1
|
Agrifoglio O, Görs S, Sciascia Q, Li Z, Albrecht E, Achilles S, Statz M, Bastian M, Lindner T, Gauß K, Rohde S, Rischmüller K, Berlin P, Lamprecht G, Jaster R, Metges C, Ehlers L. Changes in Protein Metabolism and Early Development of Sarcopenia in Mice With Cholestatic Liver Disease. J Cachexia Sarcopenia Muscle 2025; 16:e13737. [PMID: 39971588 PMCID: PMC11839266 DOI: 10.1002/jcsm.13737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 10/02/2024] [Accepted: 01/12/2025] [Indexed: 02/21/2025] Open
Abstract
BACKGROUND Sarcopenia is a frequent complication of liver cirrhosis. Here, we chose a mouse model of cholestatic liver disease (CLD) to gain mechanistic insights into the development of sarcopenia from the earliest stages of chronic liver injury. Particular attention was paid to protein metabolism, metabolite profiles, and mediators of CLD-induced muscle wasting. METHODS Male C57BL/6 J mice underwent bile duct ligation (BDL), sham surgery, or served as untreated controls. The observation phase lasted from the preoperative stage to postoperative day 14. Metabolic cage experiments were performed to determine the nitrogen balance (N-BAL), nitrogen metabolite profiles, and total energy expenditure (TEE) using doubly labelled water. The fractional protein synthesis rate (FPSR) was assessed using 2H5-ring-phenylalanine. Plasma concentrations of inflammatory markers, metabolites, and enzymes associated with liver damage were investigated. Muscle strength and volume were assessed using a grip strength meter and MRI, respectively. Gene expression was analysed by real-time PCR. RESULTS BDL caused CLD with necroses and inflammation, increased bilirubin (p < 0.0001) and conjugated bile acids (p < 0.05), and reduced food intake (p < 0.0001) and body weight (p < 0.0001; each vs. sham). Compared to controls, BDL mice showed lower N-BAL (p < 0.05), reduced TEE (p < 0.01), and lower FPSR in the liver (p < 0.05) and quadriceps muscle (p < 0.001). Arginine was the only plasma amino acid that was diminished after BDL compared to controls and sham treatment (p < 0.0001). Reduced muscle strength was observed as early as d3/d4 after BDL (p < 0.001; vs. sham), while muscle volume decreased from d6 to d13 (p < 0.05). In quadriceps muscle, a lower nuclei-to-fibre ratio (p < 0.001) and elevated 1-methyl-histidine (1-MH) (p < 0.001) were detected, whereas 3-MH was increased in the urine of BDL mice (p < 0.001; each vs. sham). The quadriceps muscle of BDL mice contained higher mRNA levels of atrophy-associated genes (Trim63: p < 0.0001, Fbxo32: p < 0.01) and Mstn (p < 0.05), but lower levels of genes involved in mitochondrial function (Cpt-1b: p < 0.05, Pgc-1α: p < 0.01; each vs. sham). In the plasma of BDL mice, elevated protein levels of TNF receptor-1 (p < 0.0001) and HGF-1 (p < 0.05) were observed, while myostatin was diminished (p < 0.05; each vs. sham). CONCLUSIONS Sarcopenia occurs early in CLD and is a multicausal process. Relevant pathophysiologies include reduced protein synthesis, degradation of muscle proteins, arginine deficiency, a systemic pro-inflammatory and catabolic state, and muscle toxicity of bile acids. Consequently, the treatment of sarcopenia should focus both on eliminating the cause of the cholestasis and on symptomatic measures such as anti-inflammatory treatment, lowering the bile acid level, and targeted compensation of deficiencies.
Collapse
Affiliation(s)
- Ottavia Agrifoglio
- Nutrition and MetabolismResearch Institute for Farm Animal Biology (FBN)DummerstorfGermany
- Department of Medicine II, Division of Gastroenterology and EndocrinologyRostock University Medical CenterRostockGermany
| | - Solvig Görs
- Nutrition and MetabolismResearch Institute for Farm Animal Biology (FBN)DummerstorfGermany
| | - Quentin Sciascia
- Nutrition and MetabolismResearch Institute for Farm Animal Biology (FBN)DummerstorfGermany
| | - Zeyang Li
- Nutrition and MetabolismResearch Institute for Farm Animal Biology (FBN)DummerstorfGermany
| | - Elke Albrecht
- Nutrition and MetabolismResearch Institute for Farm Animal Biology (FBN)DummerstorfGermany
| | - Sophie Achilles
- Nutrition and MetabolismResearch Institute for Farm Animal Biology (FBN)DummerstorfGermany
- Department of Medicine II, Division of Gastroenterology and EndocrinologyRostock University Medical CenterRostockGermany
| | - Meike Statz
- Nutrition and MetabolismResearch Institute for Farm Animal Biology (FBN)DummerstorfGermany
| | - Manuela Bastian
- Institute of Clinical Chemistry and Laboratory MedicineRostock University Medical CenterRostockGermany
| | - Tobias Lindner
- Core Facility Multimodal Small Animal ImagingRostock University Medical CenterRostockGermany
| | - Karen Friederike Gauß
- Institute of Clinical Chemistry and Laboratory MedicineUniversity Medicine GreifswaldGreifswaldGermany
- University Institute of Clinical Chemistry and Laboratory MedicineUniversity OldenburgOldenburgGermany
| | - Sarah Rohde
- Department of Medicine II, Division of Gastroenterology and EndocrinologyRostock University Medical CenterRostockGermany
| | - Karen Rischmüller
- Department of Medicine II, Division of Gastroenterology and EndocrinologyRostock University Medical CenterRostockGermany
| | - Peggy Berlin
- Department of Medicine II, Division of Gastroenterology and EndocrinologyRostock University Medical CenterRostockGermany
| | - Georg Lamprecht
- Department of Medicine II, Division of Gastroenterology and EndocrinologyRostock University Medical CenterRostockGermany
| | - Robert Jaster
- Department of Medicine II, Division of Gastroenterology and EndocrinologyRostock University Medical CenterRostockGermany
| | - Cornelia C. Metges
- Nutrition and MetabolismResearch Institute for Farm Animal Biology (FBN)DummerstorfGermany
| | - Luise Ehlers
- Department of Medicine II, Division of Gastroenterology and EndocrinologyRostock University Medical CenterRostockGermany
| |
Collapse
|
2
|
Schregel J, Schulze Holthausen J, Sciascia QL, Görs S, Li Z, Tuchscherer A, Albrecht E, Zentek J, Metges CC. Acute and persistent effects of oral glutamine supplementation on growth, cellular proliferation, and tight junction protein transcript abundance in jejunal tissue of low and normal birthweight pre-weaning piglets. PLoS One 2024; 19:e0296427. [PMID: 38165864 PMCID: PMC10760696 DOI: 10.1371/journal.pone.0296427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 12/11/2023] [Indexed: 01/04/2024] Open
Abstract
Breeding for higher fertility has resulted in a higher number of low birthweight (LBW) piglets. It has been shown that LBW piglets grow slower than normal birthweight (NBW) littermates. Differences in growth performance have been associated with impaired small intestinal development. In suckling and weaning piglets, glutamine (Gln) supplementation has been associated with improved growth and intestinal development. This study was designed to examine the effects of oral Gln supplementation on growth and small intestinal parameters in LBW and NBW suckling piglets. At birth (day 0), a total of 72 LBW (1.10 ± 0.06 kg) and 72 NBW (1.51 ± 0.06) male piglets were selected. At day 1, litters were standardized to 12 piglets, and experimental piglets supplemented daily with either Gln (1 g/kg BW) or isonitrogenous amounts of Alanine (Ala) as control (1.22 g/kg BW) until day 12. Creep feed was offered from day 14 onward. Subgroups of piglets were euthanized at days 5, 12, and 26 for the analyses of jejunal morphometry, cellular proliferation, glutathione concentration and transcript abundance of tight junction proteins. From age day 11 to 21, Gln supplemented LBW (LBW-Gln) piglets were heavier than Ala supplemented LBW (LBW-Ala) littermates (P = 0.034), while NBW piglets were heavier until age day 26 compared to LBW littermates. Villus height was higher in LBW-Gln compared to LBW-Ala on age day 12 (P = 0.031). Sporadic differences among supplementation and birthweight groups were detected for jejunal cellular proliferation, cellular population and glutathione concentration, whereas age was the most dominant factor. These results show that Gln supplementation improved the growth of LBW piglets compared to LBW-Ala beyond the termination of Gln supplementation, but this was not associated with consistent effects on selected parameters of jejunal development.
Collapse
Affiliation(s)
- Johannes Schregel
- Research Institute for Farm Animal Biology (FBN), Institute of Nutritional Physiology, Dummerstorf, Germany
| | | | - Quentin L. Sciascia
- Research Institute for Farm Animal Biology (FBN), Institute of Nutritional Physiology, Dummerstorf, Germany
| | - Solvig Görs
- Research Institute for Farm Animal Biology (FBN), Institute of Nutritional Physiology, Dummerstorf, Germany
| | - Zeyang Li
- Research Institute for Farm Animal Biology (FBN), Institute of Nutritional Physiology, Dummerstorf, Germany
| | - Armin Tuchscherer
- Research Institute for Farm Animal Biology (FBN), Institute of Genetics and Biometry, Dummerstorf, Germany
| | - Elke Albrecht
- Institute of Muscle Biology and Growth, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Jürgen Zentek
- Department of Veterinary Medicine, Institute of Animal Nutrition, Freie Universität Berlin, Berlin, Germany
| | - Cornelia C. Metges
- Research Institute for Farm Animal Biology (FBN), Institute of Nutritional Physiology, Dummerstorf, Germany
| |
Collapse
|
3
|
Deng Y, Cheng H, Li J, Han H, Qi M, Wang N, Tan B, Li J, Wang J. Effects of glutamine, glutamate, and aspartate on intestinal barrier integrity and amino acid pool of the small intestine in piglets with normal or low energy diet. Front Vet Sci 2023; 10:1202369. [PMID: 37576837 PMCID: PMC10414990 DOI: 10.3389/fvets.2023.1202369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 07/03/2023] [Indexed: 08/15/2023] Open
Abstract
Aspartate (asp), glutamate (glu), and glutamine (gln) are the major energy fuels for the small intestine, and it had been indicated in our previous study that the mix of these three amino acid supplementations could maintain intestinal energy homeostasis. This study aimed to further investigate whether the treatment of gln, glu, and asp in low energy diet affects the intestinal barrier integrity and amino acid pool in weaning piglets. A total of 198 weaned piglets were assigned to 3 treatments: control (basal diet + 1.59% L-Ala); T1 (basal diet + 1% L-Gln + 0.5% L-Glu + 0.1% L-Asp); and T2 (low energy diet + 1% L-Gln + 0.5% L-Glu + 0.1% L-Asp). The blood, jejunum, and ileum were obtained on day 5 or on day 21 post-weaning, respectively. Our results showed that T1 and T2 treatments increased the abundances of occludin, claudin-1, and claudin-3 in the small intestine while decreasing the serum diamine oxidase (DAO) and D-lactate levels in weaning piglets. Meanwhile, T1 and T2 treatments significantly increased the positive rate of proliferating cell nuclear antigen (PCNA) of the small intestine, promoting intestinal cell proliferation. We also found that supplementation with glu, gln, and asp improved the serum amino acid pool and promoted ileal amino acid transporter gene expression of slc3a2, slc6a14, and slc7a11 in weaned piglets. Additionally, on day 21 post-weaning, T1 and T2 treatments stimulated the phosphorylation of the mTOR-S6K1-4EBP1 signaling pathway in the small intestine, which may implicate the enhanced protein synthesis rate. In summary, dietary supplementation of gln, glu, and asp was beneficial to the intestinal barrier function and amino acid pool regulation, while the benefits of gln, glu, and asp treatment might be diminished by the low-energy diet. The results demonstrated that the supplementation of gln, glu, and asp under low energy levels was preferentially supplied as the energy fuel to restore the gut barrier function in piglets on day 5 post-weaning. With the increase in age and intestinal maturation (on day 21 post-weaning), gln, glu, and asp supplementation could also show an effect on the regulation of the amino acid pool and protein synthesis.
Collapse
Affiliation(s)
- Yuankun Deng
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Hao Cheng
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Junyao Li
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Hui Han
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agroecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - Ming Qi
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agroecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - Nan Wang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Bi'e Tan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Jianjun Li
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agroecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - Jing Wang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| |
Collapse
|
4
|
Sciascia QL, Metges CC. Review: Methods and biomarkers to investigate intestinal function and health in pigs. Animal 2023; 17 Suppl 3:100860. [PMID: 37316380 DOI: 10.1016/j.animal.2023.100860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 06/16/2023] Open
Abstract
Society is becoming increasingly critical of animal husbandry due to its environmental impact and issues involving animal health and welfare including scientific experiments conducted on farm animals. This opens up two new fields of scientific research, the development of non- or minimally invasive (1) methods and techniques using faeces, urine, breath or saliva sampling to replace existing invasive models, and (2) biomarkers reflecting a disease or malfunction of an organ that may predict the future outcome of a pig's health, performance or sustainability. To date, there is a paucity of non- or minimally invasive methods and biomarkers investigating gastrointestinal function and health in pigs. This review describes recent literature pertaining to parameters that assess gastrointestinal functionality and health, tools currently used to investigate them, and the development or the potential to develop new non- and minimally invasive methods and/or biomarkers in pigs. Methods described within this review are those that characterise gastrointestinal mass such as the citrulline generation test, intestinal protein synthesis rate, first pass splanchnic nutrient uptake and techniques describing intestinal proliferation, barrier function and transit rate, and microbial composition and metabolism. An important consideration is gut health, and several molecules with the potential to act as biomarkers of compromised gut health in pigs are reported. Many of these methods to investigate gut functionality and health are considered 'gold standards' but are invasive. Thus, in pigs, there is a need to develop and validate non-invasive methods and biomarkers that meet the principles of the 3 R guidelines, which aim to reduce and refine animal experimentation and replace animals where possible.
Collapse
Affiliation(s)
- Q L Sciascia
- Research Institute for Farm Animal Biology, Institute of Nutritional Physiology "Oskar Kellner", Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - C C Metges
- Research Institute for Farm Animal Biology, Institute of Nutritional Physiology "Oskar Kellner", Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany.
| |
Collapse
|
5
|
Zhang X, Wu Y, Liu X, Lin X, Liu Y, Kang L, Ye H, Wang Z, Ma Y, Dai Z, Che D, Pi Y, Che L, Wang J, Han D. Pro-inflammatory Polarization of Macrophages Causes Intestinal Inflammation in Low-Birth-Weight Piglets and Mice. J Nutr 2023:S0022-3166(23)37559-X. [PMID: 37084872 DOI: 10.1016/j.tjnut.2023.04.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 04/23/2023] Open
Abstract
BACKGROUND Low-birth-weight (LBW) animals suffer from intestinal damage and inflammation in their early life. OBJECTIVES The aim of this study was to investigate the role of macrophages in intestinal inflammation in LBW piglets and mice. METHODS Major genes involved in intestinal barrier function such as claudin-1, zonula occludens-1 (ZO-1), occludin, and mucin 2 and inflammatory cytokines such as IL-1β, TNF-α, IL-10, and IL-13 were evaluated in 21-day-old, normal birth weight (NBW) and LBW piglets and mice. Macrophage markers such as CD16/32, CD163, and CD206 were also assessed by immunofluorescence and flow cytometry. Polarized and unpolarized macrophages were further transferred into NBW and LBW mice, followed by evaluation of intestinal permeability and inflammation. RESULTS Claudin-1 mRNA in LBW piglets as well as claudin-1, occludin, ZO-1 and mucin 2 mRNAs in LBW mice was significantly downregulated. IL-1β and TNF-α were significantly upregulated in LBW piglets (P < 0.05). LBW mice showed a reduced expression of IL-10 and IL-13 (P < 0.05), with a heightened IL-6 level (P < 0.01) in the jejunum. CD16, a marker for M1 macrophages, was significantly elevated in the jejunum of LBW piglets, whereas CD163, a marker for M2 macrophages, was significantly decreased (P < 0.05). Similarly, LBW mice had more CD11b+CD16/32+ M1 macrophages (P < 0.05) and fewer CD206+ M2 macrophages (P < 0.01) than NBW mice. Moreover, transfer of M1 macrophages exacerbated intestinal inflammation in LBW mice. Furthermore, two major glycolysis-associated genes, hexokinase 2 (HK2) and lactate dehydrogenase A (LDHA), were significantly upregulated in LBW piglets and mice (P < 0.05). CONCLUSIONS This study revealed for the first time that the intestinal macrophages are polarized towards a pro-inflammatory phenotype in LBW piglets and mice, contributing to intestinal inflammation. The findings of this study provide new options for the management of intestinal inflammation in LBW animals.
Collapse
Affiliation(s)
- Xiangyu Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yujun Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xiaoyi Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xu Lin
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yisi Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Luyuan Kang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Hao Ye
- Department of Animal Sciences, Wageningen University, Wageningen 6700 AH, Netherlands
| | - Zhenyu Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yingying Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Zhaolai Dai
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Dongsheng Che
- College of Animal Science and Technology, Jilin Agricultural University, Jilin, 130118, China
| | - Yu Pi
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Lianqiang Che
- Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Sichuan 611130, China
| | - Junjun Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Dandan Han
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
6
|
Identification and Quantification of Proliferating Cells in Skeletal Muscle of Glutamine Supplemented Low- and Normal-Birth-Weight Piglets. Cells 2023; 12:cells12040580. [PMID: 36831247 PMCID: PMC9953894 DOI: 10.3390/cells12040580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/17/2023] Open
Abstract
One way to improve the growth of low-birth-weight (LBW) piglets can be stimulation of the cellular development of muscle by optimized amino acid supply. In the current study, it was investigated how glutamine (Gln) supplementation affects muscle tissue of LBW and normal-birth-weight (NBW) piglets. Longissimus and semitendinosus muscles of 96 male piglets, which were supplemented with 1 g Gln/kg body weight or alanine, were collected at slaughter on day 5 or 26 post natum (dpn), one hour after injection with Bromodeoxyuridine (BrdU, 12 mg/kg). Immunohistochemistry was applied to detect proliferating, BrdU-positive cells in muscle cross-sections. Serial stainings with cell type specific antibodies enabled detection and subsequent quantification of proliferating satellite cells and identification of further proliferating cell types, e.g., preadipocytes and immune cells. The results indicated that satellite cells and macrophages comprise the largest fractions of proliferating cells in skeletal muscle of piglets early after birth. The Gln supplementation somewhat stimulated satellite cells. We observed differences between the two muscles, but no influence of the piglets' birth weight was observed. Thus, Gln supplements may not be considered as effective treatment in piglets with low birth weight for improvement of muscle growth.
Collapse
|
7
|
Schulze Holthausen J, Schregel J, Sciascia QL, Li Z, Tuchscherer A, Vahjen W, Metges CC, Zentek J. Effects of Oral Glutamine Supplementation, Birthweight and Age on Colonic Morphology and Microbiome Development in Male Suckling Piglets. Microorganisms 2022; 10:microorganisms10101899. [PMID: 36296176 PMCID: PMC9612066 DOI: 10.3390/microorganisms10101899] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/18/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
Mortality, impaired development and metabolic dysfunctions of suckling low-birthweight piglets may be influenced by modulating the intestinal microbiome through glutamine supplementation. Therefore, this study examined whether glutamine supplementation may affect the colonic development and microbiome composition of male low- and normal-birthweight piglets at 5 and 12 days of age. Suckling piglets were supplemented orally with glutamine or alanine. Colonic digesta samples were obtained for 16S rDNA sequencing, determination of bacterial metabolites and histomorphological tissue analyses. Glutamine-supplemented piglets had lower concentrations of cadaverine and spermidine in the colonic digesta (p < 0.05) and a higher number of CD3+ colonic intraepithelial lymphocytes compared to alanine-supplemented piglets (p < 0.05). Low-birthweight piglets were characterised by a lower relative abundance of Firmicutes, the genera Negativibacillus and Faecalibacterium and a higher abundance of Alistipes (p < 0.05). Concentrations of cadaverine and total biogenic amines (p < 0.05) and CD3+ intraepithelial lymphocytes (p < 0.05) were lower in low- compared with normal-birthweight piglets. In comparison to the factor age, glutamine supplementation and birthweight were associated with minor changes in microbial and histological characteristics of the colon, indicating that ontogenetic factors play a more important role in intestinal development.
Collapse
Affiliation(s)
- Johannes Schulze Holthausen
- Institute of Animal Nutrition, Department of Veterinary Medicine, Freie Universität Berlin, 14195 Berlin, Germany
- Correspondence: ; Tel.: +49-30-838-53984
| | - Johannes Schregel
- Research Institute for Farm Animal Biology (FBN), Institute of Nutritional Physiology, 18196 Dummerstorf, Germany
| | - Quentin L. Sciascia
- Research Institute for Farm Animal Biology (FBN), Institute of Nutritional Physiology, 18196 Dummerstorf, Germany
| | - Zeyang Li
- Research Institute for Farm Animal Biology (FBN), Institute of Nutritional Physiology, 18196 Dummerstorf, Germany
| | - Armin Tuchscherer
- Research Institute for Farm Animal Biology (FBN), Institute for Genetic and Biometry, 18196 Dummerstorf, Germany
| | - Wilfried Vahjen
- Institute of Animal Nutrition, Department of Veterinary Medicine, Freie Universität Berlin, 14195 Berlin, Germany
| | - Cornelia C. Metges
- Research Institute for Farm Animal Biology (FBN), Institute of Nutritional Physiology, 18196 Dummerstorf, Germany
| | - Jürgen Zentek
- Institute of Animal Nutrition, Department of Veterinary Medicine, Freie Universität Berlin, 14195 Berlin, Germany
| |
Collapse
|