1
|
Kravanja P, Golob A, Concato M, Leskovar T, Zupanič Pajnič I. Effects of different environmental factors on preservation of DNA in petrous bones: A comparative study of two Slovenian archaeological sites. Forensic Sci Int 2025; 371:112495. [PMID: 40349398 DOI: 10.1016/j.forsciint.2025.112495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 04/14/2025] [Accepted: 05/06/2025] [Indexed: 05/14/2025]
Abstract
DNA preservation is influenced by various external and internal factors that are complexly intertwined. Environmental factors are among the variables that have the most significant impact on preserving genetic material. To better understand their effects, 247 petrous bones from two geographically distinct cemeteries were compared. Molecular genetic methods were used in the study, including a complete demineralization extraction method to obtain the DNA from bone samples and real-time PCR to determine DNA quantity and quality. Statistical analysis was performed to investigate the differences in DNA yield and DNA degradation between petrous bones from the two different Slovenian archeological sites, Ljubljana - Njegoševa and Črnomelj. Results showed significantly higher DNA yield and lower degradation index in petrous bones from the Ljubljana - Njegoševa cemetery. The differences emphasize the impact of environmental factors, especially that of temperature, pH and permeability of the soil, on DNA degradation. This study provides valuable insights into understanding the complexity of DNA preservation in skeletal remains from different types of environments.
Collapse
Affiliation(s)
- Pia Kravanja
- Institute of Forensic Medicine, Faculty of Medicine, University of Ljubljana, Korytkova 2, Ljubljana 1000, Slovenia
| | - Aja Golob
- Institute of Forensic Medicine, Faculty of Medicine, University of Ljubljana, Korytkova 2, Ljubljana 1000, Slovenia
| | - Monica Concato
- Department of Medicine, Surgery, and Health, University of Trieste, Trieste 34137, Italy
| | - Tamara Leskovar
- Centre for Interdisciplinary Research in Archaeology, Department of Archaeology, Faculty of Arts, University of Ljubljana, Ljubljana, Slovenia
| | - Irena Zupanič Pajnič
- Institute of Forensic Medicine, Faculty of Medicine, University of Ljubljana, Korytkova 2, Ljubljana 1000, Slovenia.
| |
Collapse
|
2
|
Inkret J, Zupanc T, Podovšovnik E, Zupanič Pajnič I. A recommended sampling strategy for genetic identification of Second World War victims in Slovenia. Forensic Sci Int 2025; 366:112304. [PMID: 39577023 DOI: 10.1016/j.forsciint.2024.112304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/07/2024] [Accepted: 11/19/2024] [Indexed: 11/24/2024]
Abstract
Skeletonized human remains from Second World War mass graves in Slovenia are a major challenge in genetic identification, and bones with a high DNA yield must be selected for successful identification. The goal of this study was to construct skeletal sampling strategy recommendations through comparison of the most appropriate groups of skeletal elements. Altogether, 566 bones and teeth from the same mass grave were compared, half analyzed in this study and half in previous studies performed by our group. After anthropological examination, mechanical and chemical cleaning was performed, followed by bone and tooth powdering. Total demineralization of 0.5 g of bone and tooth was followed by extraction and purification of DNA with a Biorobot EZ1 device (Qiagen). The qPCR PowerQuant kit (Promega) was used to measure the amount of DNA, and statistical analysis was performed. Skeletal elements were selected according to known better preservation of DNA in the human body, and they were arranged in seven groups: petrous bone, long bones (femur and tibia), torso bones (first rib and 12th vertebra), metacarpals, metatarsals, short and sesamoid bones (talus, navicular, medial cuneiform, cuboid, calcaneus, and patella), and teeth. Sampling strategy recommendations were constructed based on DNA quantity and quality results. The petrous bone group, metacarpal group, torso bone group, and short and sesamoid bone group produced the highest DNA yields. Accordingly, in addition to standard sampling of long bones (femurs and tibias) and teeth, those additional bone types should be collected for Slovenian Second World War victim identification.
Collapse
Affiliation(s)
- Jezerka Inkret
- Institute of Forensic Medicine, Faculty of Medicine, University of Ljubljana, Korytkova 2, Ljubljana 1000, Slovenia.
| | - Tomaž Zupanc
- Institute of Forensic Medicine, Faculty of Medicine, University of Ljubljana, Korytkova 2, Ljubljana 1000, Slovenia.
| | - Eva Podovšovnik
- Orthopedic Hospital of Valdoltra, Jadranska cesta 31, Ankaran 6280, Slovenia.
| | - Irena Zupanič Pajnič
- Institute of Forensic Medicine, Faculty of Medicine, University of Ljubljana, Korytkova 2, Ljubljana 1000, Slovenia.
| |
Collapse
|
3
|
Golob A, Kravanja P, Concato M, Leskovar T, Zupanič Pajnič I. Searching for alternative high DNA-yielding bone types for DNA analysis of aged skeletal remains. Forensic Sci Int 2024; 362:112184. [PMID: 39098141 DOI: 10.1016/j.forsciint.2024.112184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/24/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024]
Abstract
The petrous bone contains significantly higher amounts of DNA than any other human bone. Because of highly destructive sampling and because it is not always part of the recovered remains, the need for alternative sources of DNA is important. To identify additional optimal bone types, petrous bones were compared to femurs, tali, and calcanei sampled from 66 adult skeletons from two distinct modern-era Christian cemeteries. An extraction method employing full demineralization was used to obtain DNA, real-time PCR quantification to ascertain DNA quantity and degradation, and a commercial forensic short tandem repeats (STR) PCR amplification kit to determine genetic profiles. Statistical analysis was performed to explore the differences in DNA yield, DNA degradation, and success of STR amplification. A systematic studies exploring intra-skeletal variability in DNA preservation including various excavation sites differing by time period and geographical position are rare, and the second part of the investigation was based on a comparison of both archaeological sites, which allowed us to compare the effect of different post-mortem intervals and environmental conditions on DNA preservation. The older burial site in Črnomelj was active between the 13th and 18th century, whereas the more recent Polje burial was in use from the 16th to 19th century, creating different temporal and geographical environments. Results for the Črnomelj burial site revealed that the petrous bone outperformed all other bone types studied, except the calcaneus. At the Polje archeological site calcanei, tali, and femurs yielded the same STR typing success as petrous bones. The results obtained highlight the importance of careful bone sample selection for DNA analysis of aged skeletal remains. In addition to petrous bones, calcanei were found to be an alternative source of DNA when older burial sites are investigated. When more recent burial sites are processed, calcanei, tali, and femurs should be sampled besides petrous bones, not only because they exhibited good performance, but also because of easier sampling and easier grinding in the case of trabecular bones. This study contributes valuable insights into the potential use of various skeletal types as a source of DNA for investigation of aged skeletal remains, and it offers practical implications for forensic and archaeological investigations.
Collapse
Affiliation(s)
- Aja Golob
- Institute of Forensic Medicine, Faculty of Medicine, University of Ljubljana, Korytkova 2, Ljubljana 1000, Slovenia
| | - Pia Kravanja
- Institute of Forensic Medicine, Faculty of Medicine, University of Ljubljana, Korytkova 2, Ljubljana 1000, Slovenia
| | - Monica Concato
- Department of Medicine, Surgery, and Health, University of Trieste, Trieste 34137, Italy
| | - Tamara Leskovar
- Centre for Interdisciplinary Research in Archaeology, Department of Archaeology, Faculty of Arts, University of Ljubljana, Ljubljana, Slovenia
| | - Irena Zupanič Pajnič
- Institute of Forensic Medicine, Faculty of Medicine, University of Ljubljana, Korytkova 2, Ljubljana 1000, Slovenia.
| |
Collapse
|
4
|
Vom Scheidt A, Krug J, Goggin P, Bakker AD, Busse B. 2D vs. 3D Evaluation of Osteocyte Lacunae - Methodological Approaches, Recommended Parameters, and Challenges: A Narrative Review by the European Calcified Tissue Society (ECTS). Curr Osteoporos Rep 2024; 22:396-415. [PMID: 38980532 PMCID: PMC11324773 DOI: 10.1007/s11914-024-00877-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/11/2024] [Indexed: 07/10/2024]
Abstract
PURPOSE OF REVIEW Quantification of the morphology of osteocyte lacunae has become a powerful tool to investigate bone metabolism, pathologies and aging. This review will provide a brief overview of 2D and 3D imaging methods for the determination of lacunar shape, orientation, density, and volume. Deviations between 2D-based and 3D-based lacunar volume estimations are often not sufficiently addressed and may give rise to contradictory findings. Thus, the systematic error arising from 2D-based estimations of lacunar volume will be discussed, and an alternative calculation proposed. Further, standardized morphological parameters and best practices for sampling and segmentation are suggested. RECENT FINDINGS We quantified the errors in reported estimation methods of lacunar volume based on 2D cross-sections, which increase with variations in lacunar orientation and histological cutting plane. The estimations of lacunar volume based on common practice in 2D imaging methods resulted in an underestimation of lacunar volume of up to 85% compared to actual lacunar volume in an artificial dataset. For a representative estimation of lacunar size and morphology based on 2D images, at least 400 lacunae should be assessed per sample.
Collapse
Affiliation(s)
- Annika Vom Scheidt
- Division of Macroscopic and Clinical Anatomy, Gottfried Schatz Research Center, Medical University of Graz, Auenbruggerplatz 25, Graz, 8036, Austria.
| | - Johannes Krug
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestr. 55a, 22529, Hamburg, Germany
- Interdisciplinary Competence Center for Interface Research, University Medical Center Hamburg-Eppendorf, Butenfeld 34, 22529, Hamburg, Germany
| | - Patricia Goggin
- Biomedical Imaging Unit, Laboratory and Pathology Block, University of Southampton, Southampton General Hospital, Tremona Road, Southampton, SO16 6YD, UK
| | - Astrid Diana Bakker
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), Amsterdam Movement Sciences, University of Amsterdam and Vrije Universiteit Amsterdam, Gustav Mahlerlaan, Amsterdam, 3004, 1081 LA, The Netherlands
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestr. 55a, 22529, Hamburg, Germany
- Interdisciplinary Competence Center for Interface Research, University Medical Center Hamburg-Eppendorf, Butenfeld 34, 22529, Hamburg, Germany
| |
Collapse
|
5
|
Leskovar T, Jerman I, Zupanič Pajnič I. The mysteries of DNA preservation in bone: A comparative study of petrous bones and metacarpal epiphyses using ATR-FTIR spectroscopy. Forensic Sci Int 2024; 360:112076. [PMID: 38821024 DOI: 10.1016/j.forsciint.2024.112076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/20/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
A comparative analysis of 26 petrous bones and epiphyses of metacarpals from the Second World War era revealed no significant differences in DNA yield or success in STR typing. This unexpected parity in DNA preservation between the petrous bone, a renowned source of endogenous DNA in skeletal remains, and the epiphyses of metacarpals, which are porous and susceptible to taphonomic changes, is surprising. In this study, we introduced ATR-FTIR spectroscopy as an approach to unravel the correlation between bone molecular structure and DNA preservation. Metacarpals and petrous bones with same taphonomic history were sampled and prepared for DNA analyses. While one portion of the sample was used for DNA analysis, the other underwent ATR-FTIR spectroscopic examination. The normalized spectra and FTIR indices between the epiphyses of metacarpals and petrous bones were compared. Because the taphonomic history of the remains used is relatively short and stable, the ATR-FTIR spectroscopy unveiled subtle structural differences between the two bone types. Petrous bones exhibited higher mineralization, whereas epiphyses contained more organic matter. The unexpected preservation of DNA in the epiphyses of metacarpals can likely be attributed to the presence of soft tissue remnants within the trabeculae. Here observed differences in the molecular structure of bones indicate there are different mechanisms enabling DNA preservation in skeletal tissues.
Collapse
Affiliation(s)
- Tamara Leskovar
- Centre for Interdisciplinary Research in Archaeology, Department of Archaeology, Faculty of Arts, University of Ljubljana, Zavetiška 5, Ljubljana 1000, Slovenia
| | - Ivan Jerman
- National Institute of Chemistry, Hajdrihova 19, Ljubljana 1000, Slovenia
| | - Irena Zupanič Pajnič
- Institute of Forensic Medicine, Faculty of Medicine, University of Ljubljana, Korytkova 2, Ljubljana 1000, Slovenia.
| |
Collapse
|
6
|
Di Stefano B, Zupanič Pajnič I, Concato M, Bertoglio B, Calvano MG, Sorçaburu Ciglieri S, Bosetti A, Grignani P, Addoum Y, Vetrini R, Introna F, Bonin S, Previderè C, Fattorini P. Evaluation of a New DNA Extraction Method on Challenging Bone Samples Recovered from a WWII Mass Grave. Genes (Basel) 2024; 15:672. [PMID: 38927608 PMCID: PMC11202841 DOI: 10.3390/genes15060672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
Bones and teeth represent a common finding in ancient DNA studies and in forensic casework, even after a long burial. Genetic typing is the gold standard for the personal identification of skeletal remains, but there are two main factors involved in the successful DNA typing of such samples: (1) the set-up of an efficient DNA extraction method; (2) the identification of the most suitable skeletal element for the downstream genetic analyses. In this paper, a protocol based on the processing of 0.5 g of bone powder decalcified using Na2EDTA proved to be suitable for a semi-automated DNA extraction workflow using the Maxwell® FSC DNA IQ™ Casework Kit (Promega, Madison, WI, USA). The performance of this method in terms of DNA recovery and quality was compared with a full demineralisation extraction protocol based on Qiagen technology and kits. No statistically significant differences were scored according to the DNA recovery and DNA degradation index (p-values ≥ 0.176; r ≥ 0.907). This new DNA extraction protocol was applied to 88 bone samples (41 femurs, 19 petrous bones, 12 metacarpals and 16 molars) allegedly belonging to 27 World War II Italian soldiers found in a mass grave on the isle of Cres (Croatia). The results of the qPCR performed by the Quantifiler Human DNA Quantification kit showed values above the lowest Limit of Quantification (lLOQ; 23 pg/µL) for all petrous bones, whereas other bone types showed, in most cases, lower amounts of DNA. Replicate STR-CE analyses showed successful typing (that is, >12 markers) in all tests on the petrous bones, followed by the metacarpals (83.3%), femurs (52.2%) and teeth (20.0%). Full profiles (22/22 autosomal markers) were achieved mainly in the petrous bones (84.2%), followed by the metacarpals (41.7%). Stochastic amplification artefacts such as drop-outs or drop-ins occurred with a frequency of 1.9% in the petrous bones, whereas they were higher when the DNA recovered from other bone elements was amplified (up to 13.9% in the femurs). Overall, the results of this study confirm that petrous bone outperforms other bone elements in terms of the quantity and quality of the recovered DNA; for this reason, if available, it should always be preferred for genetic testing. In addition, our results highlight the need for accurate planning of the DVI operation, which should be carried out by a multi-disciplinary team, and the tricky issue of identifying other suitable skeletal elements for genetic testing. Overall, the results presented in this paper support the need to adopt preanalytical strategies positively related to the successful genetic testing of aged skeletal remains in order to reduce costs and the time of analysis.
Collapse
Affiliation(s)
- Barbara Di Stefano
- Department of Medicine, Surgery and Health, University of Trieste, 34127 Trieste, Italy; (B.D.S.); (M.C.); (S.S.C.); (Y.A.); (R.V.); (S.B.); (P.F.)
| | - Irena Zupanič Pajnič
- Institute of Forensic Medicine, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia;
| | - Monica Concato
- Department of Medicine, Surgery and Health, University of Trieste, 34127 Trieste, Italy; (B.D.S.); (M.C.); (S.S.C.); (Y.A.); (R.V.); (S.B.); (P.F.)
| | - Barbara Bertoglio
- Section of Legal Medicine and Forensic Sciences, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy; (B.B.); (P.G.)
| | - Maria Grazia Calvano
- Section of Legal Medicine, Interdisciplinary Department of Medicine (DIM), University-Hospital of Bari, Giulio Cesare Square 11, 70124 Bari, Italy; (M.G.C.); (F.I.)
| | - Solange Sorçaburu Ciglieri
- Department of Medicine, Surgery and Health, University of Trieste, 34127 Trieste, Italy; (B.D.S.); (M.C.); (S.S.C.); (Y.A.); (R.V.); (S.B.); (P.F.)
| | | | - Pierangela Grignani
- Section of Legal Medicine and Forensic Sciences, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy; (B.B.); (P.G.)
| | - Yasmine Addoum
- Department of Medicine, Surgery and Health, University of Trieste, 34127 Trieste, Italy; (B.D.S.); (M.C.); (S.S.C.); (Y.A.); (R.V.); (S.B.); (P.F.)
| | - Raffaella Vetrini
- Department of Medicine, Surgery and Health, University of Trieste, 34127 Trieste, Italy; (B.D.S.); (M.C.); (S.S.C.); (Y.A.); (R.V.); (S.B.); (P.F.)
| | - Francesco Introna
- Section of Legal Medicine, Interdisciplinary Department of Medicine (DIM), University-Hospital of Bari, Giulio Cesare Square 11, 70124 Bari, Italy; (M.G.C.); (F.I.)
| | - Serena Bonin
- Department of Medicine, Surgery and Health, University of Trieste, 34127 Trieste, Italy; (B.D.S.); (M.C.); (S.S.C.); (Y.A.); (R.V.); (S.B.); (P.F.)
| | - Carlo Previderè
- Section of Legal Medicine and Forensic Sciences, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy; (B.B.); (P.G.)
| | - Paolo Fattorini
- Department of Medicine, Surgery and Health, University of Trieste, 34127 Trieste, Italy; (B.D.S.); (M.C.); (S.S.C.); (Y.A.); (R.V.); (S.B.); (P.F.)
| |
Collapse
|
7
|
Weiner S, Shahar R. Vertebrate mineralized tissues: A modular structural analysis. Acta Biomater 2024; 179:1-12. [PMID: 38561073 DOI: 10.1016/j.actbio.2024.03.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/04/2024]
Abstract
Vertebrate mineralized tissues, present in bones, teeth and scales, have complex 3D hierarchical structures. As more of these tissues are characterized in 3D using mainly FIB SEM at a resolution that reveals the mineralized collagen fibrils and their organization into collagen fibril bundles, highly complex and diverse structures are being revealed. In this perspective we propose an approach to analyzing these tissues based on the presence of modular structures: material textures, pore shapes and sizes, as well as extents of mineralization. This modular approach is complimentary to the widely used hierarchical approach for describing these mineralized tissues. We present a series of case studies that show how some of the same structural modules can be found in different mineralized tissues, including in bone, dentin and scales. The organizations in 3D of the various structural modules in different tissues may differ. This approach facilitates the framing of basic questions such as: are the spatial relations between modular structures the same or similar in different mineralized tissues? Do tissues with similar sets of modules carry out similar functions or can similar functions be carried out using a different set of modular structures? Do mineralized tissues with similar sets of modules have a common developmental or evolutionary pathway? STATEMENT OF SIGNIFICANCE: 3D organization studies of diverse vertebrate mineralized tissues are revealing detailed, but often confusing details about the material textures, the arrangements of pores and differences in the extent of mineralization within a tissue. The widely used hierarchical scheme for describing such organizations does not adequately provide a basis for comparing these tissues, or addressing issues such as structural components thought to be characteristic of bone, being present in dermal tissues and so on. The classification scheme we present is based on identifying structural components within a tissue that can then be systematically compared to other vertebrate mineralized tissues. We anticipate that this classification approach will provide insights into structure-function relations, as well as the evolution of these tissues.
Collapse
Affiliation(s)
- Steve Weiner
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel.
| | - Ron Shahar
- Faculty of Agriculture Food & Environment, Koret School of Veterinary Medicine, Hebrew University Jerusalem, P.O.B. 12, Rehovot 7610001, Israel
| |
Collapse
|
8
|
Milgram J, Rehav K, Ibrahim J, Shahar R, Weiner S. The 3D organization of the mineralized scales of the sturgeon has structures reminiscent of dentin and bone: A FIB-SEM study. J Struct Biol 2023; 215:108045. [PMID: 37977509 DOI: 10.1016/j.jsb.2023.108045] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/14/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023]
Abstract
Scales are structures composed of mineralized collagen fibrils embedded in the skin of fish. Here we investigate structures contributing to the bulk of the scale material of the sturgeon (Acipencer guldenstatii) at the millimeter, micrometer and nanometer length scales. Polished and fracture surfaces were prepared in each of the three anatomic planes for imaging with light and electron microscopy, as well as focused ion beam - scanning electron microscopy (FIB-SEM). The scale is composed of three layers, upper and lower layers forming the bulk of the scale, as well as a thin surface layer. FTIR shows that the scale is composed mainly of collagen and carbonated hydroxyapatite. Lacunae are present throughout the structure. Fracture surfaces of all three layers are characterized by large diameter collagen fibril bundles (CFBs) emanating from a plane comprising smaller diameter CFBs orientated in different directions. Fine lineations seen in polished surfaces of both major layers are used to define planes called here the striation planes. FIB-SEM image stacks of the upper and lower layers acquired in planes aligned with the striation planes, show that CFBs are oriented in various directions within the striation plane, with larger CFBs emanating from the striation plane. Fibril bundles oriented in different directions in the same plane is reminiscent of a similar organization in orthodentin. The large collagen fibril bundles emanating out of this plane are analogous to von Korff fibrils found in developing dentin with respect to size and orientation. Scales of the sturgeon are unusual in that their mineralized collagen fibril organization contains structural elements of both dentin and bone. The sturgeon scale may be an example of an early evolved mineralized material which is neither bone nor dentin but contains characteristics of both materials, however, the fossil data required to confirm this is missing.
Collapse
Affiliation(s)
- Joshua Milgram
- Hebrew University Jerusalem, Faculty of Agriculture Food & Environment, Koret School of Veterinary Medicine, P.O.B. 12, Rehovot 7610001, Israel.
| | - Katya Rehav
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 7610001, Israel.
| | - Jamal Ibrahim
- Archaeological Science Unit, Weizmann Institute of Science, Rehovot 7610001, Israel.
| | - Ron Shahar
- Hebrew University Jerusalem, Faculty of Agriculture Food & Environment, Koret School of Veterinary Medicine, P.O.B. 12, Rehovot 7610001, Israel.
| | - Stephen Weiner
- Archaeological Science Unit, Weizmann Institute of Science, Rehovot 7610001, Israel; Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, 7610001, Israel.
| |
Collapse
|
9
|
Zupanič Pajnič I, Mlinšek T, Počivavšek T, Leskovar T. Genetic sexing of subadult skeletal remains. Sci Rep 2023; 13:20463. [PMID: 37993531 PMCID: PMC10665466 DOI: 10.1038/s41598-023-47836-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/19/2023] [Indexed: 11/24/2023] Open
Abstract
When subadult skeletons need to be identified, biological sex diagnosis is one of the first steps in the identification process. Sex assessment of subadults using morphological features is unreliable, and molecular genetic methods were applied in this study. Eighty-three ancient skeletons were used as models for poorly preserved DNA. Three sex-informative markers on the Y and X chromosome were used for sex identification: a qPCR test using the PowerQuant Y target included in PowerQuant System (Promega), the amelogenin test included in ESI 17 Fast STR kit (Promega), and a Y-STR amplification test using the PowerPlex Y-23 kit (Promega). Sex was successfully determined in all but five skeletons. Successful PowerQuant Y-target, Y-amelogenin, and Y-chromosomal STR amplifications proved the presence of male DNA in 35 skeletons, and in 43 subadults female sex was established. No match was found between the genetic profiles of subadult skeletons, and the elimination database and negative control samples produced no profiles, indicating no contamination issue. Our study shows that genetic sex identification is a very successful approach for biological sexing of subadult skeletons whose sex cannot be assessed by anthropological methods. The results of this study are applicable for badly preserved subadult skeletons from routine forensic casework.
Collapse
Affiliation(s)
- Irena Zupanič Pajnič
- Institute of Forensic Medicine, Faculty of Medicine, University of Ljubljana, Korytkova 2, 1000, Ljubljana, Slovenia.
| | - Teo Mlinšek
- Institute of Forensic Medicine, Faculty of Medicine, University of Ljubljana, Korytkova 2, 1000, Ljubljana, Slovenia
| | - Tadej Počivavšek
- Institute of Forensic Medicine, Faculty of Medicine, University of Ljubljana, Korytkova 2, 1000, Ljubljana, Slovenia
| | - Tamara Leskovar
- Centre for Interdisciplinary Research in Archaeology, Department of Archaeology, Faculty of Arts, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
10
|
Ibrahim J, Rechav K, Boaretto E, Weiner S. Three dimensional structures of the inner and outer pig petrous bone using FIB-SEM: Implications for development and ancient DNA preservation. J Struct Biol 2023; 215:107998. [PMID: 37422275 DOI: 10.1016/j.jsb.2023.107998] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/10/2023]
Abstract
We report on the 3D ultrastructure of the mineralized petrous bone of mature pig using focused ion beam - scanning electron microscopy (FIB-SEM). We divide the petrous bone into two zones based on the degree of mineralization; one zone close to the otic chamber has higher mineral density than the second zone further away from the otic chamber. The hypermineralization of the petrous bone results in the collagen D-banding being poorly revealed in the lower mineral density zone (LMD), and absent in the high mineral density zone (HMD). We therefore could not use D-banding to decipher the 3D structure of the collagen assembly. Instead we exploited the anisotropy option in the Dragonfly image processing software to visualize the less mineralized collagen fibrils and/or nanopores that surround the more mineralized zones known as tesselles. This approach therefore indirectly tracks the orientations of the collagen fibrils in the matrix itself. We show that the HMD bone has a structure similar to that of woven bone, and the LMD is composed of lamellar bone with a plywood-like structural motif. This agrees with the fact that the bone close to the otic chamber is fetal bone and is not remodeled. The lamellar structure of the bone further away from the otic chamber is consistent with modeling/remodeling. The absence of the less mineralized collagen fibrils and nanopores resulting from the confluence of the mineral tesselles may contribute to shielding DNA during diagenesis. We show that anisotropy evaluation of the less mineralized collagen fibrils could be a useful tool to analyze bone ultrastructures and in particular the directionality of collagen fibril bundles that make up the bone matrix.
Collapse
Affiliation(s)
- Jamal Ibrahim
- Scientific Archaeology Unit, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Katya Rechav
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Elisabetta Boaretto
- Scientific Archaeology Unit, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Steve Weiner
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
11
|
Fernandes DM, Sirak KA, Cheronet O, Novak M, Brück F, Zelger E, Llanos-Lizcano A, Wagner A, Zettl A, Mandl K, Duffet Carlson KS, Oberreiter V, Özdoğan KT, Sawyer S, La Pastina F, Borgia E, Coppa A, Dobeš M, Velemínský P, Reich D, Bell LS, Pinhasi R. Density separation of petrous bone powders for optimized ancient DNA yields. Genome Res 2023; 33:622-631. [PMID: 37072186 PMCID: PMC10234301 DOI: 10.1101/gr.277714.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/11/2023] [Indexed: 04/20/2023]
Abstract
Density separation is a process routinely used to segregate minerals, organic matter, and even microplastics, from soils and sediments. Here we apply density separation to archaeological bone powders before DNA extraction to increase endogenous DNA recovery relative to a standard control extraction of the same powders. Using nontoxic heavy liquid solutions, we separated powders from the petrous bones of 10 individuals of similar archaeological preservation into eight density intervals (2.15 to 2.45 g/cm3, in 0.05 increments). We found that the 2.30 to 2.35 g/cm3 and 2.35 to 2.40 g/cm3 intervals yielded up to 5.28-fold more endogenous unique DNA than the corresponding standard extraction (and up to 8.53-fold before duplicate read removal), while maintaining signals of ancient DNA authenticity and not reducing library complexity. Although small 0.05 g/cm3 intervals may maximally optimize yields, a single separation to remove materials with a density above 2.40 g/cm3 yielded up to 2.57-fold more endogenous DNA on average, which enables the simultaneous separation of samples that vary in preservation or in the type of material analyzed. While requiring no new ancient DNA laboratory equipment and fewer than 30 min of extra laboratory work, the implementation of density separation before DNA extraction can substantially boost endogenous DNA yields without decreasing library complexity. Although subsequent studies are required, we present theoretical and practical foundations that may prove useful when applied to other ancient DNA substrates such as teeth, other bones, and sediments.
Collapse
Affiliation(s)
- Daniel M Fernandes
- Department of Evolutionary Anthropology, University of Vienna, 1030 Vienna, Austria;
- CIAS, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
- Human Evolution and Archaeological Sciences Forschungsverbund, University of Vienna, 1030 Vienna, Austria
| | - Kendra A Sirak
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
- Department of Human Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Olivia Cheronet
- Department of Evolutionary Anthropology, University of Vienna, 1030 Vienna, Austria
- Human Evolution and Archaeological Sciences Forschungsverbund, University of Vienna, 1030 Vienna, Austria
| | - Mario Novak
- Centre for Applied Bioanthropology, Institute for Anthropological Research, 10000 Zagreb, Croatia
| | - Florian Brück
- Department of Evolutionary Anthropology, University of Vienna, 1030 Vienna, Austria
| | - Evelyn Zelger
- Department of Evolutionary Anthropology, University of Vienna, 1030 Vienna, Austria
| | | | - Anna Wagner
- Department of Evolutionary Anthropology, University of Vienna, 1030 Vienna, Austria
| | - Anna Zettl
- Department of Evolutionary Anthropology, University of Vienna, 1030 Vienna, Austria
| | - Kirsten Mandl
- Department of Evolutionary Anthropology, University of Vienna, 1030 Vienna, Austria
| | - Kellie Sara Duffet Carlson
- Department of Evolutionary Anthropology, University of Vienna, 1030 Vienna, Austria
- Human Evolution and Archaeological Sciences Forschungsverbund, University of Vienna, 1030 Vienna, Austria
| | - Victoria Oberreiter
- Department of Evolutionary Anthropology, University of Vienna, 1030 Vienna, Austria
- Human Evolution and Archaeological Sciences Forschungsverbund, University of Vienna, 1030 Vienna, Austria
| | - Kadir T Özdoğan
- Department of Evolutionary Anthropology, University of Vienna, 1030 Vienna, Austria
- Department of History and Art History, Utrecht University, 3512 BS Utrecht, The Netherlands
| | - Susanna Sawyer
- Department of Evolutionary Anthropology, University of Vienna, 1030 Vienna, Austria
| | - Francesco La Pastina
- Department of Archaeology, University of Cambridge, Cambridge CB2 3DZ, United Kingdom
| | - Emanuela Borgia
- Dipartimento di Scienze dell'Antichità, Sapienza Università di Roma, Rome 00185, Italy
| | - Alfredo Coppa
- Department of Evolutionary Anthropology, University of Vienna, 1030 Vienna, Austria
- Human Evolution and Archaeological Sciences Forschungsverbund, University of Vienna, 1030 Vienna, Austria
- Dipartimento di Biologia Ambientale, Sapienza Università di Roma, Rome 00185, Italy
| | - Miroslav Dobeš
- Institute of Archaeology of the Czech Academy of Sciences, Prague 118 00, Czech Republic
| | - Petr Velemínský
- Department of Anthropology, National Museum, Prague 115 79, Czech Republic
| | - David Reich
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
- Department of Human Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Lynne S Bell
- Centre for Forensic Research, School of Criminology, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Ron Pinhasi
- Department of Evolutionary Anthropology, University of Vienna, 1030 Vienna, Austria;
- Human Evolution and Archaeological Sciences Forschungsverbund, University of Vienna, 1030 Vienna, Austria
| |
Collapse
|