1
|
Umar W, Vandenbussche C, Dinuccio E, Hongmin D, Amon B. Acidification of animal slurry in housing and during storage to reduce NH 3 and GHG emissions-recent advancements and future perspectives. WASTE MANAGEMENT (NEW YORK, N.Y.) 2025; 203:114856. [PMID: 40328145 DOI: 10.1016/j.wasman.2025.114856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 03/19/2025] [Accepted: 04/28/2025] [Indexed: 05/08/2025]
Abstract
Ammonia and greenhouse gas emissions are an environmental issue associated with animal manure management. Concrete, practical, and economic solutions are needed for farmers and other stakeholders around the globe to solve this issue. Decreasing slurry pH with the help of acids or other compounds is a well-documented technique to reduce ammonia and methane emissions from slurry. However, the effect of manure acidification on N2O emissions is still not clear. Recently, acidifying agents other than the previously used mineral acids have been tested such as e.g. organic acids, bio-waste materials, and microbial inoculations. However, the effectiveness of these acidifying agents in reducing the slurry pH and mitigation of gaseous emissions further needs to be reviewed. Also, the effectiveness of acidification in combination with other manure treatments such as composting, solid-liquid separation, and anaerobic digestion requires consideration in whole-system solutions. Here, recent studies have been compiled and reviewed to determine the applicability of acidification options for slurry management to deepen our understanding of the environmental impact of slurry acidification. The literature review revealed that temperature fluctuations have a substantial impact on the acidified slurry's performance during storage. A viable substitute for conventional mineral acids could be organic acids and biomaterials like sugars whey, and microbes. Furthermore, apple pulp, sugar beet molasses, and grass silage are examples of bio-waste products that exhibit promise as acidifying agents. However, to gain a better understanding of the viability and usefulness of the recently evaluated acidifying compounds, more research is still required.
Collapse
Affiliation(s)
- Wajid Umar
- Leibniz Institute for Agricultural Engineering and Bioeconomy, Max-Eyth-Allee 100, 14469 Potsdam, Germany.
| | - Chari Vandenbussche
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Burgemeester Van Gansberghelaan 92, 9820 Merelbeke, Flanders, Belgium.
| | - Elio Dinuccio
- Department of Agricultural, Forest and Food Sciences, University of Torino, Largo Braccini 2, 10095 Grugliasco, Italy.
| | - Dong Hongmin
- Institute of Environmental and Sustainable Development in Agriculture (IEDA), Chinese Academy of Agriculture Sciences (CAAS), 12 Zhongguancun South Street, Beijing 100081, PR China.
| | - Barbara Amon
- Leibniz Institute for Agricultural Engineering and Bioeconomy, Max-Eyth-Allee 100, 14469 Potsdam, Germany; Faculty of Civil Engineering, Architecture and Environmental Engineering, University of Zielona Gora, Licealna 9/9, 65-417 Zielona Gora, Lubusz, Poland.
| |
Collapse
|
2
|
Petersen SO, Ma C, Hilgert JE, Mjöfors K, Sefeedpari P, Amon B, Aarnink A, Francó B, Dragoni F, Groenestein K, Gyldenkærne S, Herrmann C, Hutchings NJ, Kristensen IS, Liu J, Olesen JE, Rodhe L. In-vitro method and model to estimate methane emissions from liquid manure management on pig and dairy farms in four countries. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 353:120233. [PMID: 38330838 DOI: 10.1016/j.jenvman.2024.120233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/10/2024]
Abstract
Methane (CH4) emissions from manure management on livestock farms are a key source of greenhouse gas emissions in some regions and for some production systems, and the opportunities for mitigation may be significant if emissions can be adequately documented. We investigated a method for estimating CH4 emissions from liquid manure (slurry) that is based on anaerobic incubation of slurry collected from commercial farms. Methane production rates were used to derive a parameter of the Arrhenius temperature response function, lnA', representing the CH4 production potential of the slurry at the time of sampling. Results were used for parameterization of an empirical model to estimate annual emissions with daily time steps, where CH4 emissions from individual sources (barns, outside storage tanks) can be calculated separately. A monitoring program was conducted in four countries, i.e., Denmark, Sweden, Germany and the Netherlands, during a 12-month period where slurry was sampled to represent barn and outside storage on finishing pig and dairy farms. Across the four countries, lnA' was higher in pig slurry compared to cattle slurry (p < 0.01), and higher in slurry from barns compared to outside storage (p < 0.01). In a separate evaluation of the incubation method, in-vitro CH4 production rates were comparable with in-situ emissions. The results indicate that lnA' in barns increases with slurry age, probably due to growth or adaptation of the methanogenic microbial community. Using lnA' values determined experimentally, empirical models with daily time steps were constructed for finishing pig and dairy farms and used for scenario analyses. Annual emissions from pig slurry were predicted to be 2.5 times higher than those from cattle slurry. Changing the frequency of slurry export from the barn on the model pig farm from 40 to 7 d intervals reduced total annual CH4 emissions by 46 %; this effect would be much less on cattle farms with natural ventilation. In a scenario with cattle slurry, the empirical model was compared with the current IPCC methodology. The seasonal dynamics were less pronounced, and annual CH4 emissions were lower than with the current methodology, which calls for further investigations. Country-specific models for individual animal categories and point sources could be a tool for assessing CH4 emissions and mitigation potentials at farm level.
Collapse
Affiliation(s)
| | - Chun Ma
- Department of Agroecology, Aarhus University, Tjele, Denmark
| | - Julio E Hilgert
- Leibniz Institute of Agricultural Engineering and Bioeconomy, Potsdam, Germany
| | | | - Paria Sefeedpari
- Wageningen Livestock Research, Wageningen University and Research, the Netherlands
| | - Barbara Amon
- Leibniz Institute of Agricultural Engineering and Bioeconomy, Potsdam, Germany; University of Zielona Góra, Faculty of Civil Engineering, Architecture and Environmental Engineering, Zielona Góra, Poland
| | - André Aarnink
- Wageningen Livestock Research, Wageningen University and Research, the Netherlands
| | | | - Federico Dragoni
- Leibniz Institute of Agricultural Engineering and Bioeconomy, Potsdam, Germany
| | - Karin Groenestein
- Wageningen Livestock Research, Wageningen University and Research, the Netherlands
| | | | - Christiane Herrmann
- Leibniz Institute of Agricultural Engineering and Bioeconomy, Potsdam, Germany
| | | | - Ib S Kristensen
- Department of Agroecology, Aarhus University, Tjele, Denmark
| | - Jing Liu
- BPC Instruments, Lund, Sweden; Lund University, Lund, Sweden
| | - Jørgen E Olesen
- Department of Agroecology, Aarhus University, Tjele, Denmark
| | - Lena Rodhe
- RISE Research Institutes of Sweden, Uppsala, Sweden
| |
Collapse
|
3
|
Yan X, Ying Y, Li K, Zhang Q, Wang K. A review of mitigation technologies and management strategies for greenhouse gas and air pollutant emissions in livestock production. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 352:120028. [PMID: 38219668 DOI: 10.1016/j.jenvman.2024.120028] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/06/2023] [Accepted: 01/02/2024] [Indexed: 01/16/2024]
Abstract
One of the key issues in manure management of livestock production is to reduce greenhouse gas (GHG) and air pollutant emissions, which lead to significant environmental footprint and human/animal health threats. This study provides a review of potentially efficacious technologies and management strategies that reduce GHG and air pollutant emissions during the three key stages of manure management in livestock production, i.e., animal housing, manure storage and treatment, and manure application. Several effective mitigation technologies and practices for each manure management stage are identified and analyzed in detail, including feeding formulation adjustment, frequent manure removal and air scrubber during animal housing stage; solid-liquid separation, manure covers for storage, acidification, anaerobic digestion and composting during manure storage and treatment stage; land application techniques at appropriate timing during manure application stage. The results indicated several promising approaches to reduce multiple gas emissions from the entire manure management. Removing manure 2-3 times per week or every day during animal housing stage is an effective and simple way to reduce GHG and air pollutant emissions. Acidification during manure storage and treatment stage can reduce ammonia and methane emissions by 33%-93% and 67%-87%, respectively and proper acid, such as lactic acid can also reduce nitrous oxide emission by about 90%. Shallow injection of manure for field application has the best performance in reducing ammonia emission by 62%-70% but increase nitrous oxide emission. The possible trade-off brings insight to the prioritization of targeted gas emissions for the researchers, stakeholders and policymakers, and also highlights the importance of assessing the mitigation technologies across the entire manure management chain. Implementing a combination of the management strategies needs comprehensive considerations about mitigation efficiency, technical feasibility, local regulations, climate condition, scalability and cost-effectiveness.
Collapse
Affiliation(s)
- Xiaojie Yan
- School of Optical, Mechanical and Electrical Engineering, Zhejiang Agriculture & Forestry University, Hangzhou, 311300, Zhejiang, China; College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang, China; Guangxi Yangxiang Co., Ltd., Gangnan District, Guigang, 537106, Guangxi, China
| | - Yongfei Ying
- Zhejiang Province Animal Husbandry Technology Promotion and Breeding Livestock and Poultry Monitoring Station, Zhejiang Province Department of Agriculture, 111 Yuyun Road, Hangzhou, 310020, Zhejiang, China
| | - Kunkun Li
- Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Qiang Zhang
- Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Kaiying Wang
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang, China.
| |
Collapse
|
4
|
Wang Y, Xu W, Cong Q, Wang Y, Wang W, Zhang W, Zhu Z, Dong H. Responses of CH 4, N 2O, and NH 3 emissions to different slurry pH values of 5.5-10.0: Characteristics and mechanisms. ENVIRONMENTAL RESEARCH 2023; 234:116613. [PMID: 37437873 DOI: 10.1016/j.envres.2023.116613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/29/2023] [Accepted: 07/09/2023] [Indexed: 07/14/2023]
Abstract
Animal slurry storage is a significant source of greenhouse gas (GHG) and ammonia (NH3) emissions. pH is a basic but key factor that could pose great influence on gas emissions, but the simultaneous evaluation of its influence on GHG and NH3 emissions and the understanding of its underlying mechanism are not enough. In this work, pH was adjusted between 5.5 and 10.0 by a step of 0.5 unit by adding lactic acid and sodium hydroxide (NaOH) properly and frequently to the stored slurry during a 43-day storage period. The cumulative NH3 emissions were linearly correlated with the slurry pH, with R2 being 0.982. Maintaining the slurry pH at 5.5-6.0 could reduce NH3 emissions by 69.4%-85.1% compared with the non-treated group (CK). The pH ranges for maximum methane (CH4) and nitrous oxide (N2O) emissions were 7.5-8.5 and 6.5-8.5, respectively, and the slurry under pH 7.5-8.5 showed the highest GHG emissions. Acidification to pH 5.5 helped reduce the CH4, N2O, and total GHG emissions by 98.0%, 29.3%, and 81.7%, respectively; while alkalinization to pH 10.0 helped achieve the mitigation effects of 74.1%, 24.9%, and 30.6%, respectively. The Pearson's correlation factor between CH4 and the gene copy of mcrA under different pH values was 0.744 (p < 0.05). Meanwhile, the correlation factors between N2O and the gene copies of amoA, narG, and nirS were 0.644 (p < 0.05), 0.719 (p < 0.05), and 0.576 (p = 0.081), respectively. The gene copies of mcrA, amoA, narG, and nirS were maintained at the lowest level under pH 5.5. These results recommended keeping slurry pH lower than 5.5 with lactic acid can help control GHG and NH3 emissions simultaneously and effectively.
Collapse
Affiliation(s)
- Yue Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Wenqian Xu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Qunxin Cong
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Youxu Wang
- College of Bioscience and Resources Environment, Beijing University of Agriculture, Beijing 102208, China.
| | - Wenzan Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Wanqin Zhang
- China Huadian Engineering Co.Ltd., Beijing 100160, China.
| | - Zhiping Zhu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Hongmin Dong
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
5
|
Morey L, Fernández B, Tey L, Biel C, Robles-Aguilar A, Meers E, Soler J, Porta R, Cots M, Riau V. Acidification and solar drying of manure-based digestate to produce improved fertilizing products. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 336:117664. [PMID: 36921470 PMCID: PMC10060120 DOI: 10.1016/j.jenvman.2023.117664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/16/2023] [Accepted: 03/02/2023] [Indexed: 06/17/2023]
Abstract
The increase in energy and fertilizer consumption makes it necessary to develop sustainable alternatives for agriculture. Anaerobic digestion and digestates appeared to be suitable options. However, untreated digestates still have high water content and can increase greenhouse gas emissions during storage and land application. In this study, manure-derived digestate and solid fraction of digestate after separation were treated with a novel solar drying technology to reduce their water content, combined with acidification to reduce the gaseous emissions. The acidified digestate and acidified solid fraction of digestate recovered more nitrogen and ammonia nitrogen than their respective non-acidified products (1.5-1.3 times for TN; 14 times for TAN). Ammonia and methane emissions were reduced up to 94% and 72% respectively, compared to the non-acidified ones, while N2O increased more than 3 times. Dried digestate and dried acidified digestate can be labeled as NPK organic fertilizer regarding the European regulation, and the dried solid fraction and the improved dried acidified solid fraction can be labeled as N or P organic fertilizer. Moreover, plant tests showed that N concentrations in fresh lettuce leaves were within the EU limit with all products in all the cases. However, zinc concentration appeared to be a limitation in some of the products as their concentration exceeded the European legal limits.
Collapse
Affiliation(s)
- L Morey
- IRTA Institute of Agrifood Research and Technology, Torre Marimon, E08140 Caldes de Montbui, Barcelona, Spain; Universitat Politècnica de Catalunya, Departament de Projectes d'Enginyeria, Campus Nord, Edifici C2, 08034, Barcelona, Spain.
| | - B Fernández
- IRTA Institute of Agrifood Research and Technology, Torre Marimon, E08140 Caldes de Montbui, Barcelona, Spain.
| | - L Tey
- IRTA Institute of Agrifood Research and Technology, Torre Marimon, E08140 Caldes de Montbui, Barcelona, Spain
| | - C Biel
- IRTA Institute of Agrifood Research and Technology, Torre Marimon, E08140 Caldes de Montbui, Barcelona, Spain
| | - A Robles-Aguilar
- IRTA Institute of Agrifood Research and Technology, Torre Marimon, E08140 Caldes de Montbui, Barcelona, Spain; University of Gent, Department of Green Chemistry & Technology, 9000, Gent, Belgium
| | - E Meers
- University of Gent, Department of Green Chemistry & Technology, 9000, Gent, Belgium
| | - J Soler
- EMA Depuració i Enginyería de l'Aigua, S.L. Avda. Sant Jordi, 176 Baixos, 17800, Olot, Girona, Spain
| | - R Porta
- PORGAPORCS S.L, Carrer Sant Miquel, 53, 25245, Vila-sana, Lleida, Spain
| | - M Cots
- PORGAPORCS S.L, Carrer Sant Miquel, 53, 25245, Vila-sana, Lleida, Spain
| | - V Riau
- IRTA Institute of Agrifood Research and Technology, Torre Marimon, E08140 Caldes de Montbui, Barcelona, Spain
| |
Collapse
|
6
|
Garder IM, Gómez-Muñoz B, Stoumann Jensen L, Regueiro I. Nitrogen fertiliser value of bioacidified slurry. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 166:86-95. [PMID: 37163971 DOI: 10.1016/j.wasman.2023.04.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/25/2023] [Accepted: 04/28/2023] [Indexed: 05/12/2023]
Abstract
Bioacidification of animal slurry has proven to be a good alternative to traditional acidification with sulfuric acid for reducing ammonia emissions. However, the fertiliser value of the bioacidified slurry is yet to be determined before a whole-system assessment can be made. The N fertiliser value of pig slurry either untreated or bioacidified with glucose and/or fermented brown juice (BJ) was investigated in a pot experiment with maize (Zea mays L.) grown in a greenhouse. The slurry treatments were either pre-acidified with sulfuric acid to pH 6.5 or 5.5 before bioacidification, or bioacidified without pre-acidification. Plant growth was good in all treatments, but the bioacidified treatments showed a lower mineral fertiliser equivalence (MFE) value than the non-bioacidified treatments. Average MFE values were 71 %, 62 %, 59 % and 41 % for the non-bioacidified (noC), glucose (glu), glucose and brown juice (glu + BJ20) and brown juice (BJ50) treatments respectively. This reduction was most likely caused by immobilisation of N due to the addition of easily available C from the substrates. The fertiliser value was not affected by the pH, C/N ratio and C content of the treatments, while a positive correlation was found with NH4 + -N content. Pre-acidification positively affected MFE, probably due to higher nutrient availability. Further studies on the effect of different inclusion rates of substrates for bioacidification and the effect of application method on the fertiliser value, as well as studies under field conditions, are needed before recommendations can be made about bioacidification as an alternative to traditional acidification.
Collapse
Affiliation(s)
- I M Garder
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Denmark
| | - B Gómez-Muñoz
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Denmark
| | - L Stoumann Jensen
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Denmark
| | - I Regueiro
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Denmark; EnergyLab Technology Centre, Department of Bioenergy, Spain.
| |
Collapse
|
7
|
Ólafsdóttir SS, Jensen CD, Lymperatou A, Henriksen UB, Gavala HN. Effects of different treatments of manure on mitigating methane emissions during storage and preserving the methane potential for anaerobic digestion. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 325:116456. [PMID: 36270124 DOI: 10.1016/j.jenvman.2022.116456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/27/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Current agricultural practices in regards to storage of manure come with a significant GHG contribution, due, to a big extent, to CH4 emissions. For example, in Denmark, the agricultural sector is responsible for about 11.1 metric tons of CO2 equivalents; only about 0.2 metric tons come directly from CO2, while 6.0 tons come from CH4. The present study aims at evaluating and comparing two methods based on their effect on suppressing CH4 emissions during storage as well as on preserving and enhancing CH4 yield in a subsequent anaerobic digestion step: the commonly applied acidification with H2SO4 as acidifying agent and thermal treatment at the mild temperatures of 70 and 90 °C (pasteurization). Although both treatments effectively suppressed CH4 emissions during storage, they exhibited a significant difference in preserving and/or enhancing the CH4 potential of manure. Specifically, thermal treatment resulted in 16-35% enhancement of CH4 potential, while acidification resulted in decreasing the CH4 yield by 6-23% compared to non-treated manure. Further investigation showed that storage itself positively affected the CH4 potential of treated manure in a subsequent anaerobic digestion step; this was attributed to microbial activity other than biomethanation during storage. In overall and based on the results obtained regarding suppression of CH4 emissions during storage as well as CH4 potential enhancement, pasteurization at the temperatures tested is a promising alternative to the broadly applied acidification of manure.
Collapse
Affiliation(s)
- Sonja Sif Ólafsdóttir
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Søltofts Plads 228A, Kgs.Lyngby, 2800, Denmark
| | - Claus Dalsgaard Jensen
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Søltofts Plads 228A, Kgs.Lyngby, 2800, Denmark
| | - Anna Lymperatou
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Søltofts Plads 228A, Kgs.Lyngby, 2800, Denmark
| | - Ulrik Birk Henriksen
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Søltofts Plads 228A, Kgs.Lyngby, 2800, Denmark
| | - Hariklia N Gavala
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Søltofts Plads 228A, Kgs.Lyngby, 2800, Denmark.
| |
Collapse
|