1
|
Lu Y, Li H, Chen M, Lin Y, Zhang X. LOX-induced tubulointerstitial fibrosis via the TGF-β/LOX/Snail axis in diabetic mice. J Transl Med 2025; 23:35. [PMID: 39789539 PMCID: PMC11716213 DOI: 10.1186/s12967-024-06056-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 12/24/2024] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND The partial epithelial-mesenchymal transition (EMT) is emerging as a significant mechanism in diabetic nephropathy (DN). LOX is a copper amine oxidase conventionally thought to act by crosslinking collagen. However, the role of LOX in partial EMT and fibrotic progression in diabetic nephropathy has not been investigated experimentally. METHODS The bulk RNA sequencing and single-nuclei RNA sequencing (snRNA-seq) analysis were explored to find the role of LOX in diabetic nephropathy. We then investigated the partial EMT and the possible signaling pathway of LOX, both in vivo and in vitro by LOX inhibition experiments in diabetic mice and HK-2 cells. Besides, we further assessed kidney fibrosis and renal function. RESULTS LOX expression was elevated in kidneys of diabetic mice. Additionally, snRNA-seq results indicated that LOX expression was higher in partial epithelial-mesenchymal transition proximal tubular (PemtPT) epithelial cells. Moreover, we found that increased LOX prompted partial EMT of renal tubular epithelial cells (RTECs) by modulating the transcription factor Snail both in vivo and in vitro. Remarkably, inhibition of LOX effectively mitigated the partial EMT of RTECs in diabetic mice, thereby attenuating kidney fibrosis and enhancing renal function. Additionally, we identified the TGF-β signaling pathway as an upstream regulator of LOX, and inhibiting LOX partially reversed the partial EMT program in HK-2 cells induced by the TGF-β signaling pathway. CONCLUSIONS Hyperglycemia induces partial EMT of RTECs via the TGF-β/LOX/Snail axis, thereby contributing to diabetic kidney fibrosis. Inhibiting LOX can effectively reverse the partial EMT of RTECs, diminish diabetic kidney fibrosis, and improve renal function.
Collapse
Affiliation(s)
- Yicheng Lu
- School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Heyangzi Li
- Department of Pathology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Mohan Chen
- School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Yicheng Lin
- Xiangya School of Medicine, Central South University, Changsha, 410083, China
| | - Xiaoming Zhang
- Department of Basic Medical Sciences, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
2
|
Kong L, Kong L, Li P, Gao L, Ma H, Shi B. Tribbles pseudokinase 3 promoted renal fibrosis by regulating the expression of DNA damage-inducible transcript 3 in diabetic nephropathy. BIOMOLECULES & BIOMEDICINE 2024; 24:1559-1570. [PMID: 38733632 PMCID: PMC11496876 DOI: 10.17305/bb.2024.10419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/03/2024] [Accepted: 05/03/2024] [Indexed: 05/13/2024]
Abstract
Diabetic nephropathy (DN) is a severe complication of prolonged diabetes, impacting millions worldwide with an increasing incidence. This study investigates the role of tribbles pseudokinase 3 (TRIB3), a protein implicated in the progression of DN, focusing on its mechanisms underlying glomerular damage. Through analysis of the Gene Expression Omnibus (GEO) database, we identified TRIB, among differentially expressed genes (DEGs) in streptozotocin (STZ)-treated C57BL/6J mice. Both in vitro and in vivo experiments were conducted to examine the effects of TRIB3 inhibition on high glucose (HG)-induced damage in podocytes and DN mouse models. The results demonstrated that TRIB3 inhibition reduced inflammatory responses and extracellular matrix (ECM) production inMPC5 cells, mediated by the downregulation of DNA damage-inducible transcript 3 (DDIT3) - a critical regulator of proinflammatory cytokine secretion and ECM synthesis. Inhibiting TRIB3 decreased inflammatory factors and ECM deposition in diabetic mice in vivo, confirming its pivotal role in DN pathogenesis. These findings indicate that TRIB3 and its interaction with DDIT3 contribute significantly to DN by promoting inflammatory cascades and ECM accumulation, presenting potential therapeutic targets for managing the disease.
Collapse
Affiliation(s)
- Lulu Kong
- Department of Endocrinology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Department of Endocrinology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Liusha Kong
- Department of Nephrology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Peipei Li
- Department of Endocrinology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Li Gao
- Department of Endocrinology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Hongqin Ma
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Bimin Shi
- Department of Endocrinology, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
3
|
Shou F, Li G, Morshedi M. Long Non-coding RNA ANRIL and Its Role in the Development of Age-Related Diseases. Mol Neurobiol 2024; 61:7919-7929. [PMID: 38443729 DOI: 10.1007/s12035-024-04074-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/23/2024] [Indexed: 03/07/2024]
Abstract
ANRIL is known as a lncRNA that has many linear and circular isoforms and its polymorphisms are observed to be associated with the pathogenesis of many diseases including age-related diseases. Age-related diseases including atherosclerosis, ischemic heart disease, and Alzheimer's and Parkinson's disease are the most common cause of mortality in both developed and undeveloped countries and that is why a better understanding of their pathogenesis and underlying mechanisms is necessary for controlling their healthcare burden.In this review, we aim to gather the data of researches which have investigated the role of ANRIL in aging and its related diseases. The conclusions of this paper might give a new insight for decreasing the mortality rate of these diseases.
Collapse
Affiliation(s)
- Feiyan Shou
- Shaoxing People's Hospital, Shaoxing, 312000, Zhejiang, China
| | - Gang Li
- Shaoxing People's Hospital, Shaoxing, 312000, Zhejiang, China.
| | - Mohammadamin Morshedi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
4
|
Wang W, Li Y, Zhu F, Huang Y. STAT3-induced upregulation of lncRNA TTN-AS1 aggravates podocyte injury in diabetic nephropathy by promoting oxidative stress. Toxicol Res (Camb) 2024; 13:tfae079. [PMID: 38828128 PMCID: PMC11142850 DOI: 10.1093/toxres/tfae079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 05/09/2024] [Accepted: 05/17/2024] [Indexed: 06/05/2024] Open
Abstract
Background Diabetic nephropathy (DN) is the most common microvascular complication of diabetes mellitus (DM), being the second cause of end-stage renal disease globally. Podocyte injury is closely associated with DN developmen. Our study aimed to investigate the role of long non-coding RNA (lncRNA) TTN-AS1 in DN-associated podocyte injury. Methods The mouse podocyte cell line (MPC5) and human primary podocytes were stimulated by high glucose (HG; 30 nM glucose) to establish the cellular model of DN. Before HG stimulation, both podocytes were transfected with sh-TTN-AS1#1/2 or pcDNA3.1/STAT3 to evaluate the influence of TTN-AS1 knockdown or STAT3 overexpression on HG-induced podocyte injury. TTN-AS1 and STAT3 expression in both podocytes was examined by RT-qPCR. Cell viability and death were assessed by CCK-8 and LDH release assay. ELISA was adopted for testing IL-6 and TNF-α contents in cell supernatants. The levels of oxidative stress markers (ROS, MDA, SOD, and GSH) in cell supernatants were determined by commercial kits. Western blotting was used for measuring the expression of fibrosis markers (fibronectin and α-SMA and podocyte function markers (podocin and nephrin) in podocytes. Results HG stimulation led to decreased cell viability, increased cell death, fibrosis, inflammation, cell dysfunction and oxidative stress in podocytes. However, knockdown of TTN-AS1 ameliorated HG-induced podocyte injury. Mechanically, the transcription factor STAT3 interacted with TTN-AS1 promoter and upregulated TTN-AS1 expression. STAT3 overexpression offset the protective effect of TTN-AS1 silencing on HG-induced podocyte damage. Conclusion Overall, STAT3-mediated upregulation of lncRNA TTN-AS1 could exacerbate podocyte injury in DN through suppressing inflammation and oxidative stress.
Collapse
Affiliation(s)
- Wenzhe Wang
- Department of Nephrology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, No. 26, Shengli Street, Jiang'an District, Wuhan, Hubei 430014, China
| | - Yongxia Li
- Department of Nephrology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, No. 26, Shengli Street, Jiang'an District, Wuhan, Hubei 430014, China
| | - Fan Zhu
- Department of Nephrology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, No. 26, Shengli Street, Jiang'an District, Wuhan, Hubei 430014, China
| | - Yunfang Huang
- Department of Nephrology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, No. 26, Shengli Street, Jiang'an District, Wuhan, Hubei 430014, China
| |
Collapse
|
5
|
Wang R, Yuan Q, Wen Y, Zhang Y, Hu Y, Wang S, Yuan C. ANRIL: A Long Noncoding RNA in Age-related Diseases. Mini Rev Med Chem 2024; 24:1930-1939. [PMID: 38716553 DOI: 10.2174/0113895575295976240415045602] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/23/2024] [Accepted: 03/08/2024] [Indexed: 10/16/2024]
Abstract
The intensification of the aging population is often accompanied by an increase in agerelated diseases, which impair the quality of life of the elderly. The characteristic feature of aging is progressive physiological decline, which is the largest cause of human pathology and death worldwide. However, natural aging interacts in exceptionally complex ways within and between organs, but its underlying mechanisms are still poorly understood. Long non-coding RNA (lncRNA) is a type of noncoding RNA that exceeds 200 nucleotides in length and does not possess protein-coding ability. It plays a crucial role in the occurrence and development of diseases. ANRIL, also known as CDKN2B-AS1, is an antisense ncRNA located at the INK4 site. It can play a crucial role in agerelated disease progression by regulating single nucleotide polymorphism, histone modifications, or post-transcriptional modifications (such as RNA stability and microRNA), such as cardiovascular disease, diabetes, tumor, arthritis, and osteoporosis. Therefore, a deeper understanding of the molecular mechanisms of lncRNA ANRIL in age-related diseases will help provide new diagnostic and therapeutic targets for clinical practice.
Collapse
Affiliation(s)
- Rui Wang
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Qi Yuan
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
- College of Medicine and Health Science, China Three Gorges University, Yichang, 443002, China
| | - Yuan Wen
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
- College of Medicine and Health Science, China Three Gorges University, Yichang, 443002, China
| | - Yifan Zhang
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Yaqi Hu
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Shuwen Wang
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Chengfu Yuan
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| |
Collapse
|
6
|
Hussein RM. Long non-coding RNAs: The hidden players in diabetes mellitus-related complications. Diabetes Metab Syndr 2023; 17:102872. [PMID: 37797393 DOI: 10.1016/j.dsx.2023.102872] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/07/2023]
Abstract
BACKGROUND AND AIM Long non-coding RNAs (lncRNAs) have been recognized as important regulators of gene expression in various human diseases. Diabetes mellitus (DM) is a long-term metabolic disorder associated with serious macro and microvascular complications. This review discusses the potential lncRNAs involved in DM-related complications such as dysfunction of pancreatic beta islets, nephropathy, retinopathy, cardiomyopathy, and peripheral neuropathy. METHODS An extensive literature search was conducted in the Scopus database to find information from reputed biomedical articles published on lncRNAs and diabetic complications from 2014 to 2023. All review articles were collected and statistically analyzed, and the findings were summarized. In addition, the potential lncRNAs involved in DM-related complications, molecular mechanisms, and gene targets were discussed in detail. RESULTS The lncRNAs ANRIL, E33, MALAT1, PVT1, Erbb4-IR, Gm4419, Gm5524, MIAT, MEG3, KNCQ1OT1, Uc.48+, BC168687, HOTAIR, and NONRATT021972 were upregulated in several diabetic complications. However, βlinc1, H19, PLUTO, MEG3, GAS5, uc.322, HOTAIR, MIAT, TUG1, CASC2, CYP4B1-PS1-001, SOX2OT, and Crnde were downregulated. Remarkably, lncRNAs MALAT1, ANRIL, MIAT, MEG3, H19, and HOTAIR were overlapping in more than one diabetic complication and were considered potential lncRNAs. CONCLUSION Several lncRNAs are identified as regulators of DM-related complications. The expression of lncRNAs is up or downregulated depending on the disease context, target genes, and regulatory partners. However, most lncRNAs target oxidative stress, inflammation, apoptosis, fibrosis, and angiogenesis pathways to mediate their protective/pathogenic mechanism of action and contribute to DM-related complications.
Collapse
Affiliation(s)
- Rasha M Hussein
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Mutah University, Al-Karak, Jordan.
| |
Collapse
|