1
|
Guo ZY, Tang YQ, Zhang ZB, Liu J, Zhuang YX, Li T. COVID-19: from immune response to clinical intervention. PRECISION CLINICAL MEDICINE 2024; 7:pbae015. [PMID: 39139990 PMCID: PMC11319938 DOI: 10.1093/pcmedi/pbae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/11/2024] [Indexed: 08/15/2024] Open
Abstract
The coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has highlighted the pivotal role of the immune response in determining the progression and severity of viral infections. In this paper, we review the most recent studies on the complicated dynamics between SARS-CoV-2 and the host immune system, highlight the importance of understanding these dynamics in developing effective treatments and formulate potent management strategies for COVID-19. We describe the activation of the host's innate immunity and the subsequent adaptive immune response following infection with SARS-CoV-2. In addition, the review emphasizes the immune evasion strategies of the SARS-CoV-2, including inhibition of interferon production and induction of cytokine storms, along with the resulting clinical outcomes. Finally, we assess the efficacy of current treatment strategies, including antiviral drugs, monoclonal antibodies, and anti-inflammatory treatments, and discuss their role in providing immunity and preventing severe disease.
Collapse
Affiliation(s)
- Zheng-yang Guo
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, China
| | - Yan-qing Tang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, China
| | - Zi-bo Zhang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, China
| | - Juan Liu
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, China
| | - Yu-xin Zhuang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, China
| | - Ting Li
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, China
| |
Collapse
|
2
|
Jyonouchi H. Autism spectrum disorder and a possible role of anti-inflammatory treatments: experience in the pediatric allergy/immunology clinic. Front Psychiatry 2024; 15:1333717. [PMID: 38979496 PMCID: PMC11228311 DOI: 10.3389/fpsyt.2024.1333717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 06/03/2024] [Indexed: 07/10/2024] Open
Abstract
Autism spectrum disorder (ASD1) is a behaviorally defined syndrome encompassing a markedly heterogeneous patient population. Many ASD subjects fail to respond to the 1st line behavioral and pharmacological interventions, leaving parents to seek out other treatment options. Evidence supports that neuroinflammation plays a role in ASD pathogenesis. However, the underlying mechanisms likely vary for each ASD patient, influenced by genetic, epigenetic, and environmental factors. Although anti-inflammatory treatment measures, mainly based on metabolic changes and oxidative stress, have provided promising results in some ASD subjects, the use of such measures requires the careful selection of ASD subjects based on clinical and laboratory findings. Recent progress in neuroscience and molecular immunology has made it possible to allow re-purposing of currently available anti-inflammatory medications, used for autoimmune and other chronic inflammatory conditions, as treatment options for ASD subjects. On the other hand, emerging anti-inflammatory medications, including biologic and gate-keeper blockers, exert powerful anti-inflammatory effects on specific mediators or signaling pathways. It will require both a keen understanding of the mechanisms of action of such agents and the careful selection of ASD patients suitable for each treatment. This review will attempt to summarize the use of anti-inflammatory agents already used in targeting ASD patients, and then emerging anti-inflammatory measures applicable for ASD subjects based on scientific rationale and clinical trial data, if available. In our experience, some ASD patients were treated under diagnoses of autoimmune/autoinflammatory conditions and/or post-infectious neuroinflammation. However, there are little clinical trial data specifically for ASD subjects. Therefore, these emerging immunomodulating agents for potential use for ASD subjects will be discussed based on preclinical data, case reports, or data generated in patients with other medical conditions. This review will hopefully highlight the expanding scope of immunomodulating agents for treating neuroinflammation in ASD subjects.
Collapse
Affiliation(s)
- Harumi Jyonouchi
- Department of Pediatrics, Saint Peter's University Hospital, New Brunswick, NJ, United States
- Department of Pediatrics, Rutgers University-Robert Wood Johnson School of Medicine, New Brunswick, NJ, United States
| |
Collapse
|
3
|
Raj ST, Bruce AW, Anbalagan M, Srinivasan H, Chinnappan S, Rajagopal M, Khanna K, Chandramoorthy HC, Mani RR. COVID-19 influenced gut dysbiosis, post-acute sequelae, immune regulation, and therapeutic regimens. Front Cell Infect Microbiol 2024; 14:1384939. [PMID: 38863829 PMCID: PMC11165100 DOI: 10.3389/fcimb.2024.1384939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 05/13/2024] [Indexed: 06/13/2024] Open
Abstract
The novel coronavirus disease 2019 (COVID-19) pandemic outbreak caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has garnered unprecedented global attention. It caused over 2.47 million deaths through various syndromes such as acute respiratory distress, hypercoagulability, and multiple organ failure. The viral invasion proceeds through the ACE2 receptor, expressed in multiple cell types, and in some patients caused serious damage to tissues, organs, immune cells, and the microbes that colonize the gastrointestinal tract (GIT). Some patients who survived the SARS-CoV-2 infection have developed months of persistent long-COVID-19 symptoms or post-acute sequelae of COVID-19 (PASC). Diagnosis of these patients has revealed multiple biological effects, none of which are mutually exclusive. However, the severity of COVID-19 also depends on numerous comorbidities such as obesity, age, diabetes, and hypertension and care must be taken with respect to other multiple morbidities, such as host immunity. Gut microbiota in relation to SARS-CoV-2 immunopathology is considered to evolve COVID-19 progression via mechanisms of biochemical metabolism, exacerbation of inflammation, intestinal mucosal secretion, cytokine storm, and immunity regulation. Therefore, modulation of gut microbiome equilibrium through food supplements and probiotics remains a hot topic of current research and debate. In this review, we discuss the biological complications of the physio-pathological effects of COVID-19 infection, GIT immune response, and therapeutic pharmacological strategies. We also summarize the therapeutic targets of probiotics, their limitations, and the efficacy of preclinical and clinical drugs to effectively inhibit the spread of SARS-CoV-2.
Collapse
Affiliation(s)
- Sterlin T. Raj
- Department of Molecular Biology, Ekka Diagnostics, Chennai, Tamil Nadu, India
| | - Alexander W. Bruce
- Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| | - Muralidharan Anbalagan
- Department of Structural & Cellular Biology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Hemalatha Srinivasan
- School of Life Sciences, B. S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, India
| | - Sasikala Chinnappan
- Department of Pharmaceutical Biology, Faculty of Pharmaceutical Sciences, University College of Sedaya International UCSI University, Kuala Lumpur, Malaysia
| | - Mogana Rajagopal
- Department of Pharmaceutical Biology, Faculty of Pharmaceutical Sciences, University College of Sedaya International UCSI University, Kuala Lumpur, Malaysia
| | - Kushagra Khanna
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Harish C. Chandramoorthy
- Department of Microbiology and Clinical Parasitology, College of Medicine, King Khalid University, Abha, Saudi Arabia
- Center for Stem Cell Research, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Ravishankar Ram Mani
- Department of Pharmaceutical Biology, Faculty of Pharmaceutical Sciences, University College of Sedaya International UCSI University, Kuala Lumpur, Malaysia
| |
Collapse
|
4
|
Berber E, Mulik S, Rouse BT. Meeting the Challenge of Controlling Viral Immunopathology. Int J Mol Sci 2024; 25:3935. [PMID: 38612744 PMCID: PMC11011832 DOI: 10.3390/ijms25073935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
The mission of this review is to identify immune-damaging participants involved in antiviral immunoinflammatory lesions. We argue these could be targeted and their activity changed selectively by maneuvers that, at the same time, may not diminish the impact of components that help resolve lesions. Ideally, we need to identify therapeutic approaches that can reverse ongoing lesions that lack unwanted side effects and are affordable to use. By understanding the delicate balance between immune responses that cause tissue damage and those that aid in resolution, novel strategies can be developed to target detrimental immune components while preserving the beneficial ones. Some strategies involve rebalancing the participation of immune components using various approaches, such as removing or blocking proinflammatory T cell products, expanding regulatory cells, restoring lost protective cell function, using monoclonal antibodies (moAb) to counteract inhibitory molecules, and exploiting metabolic differences between inflammatory and immuno-protective responses. These strategies can help reverse ongoing viral infections. We explain various approaches, from model studies and some clinical evidence, that achieve innate and adaptive immune rebalancing, offering insights into potential applications for controlling chronic viral-induced lesions.
Collapse
Affiliation(s)
- Engin Berber
- Infection Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA;
| | - Sachin Mulik
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA;
| | - Barry T. Rouse
- College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
5
|
Nasrollahi H, Talepoor AG, Saleh Z, Eshkevar Vakili M, Heydarinezhad P, Karami N, Noroozi M, Meri S, Kalantar K. Immune responses in mildly versus critically ill COVID-19 patients. Front Immunol 2023; 14:1077236. [PMID: 36793739 PMCID: PMC9923185 DOI: 10.3389/fimmu.2023.1077236] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 01/12/2023] [Indexed: 01/31/2023] Open
Abstract
The current coronavirus pandemic (COVID-19), caused by SARS-CoV-2, has had devastating effects on the global health and economic system. The cellular and molecular mediators of both the innate and adaptive immune systems are critical in controlling SARS-CoV-2 infections. However, dysregulated inflammatory responses and imbalanced adaptive immunity may contribute to tissue destruction and pathogenesis of the disease. Important mechanisms in severe forms of COVID-19 include overproduction of inflammatory cytokines, impairment of type I IFN response, overactivation of neutrophils and macrophages, decreased frequencies of DC cells, NK cells and ILCs, complement activation, lymphopenia, Th1 and Treg hypoactivation, Th2 and Th17 hyperactivation, as well as decreased clonal diversity and dysregulated B lymphocyte function. Given the relationship between disease severity and an imbalanced immune system, scientists have been led to manipulate the immune system as a therapeutic approach. For example, anti-cytokine, cell, and IVIG therapies have received attention in the treatment of severe COVID-19. In this review, the role of immunity in the development and progression of COVID-19 is discussed, focusing on molecular and cellular aspects of the immune system in mild vs. severe forms of the disease. Moreover, some immune- based therapeutic approaches to COVID-19 are being investigated. Understanding key processes involved in the disease progression is critical in developing therapeutic agents and optimizing related strategies.
Collapse
Affiliation(s)
- Hamid Nasrollahi
- Radio-Oncology Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Atefe Ghamar Talepoor
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Saleh
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahsa Eshkevar Vakili
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Paria Heydarinezhad
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Narges Karami
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Noroozi
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seppo Meri
- Department of Bacteriology and Immunology, University of Helsinki and Diagnostic Center of the Helsinki University Hospital, Helsinki, Finland
| | - Kurosh Kalantar
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Autoimmune Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
6
|
Bonifácio LP, Ramacciotti E, Agati LB, Vilar FC, Silva ACTD, Louzada Júnior P, Fonseca BALD, Souza HCCD, Oliveira CCCD, Aguiar VCR, Quadros CADA, Dusilek C, Itinose K, Risson R, Ferreira LRR, Lopes RD, Kallas EG, Bellissimo-Rodrigues F. Efficacy and safety of Ixekizumab vs. low-dose IL-2 vs. Colchicine vs. standard of care in the treatment of patients hospitalized with moderate-to-critical COVID-19: A pilot randomized clinical trial (STRUCK: Survival Trial Using Cytokine Inhibitors). Rev Soc Bras Med Trop 2023; 56:e0565. [PMID: 37075454 PMCID: PMC10109354 DOI: 10.1590/0037-8682-0565-2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 03/08/2023] [Indexed: 04/21/2023] Open
Abstract
BACKGROUND Cases of coronavirus disease 2019 (COVID-19) requiring hospitalization continue to appear in vulnerable populations, highlighting the importance of novel treatments. The hyperinflammatory response underlies the severity of the disease, and targeting this pathway may be useful. Herein, we tested whether immunomodulation focusing on interleukin (IL)-6, IL-17, and IL-2, could improve the clinical outcomes of patients admitted with COVID-19. METHODS This multicenter, open-label, prospective, randomized controlled trial was conducted in Brazil. Sixty hospitalized patients with moderate-to-critical COVID-19 received in addition to standard of care (SOC): IL-17 inhibitor (ixekizumab 80 mg SC/week) 1 dose every 4 weeks; low-dose IL-2 (1.5 million IU per day) for 7 days or until discharge; or indirect IL-6 inhibitor (colchicine) orally (0.5 mg) every 8 hours for 3 days, followed by 4 weeks at 0.5 mg 2x/day; or SOC alone. The primary outcome was accessed in the "per protocol" population as the proportion of patients with clinical improvement, defined as a decrease greater or equal to two points on the World Health Organization's (WHO) seven-category ordinal scale by day 28. RESULTS All treatments were safe, and the efficacy outcomes did not differ significantly from those of SOC. Interestingly, in the colchicine group, all participants had an improvement of greater or equal to two points on the WHO seven-category ordinal scale and no deaths or patient deterioration were observed. CONCLUSIONS Ixekizumab, colchicine, and IL-2 were demonstrated to be safe but ineffective for COVID-19 treatment. These results must be interpreted cautiously because of the limited sample size.
Collapse
Affiliation(s)
- Lívia Pimenta Bonifácio
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Ribeirão Preto, SP, Brasil
| | - Eduardo Ramacciotti
- Science Valley Research Institute, São Paulo, SP, Brasil
- Grupo Leforte, Hospital e Maternidade Christóvão da Gama, Santo André, SP, Brasil
| | | | | | | | - Paulo Louzada Júnior
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Ribeirão Preto, SP, Brasil
| | | | | | | | - Valéria Cristina Resende Aguiar
- Science Valley Research Institute, São Paulo, SP, Brasil
- Grupo Leforte, Hospital e Maternidade Christóvão da Gama, Santo André, SP, Brasil
| | | | | | | | | | | | - Renato Delascio Lopes
- Brazilian Clinical Research Institute, São Paulo, SP, Brasil
- Duke University Medical Center - Duke Clinical Research Institute, Durham, North Carolina, USA
| | - Esper Georges Kallas
- Universidade de São Paulo, Faculdade de Medicina, Departamento de Moléstias Infecciosas e Parasitárias, São Paulo, SP, Brasil
| | | |
Collapse
|
7
|
Zhu Q, Xu Y, Wang T, Xie F. Innate and adaptive immune response in SARS-CoV-2 infection-Current perspectives. Front Immunol 2022; 13:1053437. [PMID: 36505489 PMCID: PMC9727711 DOI: 10.3389/fimmu.2022.1053437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 11/09/2022] [Indexed: 11/24/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) has been a global pandemic, caused by a novel coronavirus strain with strong infectivity, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). With the in-depth research, the close relationship between COVID-19 and immune system has been dug out. During the infection, macrophages, dendritic cells, natural killer cells, CD8+ T cells, Th1, Th17, Tfh cells and effector B cells are all involved in the anti-SARS-CoV-2 responses, however, the dysfunctional immune responses will ultimately lead to the excessive inflammation, acute lung injury, even other organ failure. Thus, a detailed understanding of pertinent immune response during COVID-19 will provide insights in predicting disease outcomes and developing appropriate therapeutic approaches. In this review, we mainly clarify the role of immune cells in COVID-19 and the target-vaccine development and treatment.
Collapse
Affiliation(s)
- Qiugang Zhu
- Department of Laboratory Medicine, Shangyu People’s Hospital of Shaoxing, Shaoxing, China
| | - Yan Xu
- Department of Respiratory Medicine, Shangyu People’s Hospital of Shaoxing, Shaoxing, China
| | - Ting Wang
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Feiting Xie
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China,*Correspondence: Feiting Xie,
| |
Collapse
|