Dev 2024; 217:111888. [PMID: 38040344 DOI: 10.1016/j.mad.2023.111888] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/11/2023] [Accepted: 11/21/2023] [Indexed: 12/03/2023]
Abstract
Senescence is a cellular state characterized by its near-permanent halted cell cycle and distinct secretory phenotype. Although senescent cells have a variety of beneficial physiological functions, progressive accumulation of these cells due to aging or other conditions has been widely shown to provoke deleterious effects on the normal functioning of the same or higher-level biological organizations. Recently, erasing senescent cells in vivo, using senolytics, could ameliorate diseases identified with an elevated number of senescent cells. Since then, researchers have struggled to develop new senolytics each with different selectivity and potency. In this review, we have gathered and classified the proposed senolytics and discussed their mechanisms of action. Moreover, we highlight the heterogeneity of senolytics regarding their effect sizes, and cell type specificity as well as comment on the exploited strategies to improve these features. Finally, we suggest some prospective routes for the novel methods for ablation of senescent cells.
Collapse
Affiliation(s)
- Amirhossein Nayeri Rad
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, P.O. Box 71468-64685, Shiraz, Iran.
| | - Johannes Grillari
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Donaueschingenstraße 13, 1200 Vienna, Austria; Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria; Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences Vienna, Muthgasse 18, 1190 Vienna, Austria.
| |
Collapse
|
13
|
Gomez LS, Jurk D. Unlocking the Potential of Senolytic Compounds: Advancements, Opportunities, and Challenges in Ageing-Related Research. Subcell Biochem 2024; 107:91-116. [PMID: 39693021 DOI: 10.1007/978-3-031-66768-8_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Cellular senescence is recognised as a contributor to the ageing process and the development of multiple age-related conditions. Researchers have launched efforts to identify compounds capable to selectively kill senescent cells, known as senolytics, without affecting non senescent cells. As of now, over 40 compounds have demonstrated senolytic properties, offering promising prospects for reversing or ameliorating age-related conditions in preclinical studies.This chapter presents the most recent developments in senolytic drug research, encompassing investigations spanning basic science, preclinical trials, and clinical studies. While many of these investigations have generated encouraging results in the realm of age-related interventions, this chapter also addresses potential challenges and pitfalls.
Collapse
Affiliation(s)
- Lilian Sales Gomez
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Diana Jurk
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA.
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
14
|
Power H, Valtchev P, Dehghani F, Schindeler A. Strategies for senolytic drug discovery. Aging Cell 2023; 22:e13948. [PMID: 37548098 PMCID: PMC10577556 DOI: 10.1111/acel.13948] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/14/2023] [Accepted: 07/14/2023] [Indexed: 08/08/2023] Open
Abstract
Senolytics are a category of drugs that reduce the impact of cellular senescence, an effect associated with a range of chronic and age-related diseases. Since the discovery of the first senolytics in 2015, the number of known senolytic agents has grown dramatically. This review discusses the broad categories of known senolytics-kinase inhibitors, Bcl-2 family protein inhibitors, naturally occurring polyphenols, heat shock protein inhibitors, BET family protein inhibitors, P53 stabilizers, repurposed anti-cancer drugs, cardiac steroids, PPAR-alpha agonists, and antibiotics. The approaches used to screen for new senolytics are articulated including a range of methods to induce senescence, different target cell types, various senolytic assays, and markers. The choice of methods can greatly influence the outcomes of a screen, with high-quality screens featuring robust systems, adequate controls, and extensive validation in alternate assays. Recent advances in single-cell analysis and computational methods for senolytic identification are also discussed. There is significant potential for further drug discovery, but this will require additional research into drug targets and mechanisms of actions and their subsequent rigorous evaluation in pre-clinical models and human trials.
Collapse
Affiliation(s)
- Helen Power
- Faculty of Engineering, School of Chemical and Biomolecular EngineeringThe University of SydneySydneyNew South WalesAustralia
- Centre for Advanced Food EngineeringThe University of SydneySydneyNew South WalesAustralia
- Bioengineering and Molecular Medicine LaboratoryThe Children's Hospital at Westmead and The Westmead Institute for Medical ResearchWestmeadNew South WalesAustralia
| | - Peter Valtchev
- Faculty of Engineering, School of Chemical and Biomolecular EngineeringThe University of SydneySydneyNew South WalesAustralia
- Centre for Advanced Food EngineeringThe University of SydneySydneyNew South WalesAustralia
| | - Fariba Dehghani
- Faculty of Engineering, School of Chemical and Biomolecular EngineeringThe University of SydneySydneyNew South WalesAustralia
- Centre for Advanced Food EngineeringThe University of SydneySydneyNew South WalesAustralia
| | - Aaron Schindeler
- Faculty of Engineering, School of Chemical and Biomolecular EngineeringThe University of SydneySydneyNew South WalesAustralia
- Centre for Advanced Food EngineeringThe University of SydneySydneyNew South WalesAustralia
- Bioengineering and Molecular Medicine LaboratoryThe Children's Hospital at Westmead and The Westmead Institute for Medical ResearchWestmeadNew South WalesAustralia
| |
Collapse
|
15
|
Bautista-Crescencio C, Casimiro-Ramos A, Fragoso-Vázquez MJ, Correa-Basurto J, Olano C, Hernández-Rodríguez C, Villa-Tanaca L. Streptomyces albidoflavus Q antifungal metabolites inhibit the ergosterol biosynthesis pathway and yeast growth in fluconazole-resistant Candida glabrata: phylogenomic and metabolomic analyses. Microbiol Spectr 2023; 11:e0127123. [PMID: 37754674 PMCID: PMC10581079 DOI: 10.1128/spectrum.01271-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 08/08/2023] [Indexed: 09/28/2023] Open
Abstract
There is an urgent need to develop new antifungals due to the increasing prevalence of multidrug-resistant fungal infections and the recent emergence of COVID-19-associated candidiasis. A good study model for evaluating new antifungal compounds is Candida glabrata, an opportunistic fungal pathogen with intrinsic resistance to azoles (the most common clinical drugs for treating fungal infections). The aim of the current contribution was to conduct in vitro tests of antifungal metabolites produced by the bacteria Streptomyces albidoflavus Q, identify their molecular structures, and utilize several techniques to provide evidence of their therapeutic target. S. albidoflavus was isolated from maize rhizospheric soil in Mexico and identified by phylogenomic analysis using a 92-gene core. Of the 66 metabolites identified in S. albidoflavus Q by a liquid chromatography-high resolution mass spectrometry (LC-HRMS) metabolomic analysis of the lyophilized supernatant, six were selected by the Way2drug server based on their in silico binding to the likely target, 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMGR, the key enzyme in the ergosterol biosynthesis pathway). Molecular modeling studies show a relatively high binding affinity for the CgHMGR enzyme by two secondary metabolites: isogingerenone B (diaryl heptanoid) and notoginsenoside J (polycyclic triterpene). These secondary metabolites were able to inhibit ergosterol synthesis and affect yeast viability in vitro. They also caused alterations in the ultrastructure of the yeast cytoplasmic membrane, as evidenced by transmission electron microscopy. The putative target of isogingerenone B and notoginsenoside J is distinct from that of azole drugs (the most common clinical antifungals). The target for the latter is the lanosterol 14 alpha-demethylase enzyme (Erg11). IMPORTANCE Multidrug resistance has emerged among yeasts of the genus Candida, posing a severe threat to global health. The problem has been exacerbated by the pandemic associated with COVID-19, during which resistant strains of Candida auris and Candida glabrata have been isolated from patients infected with the SARS-CoV-2 virus. To confront this challenge, the World Health Organization has invoked scientists to search for new antifungals with alternative molecular targets. This study identified 66 metabolites produced by the bacteria Streptomyces albidoflavus Q, 6 of which had promising properties for potential antifungal activity. The metabolites were tested in vitro as inhibitors of ergosterol synthesis and C. glabrata growth, with positive results. They were also found to damage the cytoplasmic membrane of the fungus. The corresponding molecular structures and their probable therapeutic target were established. The target is apparently distinct from that of azole drugs.
Collapse
Affiliation(s)
- Celia Bautista-Crescencio
- Departamento de Microbiología, Laboratorio de Biología Molecular de Bacterias y Levaduras, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. Prolongación de Carpio y Plan de Ayala, Casco de Santo Tomás, Ciudad de México, Ciudad de México, México
| | - Arturo Casimiro-Ramos
- Departamento de Microbiología, Laboratorio de Biología Molecular de Bacterias y Levaduras, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. Prolongación de Carpio y Plan de Ayala, Casco de Santo Tomás, Ciudad de México, Ciudad de México, México
| | - M. Jonathan Fragoso-Vázquez
- Departamento de Química Orgánica, Escuela Nacional de Ciencias, Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala, Col. Casco de Santo Tomás, Ciudad de México, México
| | - José Correa-Basurto
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica (Laboratory for the Design and Development of New Drugs and Biotechnological Innovation), SEPI-Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Salvador Díaz Mirón, Casco de Santo Tomás, Ciudad de México, México
| | - Carlos Olano
- Departamento de Biología Funcional, Universidad de Oviedo, Oviedo, Spain
| | - César Hernández-Rodríguez
- Departamento de Microbiología, Laboratorio de Biología Molecular de Bacterias y Levaduras, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. Prolongación de Carpio y Plan de Ayala, Casco de Santo Tomás, Ciudad de México, Ciudad de México, México
| | - Lourdes Villa-Tanaca
- Departamento de Microbiología, Laboratorio de Biología Molecular de Bacterias y Levaduras, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. Prolongación de Carpio y Plan de Ayala, Casco de Santo Tomás, Ciudad de México, Ciudad de México, México
| |
Collapse
|
16
|
Lucas V, Cavadas C, Aveleira CA. Cellular Senescence: From Mechanisms to Current Biomarkers and Senotherapies. Pharmacol Rev 2023; 75:675-713. [PMID: 36732079 DOI: 10.1124/pharmrev.122.000622] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/29/2022] [Accepted: 01/17/2023] [Indexed: 02/04/2023] Open
Abstract
An increase in life expectancy in developed countries has led to a surge of chronic aging-related diseases. In the last few decades, several studies have provided evidence of the prominent role of cellular senescence in many of these pathologies. Key traits of senescent cells include cell cycle arrest, apoptosis resistance, and secretome shift to senescence-associated secretory phenotype resulting in increased secretion of various intermediate bioactive factors important for senescence pathophysiology. However, cellular senescence is a highly phenotypically heterogeneous process, hindering the discovery of totally specific and accurate biomarkers. Also, strategies to prevent the pathologic effect of senescent cell accumulation during aging by impairing senescence onset or promoting senescent cell clearance have shown great potential during in vivo studies, and some are already in early stages of clinical translation. The adaptability of these senotherapeutic approaches to human application has been questioned due to the lack of proper senescence targeting and senescence involvement in important physiologic functions. In this review, we explore the heterogeneous phenotype of senescent cells and its influence on the expression of biomarkers currently used for senescence detection. We also discuss the current evidence regarding the efficacy, reliability, development stage, and potential for human applicability of the main existing senotherapeutic strategies. SIGNIFICANCE STATEMENT: This paper is an extensive review of what is currently known about the complex process of cellular senescence and explores its most defining features. The main body of the discussion focuses on how the multifeature fluctuation of the senescence phenotype and the physiological role of cellular senescence have both caused a limitation in the search for truly reliable senescence biomarkers and the progression in the development of senotherapies.
Collapse
Affiliation(s)
- Vasco Lucas
- Centre for Neuroscience and Cell Biology (CNC) (V.L., C.C., C.A.A.), Centre for Innovation in Biomedicine and Biotechnology (CIBB) (V.L., C.C., C.A.A.), Faculty of Pharmacy (C.C.), and Multidisciplinary Institute of Ageing (MIA-Portugal) (C.A.A.), University of Coimbra, Coimbra, Portugal
| | - Cláudia Cavadas
- Centre for Neuroscience and Cell Biology (CNC) (V.L., C.C., C.A.A.), Centre for Innovation in Biomedicine and Biotechnology (CIBB) (V.L., C.C., C.A.A.), Faculty of Pharmacy (C.C.), and Multidisciplinary Institute of Ageing (MIA-Portugal) (C.A.A.), University of Coimbra, Coimbra, Portugal
| | - Célia Alexandra Aveleira
- Centre for Neuroscience and Cell Biology (CNC) (V.L., C.C., C.A.A.), Centre for Innovation in Biomedicine and Biotechnology (CIBB) (V.L., C.C., C.A.A.), Faculty of Pharmacy (C.C.), and Multidisciplinary Institute of Ageing (MIA-Portugal) (C.A.A.), University of Coimbra, Coimbra, Portugal
| |
Collapse
|
17
|
Nehlin JO. Senolytic and senomorphic interventions to defy senescence-associated mitochondrial dysfunction. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 136:217-247. [PMID: 37437979 DOI: 10.1016/bs.apcsb.2023.02.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
The accumulation of senescent cells in the aging individual is associated with an increase in the occurrence of age-associated pathologies that contribute to poor health, frailty, and mortality. The number and type of senescent cells is viewed as a contributor to the body's senescence burden. Cellular models of senescence are based on induction of senescence in cultured cells in the laboratory. One type of senescence is triggered by mitochondrial dysfunction. There are several indications that mitochondria defects contribute to body aging. Senotherapeutics, targeting senescent cells, have been shown to induce their lysis by means of senolytics, or repress expression of their secretome, by means of senomorphics, senostatics or gerosuppressors. An outline of the mechanism of action of various senotherapeutics targeting mitochondria and senescence-associated mitochondria dysfunction will be here addressed. The combination of geroprotective interventions together with senotherapeutics will help to strengthen mitochondrial energy metabolism, biogenesis and turnover, and lengthen the mitochondria healthspan, minimizing one of several molecular pathways contributing to the aging phenotype.
Collapse
Affiliation(s)
- Jan O Nehlin
- Department of Clinical Research, Copenhagen University Hospital, Amager and Hvidovre, Hvidovre, Denmark.
| |
Collapse
|
18
|
Matacchione G, Borgonetti V, Ramini D, Silvestrini A, Ojetti M, Galeotti N, Olivieri F. Zingiber officinale Roscoe Rhizome Extract Exerts Senomorphic and Anti-Inflammatory Activities on Human Endothelial Cells. BIOLOGY 2023; 12:biology12030438. [PMID: 36979130 PMCID: PMC10045365 DOI: 10.3390/biology12030438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/01/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023]
Abstract
Aging is related to a low-grade and sterile inflammation called inflammaging, recognized as the main risk factor for age-related disease (ARD) development. Inflammaging is fostered by the repeated activation of immune cells, as well as by the accumulation of senescent cells. Recently, a number of natural compounds have gained attention to be tested as anti-aging therapies, based on their anti-inflammatory activity and/or ability to reduce the pro-inflammatory secretome of senescent cells (senomorphyc activity). Here, we investigated the anti-inflammatory and senomorphic properties of an Asian-native Zingiber officinale Roscoe extract (ZOE), commonly consumed as a food spice and herbal medicine. We employed two models of primary endothelial cells (HUVECs), such as the replicative-senescence and LPS-induced response, to investigate the anti-inflammatory/senomorphic effect of ZOE, and one cellular model of neuroinflammation, i.e., immortalized murine microglial cells (BV2). First, we found that the ZOE treatment induced the inhibition of NF-kB activation in BV2 cells. Among the constituents of ZOE, we showed that the terpenoid-enriched fraction (ZTE) was the component able to counteract the phosphorylation of NF-kB(p65), while 6-gingerol (GIN) and 6-shogaol (SHO) did not produce any significant effect. Further, we observed that the treatment with 10 µg/mL of ZOE exerted anti-inflammatory activity on LPS-stimulated young (y)HUVEC and senomorphyc activity on replicative senescent (s)HUVEC, significantly reducing the expression levels of IL-1β, TNF -α, IL-8, MCP-1, and ICAM-1. Moreover, the ZTE treatment was able to significantly reduce the IL-8 levels secreted in the medium of both LPS-stimulated yHUVEC and sHUVEC. Overall, our data suggest a potential protective role of ZOE on neuroinflammation and endothelial inflammation/activation, thus suggesting its potential relevance in delaying/postponing ARD development and progression, characterized by endothelial dysfunction.
Collapse
Affiliation(s)
- Giulia Matacchione
- Department of Clinical and Molecular Sciences, Università Politecnica Delle Marche, Via Tronto 10/A, 60126 Ancona, Italy
- Correspondence: ; Tel.: +071-2206243
| | - Vittoria Borgonetti
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Viale G. Pieraccini 6, 50139 Florence, Italy
| | - Deborah Ramini
- Clinic of Laboratory and Precision Medicine, IRCCS INRCA, via Birrarelli 8, 60121 Ancona, Italy
| | - Andrea Silvestrini
- Department of Clinical and Molecular Sciences, Università Politecnica Delle Marche, Via Tronto 10/A, 60126 Ancona, Italy
| | - Marta Ojetti
- Department of Clinical and Molecular Sciences, Università Politecnica Delle Marche, Via Tronto 10/A, 60126 Ancona, Italy
| | - Nicoletta Galeotti
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Viale G. Pieraccini 6, 50139 Florence, Italy
| | - Fabiola Olivieri
- Department of Clinical and Molecular Sciences, Università Politecnica Delle Marche, Via Tronto 10/A, 60126 Ancona, Italy
- Clinic of Laboratory and Precision Medicine, IRCCS INRCA, via Birrarelli 8, 60121 Ancona, Italy
| |
Collapse
|
19
|
Pratyusha DS, Sarada DVL. MYB transcription factors-master regulators of phenylpropanoid biosynthesis and diverse developmental and stress responses. PLANT CELL REPORTS 2022; 41:2245-2260. [PMID: 36171500 DOI: 10.1007/s00299-022-02927-1] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Phenylpropanoids, the largest class of natural products including flavonoids, anthocyanins, monolignols and tannins perform multiple functions ranging from photosynthesis, nutrient uptake, regulating growth, cell division, maintenance of redox homeostasis and biotic and abiotic stress responses. Being sedentary life forms, plants possess several regulatory modules that increase their performance in varying environments by facilitating activation of several signaling cascades upon perception of developmental and stress signals. Of the various regulatory modules, those involving MYB transcription factors are one of the extensive groups involved in regulating the phenylpropanoid metabolic enzymes in addition to other genes. R2R3 MYB transcription factors are a class of plant-specific transcription factors that regulate the expression of structural genes involved in anthocyanin, flavonoid and monolignol biosynthesis which are indispensable to several developmental pathways and stress responses. The aim of this review is to present the regulation of the phenylpropanoid pathway by MYB transcription factors via Phospholipase D/phosphatidic acid signaling, downstream activation of the structural genes, leading to developmental and/or stress responses. Specific MYB transcription factors inducing or repressing specific structural genes of anthocyanin, flavonoid and lignin biosynthetic pathways are discussed. Further the roles of MYB in activating biotic and abiotic stress responses are delineated. While several articles have reported the role of MYB's in stress responses, they are restricted to two or three specific MYB factors. This review is a consolidation of the diverse roles of different MYB transcription factors involved both in induction and repression of anthocyanin, flavonoid, and lignin biosynthesis.
Collapse
Affiliation(s)
- Durvasula Sumana Pratyusha
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603 203, India
| | - Dronamraju V L Sarada
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603 203, India.
| |
Collapse
|
20
|
Chen Y, Zhu S, Chen Z, Liu Y, Pei C, Huang H, Hou S, Ning W, Liang J. Gingerenone A Alleviates Ferroptosis in Secondary Liver Injury in Colitis Mice via Activating Nrf2-Gpx4 Signaling Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:12525-12534. [PMID: 36135333 DOI: 10.1021/acs.jafc.2c05262] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Patients with ulcerative colitis (UC) have been found to be frequently associated with secondary liver injury (SLI). In this study, we investigated the protective effect of GA on dextran sodium sulfate (DSS)-induced SLI in mice and its mechanism. The SLI was established by adding 4% DSS in the drinking water of mice, and the effects of GA (5, 20 mg/kg, p.o., once a day for 7 days) in hepatic tissues were analyzed. HepG2 cells were induced by lipopolysaccharide (LPS) to detect the effect of GA on ferroptosis and the underlying mechanism. Pathological damage was determined by H&E. Liver parameters (AST and ALT), antioxidant enzyme activities (MDA and SOD), and the level of Fe2+ in the liver were detected by kits. Cytokine levels (TNF-α, IL-1β, and IL-6) and Gpx4 activity in the liver were detected by ELISA. Finally, the activation of nuclear factor erythroid 2-like 2 (Nrf2) was detected to explore the mechanism. The results indicated that GA significantly attenuated DSS-induced hepatic pathological damage, liver parameters, and cytokine levels and increased the antioxidant enzyme activities. Moreover, GA attenuated ferroptosis in DSS-induced liver injury and upregulated Gpx4 expression in DSS-induced mice. Mechanistic experiments revealed that GA activated Nrf2 in mice. Taken together, this study demonstrates that GA can alleviate ferroptosis in SLI in DSS-induced colitis mice, and its protective effects are associated with activating the Nrf2-Gpx4 signaling pathway.
Collapse
Affiliation(s)
- Yonger Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006 Guangdong, P. R. China
| | - Shumin Zhu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006 Guangdong, P. R. China
| | - Zongwen Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006 Guangdong, P. R. China
| | - Ying Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006 Guangdong, P. R. China
| | - Chaoying Pei
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006 Guangdong, P. R. China
| | - Haiyang Huang
- Dongguan Hospital of Traditional Chinese Medicine, Dongguan, 523000 Guangdong, P. R. China
| | - Shaozhen Hou
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006 Guangdong, P. R. China
| | - Weimin Ning
- Dongguan Hospital of Traditional Chinese Medicine, Dongguan, 523000 Guangdong, P. R. China
| | - Jian Liang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006 Guangdong, P. R. China
| |
Collapse
|
21
|
Clayton ZS, Craighead DH, Darvish S, Coppock M, Ludwig KR, Brunt VE, Seals DR, Rossman MJ. Promoting healthy cardiovascular aging: emerging topics. THE JOURNAL OF CARDIOVASCULAR AGING 2022; 2:43. [PMID: 36337728 PMCID: PMC9632540 DOI: 10.20517/jca.2022.27] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The development of age-related cardiovascular (CV) dysfunction increases the risk of CV disease as well as other chronic age-associated disorders, including chronic kidney disease, and Alzheimer's disease and related dementias. Major manifestations of age-associated CV dysfunction that increase disease risk are vascular dysfunction, primarily vascular endothelial dysfunction and arterial stiffening, and elevated systolic blood pressure. Declines in nitric oxide bioavailability secondary to increased oxidative stress and inflammation are established mechanisms of CV dysfunction with aging. Moreover, fundamental mechanisms of aging, termed the "hallmarks of aging" extend to the CV system and, as such, may be considered "hallmarks of CV aging". These mechanisms represent viable therapeutic targets for treating CV dysfunction with aging. Healthy lifestyle behaviors, such as regular aerobic exercise and certain dietary patterns, are considered "first-line" strategies to prevent and/or treat age-associated CV dysfunction. Despite the well-established benefits of these strategies, many older adults do not meet the recommended guidelines for exercise or consume a healthy diet. Therefore, it is important to establish alternative and/or complementary evidence-based approaches to prevent or reverse age-related CV dysfunction. Targeting fundamental mechanisms of CV aging with interventions such as time-efficient exercise training, food-derived molecules, termed nutraceuticals, or select synthetic pharmacological agents represents a promising approach. In the present review, we will highlight emerging topics in the field of healthy CV aging with a specific focus on how exercise, nutrition/dietary patterns, nutraceuticals and select synthetic pharmacological compounds may promote healthy CV aging, in part, by targeting the hallmarks of CV aging.
Collapse
Affiliation(s)
- Zachary S Clayton
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Daniel H Craighead
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Sanna Darvish
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - McKinley Coppock
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Katelyn R Ludwig
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Vienna E Brunt
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Douglas R Seals
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Matthew J Rossman
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA
| |
Collapse
|
22
|
V Ganesh G, Ganesan K, Xu B, Ramkumar KM. Nrf2 driven macrophage responses in diverse pathophysiological contexts: Disparate pieces from a shared molecular puzzle. Biofactors 2022; 48:795-812. [PMID: 35618963 DOI: 10.1002/biof.1867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 05/03/2022] [Indexed: 11/10/2022]
Abstract
The wide anatomical distribution of macrophages and their vast array of functions match various polarization states and their involvement in homeostasis and disease. The confluence of different cellular signaling networks, including direct involvement in inflammation, at the doorstep of the transcription factor Nuclear Factor- erythroid (NF-E2) p45-related factor 2 (Nrf2) activation raises the importance of deciphering the molecular circuitry at the background of multiple-discrete and antagonistic yet flexible and contextual pathways. While we primarily focus on wound healing and repair mechanisms that are affected in diabetic foot ulcers (DFUs), we strive to explore the striking similarities and differences in molecular events including inflammation, angiogenesis, and fibrosis during tissue injury and wound persistence that accumulates pro-inflammatory senescent macrophages, as a means to identify possible targets or cellular mediators to lessen DFU disease burden. In addition, the role of iron in the modulation of Nrf2 response in macrophages is crucial and reviewed here. Targeted approaches, unlike conventional treatments, in DFU management will require the review and re-assessment of mediators with relevance to other pathological conditions.
Collapse
Affiliation(s)
- Goutham V Ganesh
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science & Technology, Kattankulathur, Tamil Nadu, India
| | - Kumar Ganesan
- School of Chinese Medicine, LKS Faculty of Medicine, University of Hong Kong, Hong Kong
| | - Baojun Xu
- Food Science and Technology Programme, BNU-HKBU United International College, Zhuhai, Guangdong, China
| | - Kunka Mohanram Ramkumar
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science & Technology, Kattankulathur, Tamil Nadu, India
| |
Collapse
|