1
|
Wen X, Fan J, Duan X, Zhu X, Bai J, Zhang T. Mitochondrial DNA in Exercise-Mediated Innate Immune Responses. Int J Mol Sci 2025; 26:3069. [PMID: 40243714 PMCID: PMC11988935 DOI: 10.3390/ijms26073069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 03/25/2025] [Accepted: 03/26/2025] [Indexed: 04/18/2025] Open
Abstract
Mitochondria are considered as "the plant of power" with cells for a long time. However, recent researches suggest that mitochondria also take part in innate immune response to a great extent. Remarkably, mtDNA was reported to have immunnostimulatory potential in 2004. Since then, there has been rapid growth in understanding the role of mtDNA in innate immune. The mtDNA is released into cytosol, extracellular environment, or circulating blood through BAK/BAX pore, mPTP, and GSDMD pore upon mitochondrial damage, where it is recognized by PRRs including TLR9, cGAS, and NLRP3, thereby triggering innate immune response. On the other hand, regular exercise has been recognized as an effective intervention strategy for innate immune response. Some studies show that chronic moderate-intensity endurance exercise, resistance training, HIIT, and moderate-intensity acute exercise enhance mitochondrial function by promoting mtDNA transcription and replication, thus blunting the abnormal release of mtDNA and excessive innate immune response. On the contrary, high-intensity acute exercise elicits the opposite effect. Nevertheless, only a very small body of research by far has been performed to illustrate the impact of exercise on mtDNA-driven innate immune response, and an overall review is lacking. In light of these, we summarize the current knowledge on the mechanism mediating the release of mtDNA, the role of mtDNA in innate immune response and the influence of exercise on mtDNA leakage, hoping to pave the way to investigate new diagnostic and therapeutic approaches for immunopathies.
Collapse
Affiliation(s)
| | | | | | | | | | - Tan Zhang
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China
| |
Collapse
|
2
|
Li Y, Zhang Z, Zhang Z, Zheng N, Ding X. Empagliflozin, a sodium-glucose cotransporter inhibitor enhancing mitochondrial action and cardioprotection in metabolic syndrome. J Cell Physiol 2024; 239:e31264. [PMID: 38764242 DOI: 10.1002/jcp.31264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 03/13/2024] [Accepted: 03/18/2024] [Indexed: 05/21/2024]
Abstract
Metabolic syndrome (MetS) has a large clinical population nowadays, usually due to excessive energy intake and lack of exercise. During MetS, excess nutrients stress the mitochondria, resulting in relative hypoxia in tissues and organs, even when blood supply is not interrupted or reduced, making mitochondrial dysfunction a central pathogenesis of cardiovascular disease in the MetS. Sodium-glucose cotransporter 2 inhibitors were designed as a hyperglycemic drug that acts on the renal tubules to block sugar reabsorption in primary urine. Recently they have been shown to have anti-inflammatory and other protective effects on cardiomyocytes in MetS, and have also been recommended in the latest heart failure guidelines as a routine therapy. Among these inhibitors, empagliflozin shows better clinical promise due to less influence from glomerular filtration rate. This review focuses on the mitochondrial mechanisms of empagliflozin, which underlie the anti-inflammatory and recover cellular functions in MetS cardiomyocytes, including stabilizing calcium concentration, mediating metabolic reprogramming, maintaining homeostasis of mitochondrial quantity and quality, stable mitochondrial DNA copy number, and repairing damaged mitochondrial DNA.
Collapse
Affiliation(s)
- Yunhao Li
- Graduate School, China Medical University, Shenyang, China
- Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China
| | - Zhanming Zhang
- Faculty of Science, The University of Hong Kong, Hong Kong, China
| | - Zheming Zhang
- Graduate School, China Medical University, Shenyang, China
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Ningning Zheng
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Xudong Ding
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
3
|
Cerantonio A, Citrigno L, Greco BM, De Benedittis S, Passarino G, Maletta R, Qualtieri A, Montesanto A, Spadafora P, Cavalcanti F. The Role of Mitochondrial Copy Number in Neurodegenerative Diseases: Present Insights and Future Directions. Int J Mol Sci 2024; 25:6062. [PMID: 38892250 PMCID: PMC11172615 DOI: 10.3390/ijms25116062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/21/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Neurodegenerative diseases are progressive disorders that affect the central nervous system (CNS) and represent the major cause of premature death in the elderly. One of the possible determinants of neurodegeneration is the change in mitochondrial function and content. Altered levels of mitochondrial DNA copy number (mtDNA-CN) in biological fluids have been reported during both the early stages and progression of the diseases. In patients affected by neurodegenerative diseases, changes in mtDNA-CN levels appear to correlate with mitochondrial dysfunction, cognitive decline, disease progression, and ultimately therapeutic interventions. In this review, we report the main results published up to April 2024, regarding the evaluation of mtDNA-CN levels in blood samples from patients affected by Alzheimer's (AD), Parkinson's (PD), and Huntington's diseases (HD), amyotrophic lateral sclerosis (ALS), and multiple sclerosis (MS). The aim is to show a probable link between mtDNA-CN changes and neurodegenerative disorders. Understanding the causes underlying this association could provide useful information on the molecular mechanisms involved in neurodegeneration and offer the development of new diagnostic approaches and therapeutic interventions.
Collapse
Affiliation(s)
- Annamaria Cerantonio
- Institute for Biomedical Research and Innovation, National Research Council (IRIB-CNR), 87050 Mangone, CS, Italy; (A.C.); (P.S.)
| | - Luigi Citrigno
- Institute for Biomedical Research and Innovation, National Research Council (IRIB-CNR), 87050 Mangone, CS, Italy; (A.C.); (P.S.)
| | - Beatrice Maria Greco
- Institute for Biomedical Research and Innovation, National Research Council (IRIB-CNR), 87050 Mangone, CS, Italy; (A.C.); (P.S.)
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, CS, Italy
| | - Selene De Benedittis
- Institute for Biomedical Research and Innovation, National Research Council (IRIB-CNR), 87050 Mangone, CS, Italy; (A.C.); (P.S.)
| | - Giuseppe Passarino
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, CS, Italy
| | - Raffaele Maletta
- Regional Neurogenetic Centre (CRN), Department of Primary Care, ASP Catanzaro, 88046 Lamezia Terme, CZ, Italy
- Association for Neurogenetic Research (ARN), 88046 Lamezia Terme, CZ, Italy
| | - Antonio Qualtieri
- Institute for Biomedical Research and Innovation, National Research Council (IRIB-CNR), 87050 Mangone, CS, Italy; (A.C.); (P.S.)
| | - Alberto Montesanto
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, CS, Italy
| | - Patrizia Spadafora
- Institute for Biomedical Research and Innovation, National Research Council (IRIB-CNR), 87050 Mangone, CS, Italy; (A.C.); (P.S.)
| | - Francesca Cavalcanti
- Institute for Biomedical Research and Innovation, National Research Council (IRIB-CNR), 87050 Mangone, CS, Italy; (A.C.); (P.S.)
| |
Collapse
|
4
|
Cho YW, Yoon J, Song SG, Noh YW. Mitochondrial DNA as a target for analyzing the biodistribution of cell therapy products. Sci Rep 2024; 14:7934. [PMID: 38575614 PMCID: PMC10995129 DOI: 10.1038/s41598-024-56591-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 03/08/2024] [Indexed: 04/06/2024] Open
Abstract
Biodistribution tests are crucial for evaluating the safety of cell therapy (CT) products in order to prevent unwanted organ homing of these products in patients. Quantitative polymerase chain reaction (qPCR) using intronic Alu is a popular method for biodistribution testing owing to its ability to detect donor cells without modifying CT products and low detection limit. However, Alu-qPCR may generate inaccurate information owing to background signals caused by the mixing of human genomic DNA with that of experimental animals. The aim of this study was to develop a test method that is more specific and sensitive than Alu-qPCR, targeting the mitochondrial DNA (mtDNA) sequence that varies substantially between humans and experimental animals. We designed primers for 12S, 16S, and cytochrome B in mtDNA regions, assessed their specificity and sensitivity, and selected primers and probes for the 12S region. Human adipose-derived stem cells, used as CT products, were injected into the tail vein of athymic NCr-nu/nu mice and detected, 7 d after administration, in their lungs at an average concentration of 2.22 ± 0.69 pg/μg mouse DNA, whereas Alu was not detected. Therefore, mtDNA is more specific and sensitive than Alu and is a useful target for evaluating CT product biodistribution.
Collapse
Affiliation(s)
- Young-Woo Cho
- College of Pharmacy, Chungbuk National University, Cheongju, 28644, Republic of Korea
- Division of Drug Screening Evaluation, NDDC, Osong Medical Innovation Foundation, Cheongju, 28160, Republic of Korea
| | - Jaehyeon Yoon
- Division of Drug Screening Evaluation, NDDC, Osong Medical Innovation Foundation, Cheongju, 28160, Republic of Korea
| | - Suk-Gil Song
- College of Pharmacy, Chungbuk National University, Cheongju, 28644, Republic of Korea.
| | - Young-Woock Noh
- Division of Drug Screening Evaluation, NDDC, Osong Medical Innovation Foundation, Cheongju, 28160, Republic of Korea.
| |
Collapse
|
5
|
Huang C, Chen L, Li J, Ma J, Luo J, Lv Q, Xiao J, Gao P, Chai W, Li X, Zhang M, Hu F, Hu D, Qin P. Mitochondrial DNA Copy Number and Risk of Diabetes Mellitus and Metabolic Syndrome. J Clin Endocrinol Metab 2023; 109:e406-e417. [PMID: 37431585 DOI: 10.1210/clinem/dgad403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 07/12/2023]
Abstract
CONTEXT Mitochondrial DNA (mtDNA) plays a key role in diabetes mellitus and metabolic syndrome (MetS). An increasing number of studies have reported the association between mtDNA copy number (mtDNA-CN) and the risk of diabetes mellitus and MetS; however, the associations remain conflicted and a systematic review and meta-analysis on the association between mtDNA-CN and diabetes mellitus and MetS is lacking. OBJECTIVE We aimed to investigate the association of mtDNA-CN and diabetes mellitus and MetS using a systematic review and meta-analysis of observational studies. METHODS PubMed, EMBASE, and Web of Science were searched up to December 15, 2022. Random-effect models were used to summarize the relative risks (RRs) and 95% CIs. RESULTS A total of 19 articles were included in the systematic review and 6 articles (12 studies) in the meta-analysis involving 21 714 patients with diabetes (318 870 participants) and 5031 MetS (15 040 participants). Compared to the highest mtDNA-CN, the summary RR (95% CIs) for the lowest mtDNA-CN were 1.06 (95% CI, 1.01-1.12; I2 = 79.4%; n = 8) for diabetes (prospective study: 1.11 (1.02-1.21); I2 = 22.6%; n = 4; case-control: 1.27 (0.66-2.43); I2 = 81.8%; n = 2; cross-sectional: 1.01 (0.99-1.03); I2 = 74.7%; n = 2), and 1.03 (0.99-1.07; I2 = 70.6%; n = 4) for MetS (prospective: 2.87 (1.51-5.48); I2 = 0; n = 2; cross-sectional: 1.02 (1.01-1.04); I2 = 0; n = 2). CONCLUSION Decreased mtDNA-CN was associated with increased risk of diabetes mellitus and MetS when limited to prospective studies. More longitudinal studies are warranted.
Collapse
Affiliation(s)
- Cuihong Huang
- Center for Clinical Epidemiology and Evidence-based Medicine, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, 518000, Guangdong, China
- School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - Lifang Chen
- Department of Cardiovascular Medicine, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, 518000, Guangdong, China
| | - Jiangtao Li
- Department of Cardiovascular Medicine, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, 518000, Guangdong, China
| | - Juanjuan Ma
- Center for Clinical Epidemiology and Evidence-based Medicine, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, 518000, Guangdong, China
| | - Jun Luo
- Department of Cardiovascular Medicine, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, 518000, Guangdong, China
| | - Qian Lv
- Department of Cardiovascular Medicine, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, 518000, Guangdong, China
| | - Jian Xiao
- Department of Cardiovascular Medicine, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, 518000, Guangdong, China
| | - Pan Gao
- Department of Neurology, Shenzhen University General Hospital, Shenzhen, 518000, Guangdong, China
| | - Wen Chai
- Department of Neurology, Shenzhen University General Hospital, Shenzhen, 518000, Guangdong, China
| | - Xu Li
- Department of Neurosurgery, The Second Affiliated Hospital of Shenzhen University, Shenzhen, 518000, Guangdong, China
| | - Ming Zhang
- Department of Biostatistics and Epidemiology, School of Public Health, Shenzhen University Health Science Center, Shenzhen, 518000, Guangdong, China
| | - Fulan Hu
- Department of Biostatistics and Epidemiology, School of Public Health, Shenzhen University Health Science Center, Shenzhen, 518000, Guangdong, China
| | - Dongsheng Hu
- Department of Biostatistics and Epidemiology, School of Public Health, Shenzhen University Health Science Center, Shenzhen, 518000, Guangdong, China
| | - Pei Qin
- Center for Clinical Epidemiology and Evidence-based Medicine, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, 518000, Guangdong, China
| |
Collapse
|
6
|
Cai X, Li X, Liang C, Zhang M, Xu Y, Dong Z, Weng Y, Yu W. Mitochondrial DNA copy number is associated with Crohn's disease: a comprehensive Mendelian randomization analysis. Sci Rep 2023; 13:21016. [PMID: 38030696 PMCID: PMC10687096 DOI: 10.1038/s41598-023-48175-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 11/23/2023] [Indexed: 12/01/2023] Open
Abstract
Mitochondrial DNA plays a critical role in the pathophysiological process of inflammation. However, the relationship between mitochondrial DNA copy number (mtDNA-CN) and inflammatory bowel diseases (IBD) remains poorly understood. We conducted a comprehensive Mendelian randomization (MR) using three instrumental variables (IVs) to explore the causal associations between mtDNA-CN and IBD, including Crohn's disease (CD), ulcerative colitis (UC). MR-Egger regression, weighted median, inverse-variance weighted (IVW), and weighted mode methods were used to evaluate the potential causal associations. The robustness of the IVW estimates was determined using the leave-one-out sensitivity test. A meta-analysis was conducted to pool the results from the three sets of IVs. Upon analysis, the findings of the current study revealed that genetically predicted mtDNA-CN was not associated with IBD (CD + UC) and UC. The results of MR analyses between mtDNA-CN and CD risk were inconsistent by using three sets of IVs. After a meta-analysis, we found that genetically predicted mtDNA-CN was associated with CD risk (odds ratio = 2.09; 95% confidence interval: 1.37-3.18). This finding was also confirmed by multivariable MR analyses and remained robust when tested with the leave-one-out sensitivity test. In conclusion, genetically predicted mtDNA-CN was found to be associated with CD risk. Therefore, mtDNA levels in the blood could potentially be used as a marker for CD risk assessment. Further studies are needed to elucidate the underlying mechanisms and validate the results of this study.
Collapse
Affiliation(s)
- Xianlei Cai
- Department of Gastrointestinal Surgery, The Lihuili Affiliated Hospital, Ningbo University (Ningbo Medical Center Lihuili Hospital), Ningbo, 315000, Zhejiang, China
| | - Xueying Li
- Department of Gastroenterology, The First Affiliated Hospital, Ningbo University, Ningbo, 315000, Zhejiang, China
| | - Chao Liang
- Department of Gastrointestinal Surgery, The Lihuili Affiliated Hospital, Ningbo University (Ningbo Medical Center Lihuili Hospital), Ningbo, 315000, Zhejiang, China
| | - Miaozun Zhang
- Department of Gastrointestinal Surgery, The Lihuili Affiliated Hospital, Ningbo University (Ningbo Medical Center Lihuili Hospital), Ningbo, 315000, Zhejiang, China
| | - Yuan Xu
- Department of Gastrointestinal Surgery, The Lihuili Affiliated Hospital, Ningbo University (Ningbo Medical Center Lihuili Hospital), Ningbo, 315000, Zhejiang, China
| | - Zhebin Dong
- Department of Gastrointestinal Surgery, The Lihuili Affiliated Hospital, Ningbo University (Ningbo Medical Center Lihuili Hospital), Ningbo, 315000, Zhejiang, China
| | - Yihui Weng
- Department of Gastrointestinal Surgery, The Lihuili Affiliated Hospital, Ningbo University (Ningbo Medical Center Lihuili Hospital), Ningbo, 315000, Zhejiang, China
| | - Weiming Yu
- Department of Gastrointestinal Surgery, The Lihuili Affiliated Hospital, Ningbo University (Ningbo Medical Center Lihuili Hospital), Ningbo, 315000, Zhejiang, China.
| |
Collapse
|
7
|
Jenkins AJ, Carroll LM, Huang MLH, Wen-Loh Y, Mangani A, O'Neal DN, Januszewski AS. Mitochondrial DNA copy number in adults with and without Type 1 diabetes. Diabetes Res Clin Pract 2023; 203:110877. [PMID: 37579994 DOI: 10.1016/j.diabres.2023.110877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/08/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023]
Abstract
AIMS Mitochondrial damage is implicated in diabetes pathogenesis and complications. Mitochondrial DNA copy number (mtDNA-cn) in human Type 1 diabetes (T1D) studies are lacking. We related mtDNA-cn in T1D and non-diabetic adults (CON) with diabetes complications and risk factors. METHODS Cross-sectional study: 178 T1D, 132 non-diabetic controls. Associations of whole blood mtDNA-cn (qPCR) with complications, inflammation, and C-peptide. RESULTS mtDNA-cn (median (LQ, UQ)) was lower in: T1D vs. CON (271 (189, 348) vs. 320 (264, 410); p < 0.0001); T1D with vs. without kidney disease (238 (180, 309) vs. 294 (198, 364); p = 0.02); and insulin injection vs. pump-users (251 (180, 340) vs. 322 (263, 406); p = 0.008). Significant univariate correlates of mtDNA-cn: T1D: (positive) HDL-C; (negative) fasting glucose, white cell count (WCC), sVCAM-1, sICAM-1; CON: (negative) WHR (waist-hip-ratio). Detectable C-peptide in T1D increased with lowest-highest mtDNA-cn tertiles (54%, 69%, 79%, p = 0.02). Independent determinants of mtDNA-cn: T1D: (positive) HDL-C; (negative) age, sICAM-1; AUROC 0.71; CON: WCC (negative), never smoking, (positive) female, pulse pressure; AUROC 0.74. CONCLUSIONS mtDNA-cn is lower in T1D vs. CON, and in T1D kidney disease. In T1D, mtDNA-cn correlates inversely with age and inflammation, and positively with HDL-C, detectable C-peptide and pump use. Further clinical and basic science studies are merited.
Collapse
Affiliation(s)
- Alicia J Jenkins
- NHMRC Clinical Trials Centre, The University of Sydney, NSW, Australia; Department of Medicine, St. Vincent's Hospital, The University of Melbourne, VIC, Australia; Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Luke M Carroll
- NHMRC Clinical Trials Centre, The University of Sydney, NSW, Australia
| | - Michael L H Huang
- NHMRC Clinical Trials Centre, The University of Sydney, NSW, Australia; Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Yik Wen-Loh
- NHMRC Clinical Trials Centre, The University of Sydney, NSW, Australia
| | - Abubakar Mangani
- NHMRC Clinical Trials Centre, The University of Sydney, NSW, Australia
| | - David N O'Neal
- NHMRC Clinical Trials Centre, The University of Sydney, NSW, Australia; Department of Medicine, St. Vincent's Hospital, The University of Melbourne, VIC, Australia
| | - Andrzej S Januszewski
- NHMRC Clinical Trials Centre, The University of Sydney, NSW, Australia; Department of Medicine, St. Vincent's Hospital, The University of Melbourne, VIC, Australia; Sydney Pharmacy School, The University of Sydney, NSW, Australia.
| |
Collapse
|
8
|
Taylor HA, Finkel T, Gao Y, Ballinger SW, Campo R, Chen R, Chen SH, Davidson K, Iruela-Arispe ML, Jaquish C, LeBrasseur NK, Odden MC, Papanicolaou GJ, Picard M, Srinivas P, Tjurmina O, Wolz M, Galis ZS. Scientific opportunities in resilience research for cardiovascular health and wellness. Report from a National Heart, Lung, and Blood Institute workshop. FASEB J 2022; 36:e22639. [PMID: 36322029 PMCID: PMC9703084 DOI: 10.1096/fj.202201407r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/14/2022] [Accepted: 10/21/2022] [Indexed: 11/07/2022]
Abstract
Exposure of biological systems to acute or chronic insults triggers a host of molecular and physiological responses to either tolerate, adapt, or fully restore homeostasis; these responses constitute the hallmarks of resilience. Given the many facets, dimensions, and discipline-specific focus, gaining a shared understanding of "resilience" has been identified as a priority for supporting advances in cardiovascular health. This report is based on the working definition: "Resilience is the ability of living systems to successfully maintain or return to homeostasis in response to physical, molecular, individual, social, societal, or environmental stressors or challenges," developed after considering many factors contributing to cardiovascular resilience through deliberations of multidisciplinary experts convened by the National Heart, Lung, and Blood Institute during a workshop entitled: "Enhancing Resilience for Cardiovascular Health and Wellness." Some of the main emerging themes that support the possibility of enhancing resilience for cardiovascular health include optimal energy management and substrate diversity, a robust immune system that safeguards tissue homeostasis, and social and community support. The report also highlights existing research challenges, along with immediate and long-term opportunities for resilience research. Certain immediate opportunities identified are based on leveraging existing high-dimensional data from longitudinal clinical studies to identify vascular resilience measures, create a 'resilience index,' and adopt a life-course approach. Long-term opportunities include developing quantitative cell/organ/system/community models to identify resilience factors and mechanisms at these various levels, designing experimental and clinical interventions that specifically assess resilience, adopting global sharing of resilience-related data, and cross-domain training of next-generation researchers in this field.
Collapse
Affiliation(s)
- Herman A. Taylor
- Cardiovascular Research Institute Morehouse School of Medicine, Atlanta, Georgia, USA
- Morehouse-Emory Cardiovascular Center for Health Equity, Atlanta, Georgia, USA
- Harvard Chan School of Public Health, Atlanta, Georgia, USA
- Emory School of Medicine, Atlanta, Georgia, USA
| | - Toren Finkel
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Yunling Gao
- Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Scott W. Ballinger
- University of Alabama Heersink School of Medicine, Birmingham, Alabama, USA
| | - Rebecca Campo
- Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Rong Chen
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Sema4, Stamford, Connecticut, USA
| | - Shu Hui Chen
- Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Karina Davidson
- Feinstein Institutes for Medical Research, Northwell Health, New York, New York, USA
| | | | - Cashell Jaquish
- Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | - George J. Papanicolaou
- Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Martin Picard
- Columbia University Irving Medical Center, New York, New York, USA
- New York State Psychiatric Institute, New York, New York, USA
| | - Pothur Srinivas
- Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Olga Tjurmina
- Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Michael Wolz
- Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Zorina S. Galis
- Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|